CAS Sesimbra, Portugal | March 14th, 2019

PLASMA SOURCES II

Research Group for Plasma Wakefield Accelerators **FLASH**FORWARD Deutsches Elektronen-Synchrotron DESY, Particle Physics Division, Hamburg, Germany

Accelerator Research and Development, Matter and Technologies Helmholtz Association of German Research Centres, Berlin, Germany

simulation by Alberto Martinez de la Ossa

X

Jens Osterhoff

Many thanks for support and material to...

Simon Hooker (Oxford University) Nelson Lopes (IST Lisbon)

Disclaimer: presentation is only an incomplete and subjective snapshot of the field!

Timon Mehrling (LBNL) Greg Boyle, Severin Diederichs, Carl Lindstrøm, Gegor Loisch, Kris Põder (all DESY)

Lecture Series on Plasma Sources and Diagnostics

> Plasma Sources I

- Thursday, March 14, 9:00 10:00
- Conceptual aspects
- > Plasma Sources II
 - Friday, March 15, 9:00 10:00
 - Technical aspects
- > Plasma Diagnostics
 - Tuesday, March 19, 10:00 11:00
 - **Diagnostics:** how to measure plasmas

Jens Osterhoff | Twitter: @FForwardDESY | Web: forward.desy.de | Sesimbra | March 14, 2019 | Page 46

technical compatibility?

how to actually realize plasma sources with the desired properties?

- > Gas cells
- > Plasma sources as waveguides

with the desired properties?

Gas jets

Gas jets

- Supersonic nozzles provide a near-flat-top density profile for laser wakefield experiments
- > Plasma density controlled by varying backing pressure P
 - Typically 10 100 bar depending on nozzle diameter and desired density
 - n_e typically 10¹⁷ 10²⁰ cm⁻³
 - Length typically a few mm
- > Larger nozzle diameters give lower densities for same *P*
- > Feature high gas flow rates, operation in pulsed mode
 - Requires rapid mechanical opening of fast valve (usually a solenoid)
 - Typical opening times of few ms
 - Opening can lead to vibrations
 - Mechanical parts can wear out

> Provide open geometry for on-shot diagnostic access

Gas jets

- Supersonic nozzles provide a near-flat-top density profile for laser wakefield experiments
- > Plasma density controlled by varying backing pressure P
 - Typically 10 100 bar depending on nozzle diameter and desired density
 - n_e typically 10¹⁷ 10²⁰ cm⁻³
 - Length typically a few mm
- > Larger nozzle diameters give lower densities for same *P*
- > Feature high gas flow rates, operation in pulsed mode
 - Requires rapid mechanical opening of fast valve (usually a solenoid)
 - Typical opening times of few ms
 - Opening can lead to vibrations
 - Mechanical parts can wear out

> Provide open geometry for on-shot diagnostic access

Courtesy Stuart Mangles Imperial College

Gas jets - diagnostic access

On-shot interferogram of 10 mm plasma on Astra-Gemini, Rutherford Lab, UK

S. Kneip *et al.,* Phys. Rev. Lett. **103,** 035002 (2009)

Gas jets - diagnostic access

On-shot interferogram of 10 mm plasma on Astra-Gemini, Rutherford Lab, UK

DESY.

Few-fs shadowgraphy of a laser-driven wakefield, Jena, Germany

Courtesy M. Kaluza, FSU Jena

M. Schnell et al., Nat. Comm. 4, 2421 (2013)

S. Kneip *et al.,* Phys. Rev. Lett. **103,** 035002 (2009)

Jens Osterhoff | Twitter: @FForwardDESY | Web: forward.desy.de | Sesimbra | March 14, 2019 | Page 51

- Gas jets allow for the creation of strong density gradients by shocks
- > Facilitates controlled injection of high-quality beams

from K. K. Swanson et al., Phys. Rev. AB 20, 051301 (2017)

basic idea: A. Buck et al., Phys. Rev. Lett. 110, 185006 (2013)

Gas jets - clustering

- > Expansion of gas through a nozzle into vacuum results in cooling in frame of moving gas
- > Atoms and molecules can conglomerate due to van der Waals or hydrogen bonding
- > Hagena parameter $\Gamma^* \gg 100$ describes onset of clustering
- > Cluster Features
 - Efficient laser energy absorption
 - Distinct ionization and fragmentation dynamics
 - Can vary in size from a few to 10⁴ atoms per cluster (N_c)

Gas	H ₂	D ₂	N_2
k	184 ^a	181 ^a	528ª

Jens Osterhoff | Twitter: @FForwardDESY | Web: forward.desy.de | Sesimbra | March 14, 2019 | Page 53

Heat-pipe ovens

Heat-pipe ovens

> Beam-driven plasma accelerators may require

- Long targets (meter scale)
- Relatively low density $n_e = 10^{14} 10^{17} \text{ cm}^{-3}$
- Ionizable by drive beam or a laser pulse (low /p)
- High uniformity (e.g. in AWAKE)

P. Muggli et al., IEEE Trans. Plasm. Sci. 27, 791 (1999)

Heat-pipe ovens

- > Alkali metal (Li, Rb, Cs,...) heated to form vapor
- > Alkali vapor expels buffer (e.g. He) from heated region by collisions
- > Helps to match masses (Li & He, Rb & Kr,...)
- > Steady-state when Palkali = Pbuff
- > Alkali vapor will diffuse into buffer gas for few mean-free paths before condensing
- > The "wick" returns condensed alkali
- > Increasing heater power increases evaporation rate but not Talkali
- > Pressure fixed by P_{buff}, hence length of alkali vapor increases
- > Transverse diagnostic access difficult

P. Muggli et al., IEEE Trans. Plasm. Sci. 27, 791 (1999)

Heat pipe example: AWAKE

Not strictly a heat-pipe oven...

- > 10 m long, 40 mm diam. oil-heated pipe
- No buffer gas: fast valves contain vapor
- Density variations related to temperature variations
- Better density uniformity than heat-pipe oven
- > Plasma is laser ionized

E. Öz & P. Muggli, Nucl. Inst. Meth A 740, 197 (2014)

Heat-pipe ovens: laser ionization

- > Pre-ionized plasma often preferable since head of driver beam not guided by neutral gas
 → head erosion
- > AWAKE: ionization laser triggers ionization front inside 20 cm long proton beam → seeds self-modulation
- Laser ionization
 - Need to maintain required laser intensity over long distance (plasma source length)
 - Need large spot size (transverse wake size)
 - Long focal length lens or "axicon"
- > Ionization mechanism
 - Tunneling/BSI as threshold process yields flat-top profile
 - SPI/MPI scales with power of *n*-photons required and varies with laser intensity profile

Laser-ionized heat-pipe example: PITZ

- > Cross-shaped Li vapor oven
- Side ionization with UV-laser (SPI)
- > Max. design plasma density 10¹⁵ cm⁻³
- > Ionisation degree ~10%
- > Typical operation temperature in centre ~750°C
- > Longitudinal profile shaping of plasma density possible
- > Gas-vacuum separation with µm-thin polymer windows

K

Gas cells

Gas cells

- > Region of uniform neutral gas contained by differential pumping through coaxial pinholes
- > If flow resistance of outlets > inlets, uniform density distribution in central volume
- > Finite filling time (typically 100s of ms)
- > Gas flow small enough to operate in steady state regime with continuous flow
- > No mechanically moving parts \rightarrow low-vibration, no shocks
- > Plume of gas from front and back of cell \rightarrow extended density transitions
- > Density easily adjusted by controlling gas flow in range: 10¹⁷ - 10¹⁹ cm⁻³
- > Potential issue: erosion of outlet pinholes will change density

Variable-length gas cell

- > Region of uniform neutral gas contained by differential pumping through coaxial pinholes
- > If flow resistance of outlets > inlets, uniform density distribution in central volume
- > Finite filling time (typically 100s of ms)
- > Gas flow small enough to operate in steady state regime with continuous flow
- > No mechanically moving parts \rightarrow low-vibration, no shocks
- > Plume of gas from front and back of cell \rightarrow extended density transitions
- > Density easily adjusted by controlling gas flow in range: 10¹⁷ - 10¹⁹ cm⁻³
- > Potential issue: erosion of outlet pinholes will change density
- > Variable length gas cell designs exist (e.g. LMU Munich, Imperial College London)

Courtesy Stefan Karsch LMU Munich

OpenFoam simulations show uniform density within cell & extent of plumes

Three-chamber gas cell

Courtesy Zulfikar Najmudin Imperial College London

Differentially pumped miniature gas cell

- > 2 to 10 mm long, 300 to 500 μ m diameter
- > Operated in continuous-flow mode
- > 10¹⁸ 10¹⁹ cm⁻³ density range
- Differentially pumped, linked to accelerator vacuum
- > 24 hour operation at ~1 Hz without degradation

C

Project coordinator: Andreas R. Maier (UHH, CFEL) → http://lux.cfel.de/

Discharge/laser ignited gas cell

- > 10 to 195 mm long (plans for 450 mm exist), 200 to 2000 µm diameter
- > Operated in continuous-flow mode
- > 10¹⁴ 10¹⁹ cm⁻³ density range
- Differentially pumped, linked to SRF accelerator vacuum
- > 72 hour operation at ~1 Hz without degradation

FLASHFORWARD

Discharge/laser ignited gas cell

- > 10 to 195 mm long (plans for 450 mm exist), 200 to 2000 µm diameter
- > Operated in continuous-flow mode
- > 10¹⁴ 10¹⁹ cm⁻³ density range
- Differentially pumped, linked to SRF accelerator vacuum
- > 72 hour operation at ~1 Hz without degradation

Plasma sources as waveguides

Plasma sources as waveguides

Plasma sources as waveguides

Grazing-incidence waveguides

- > Laser is guided by the index of refraction change from vacuum/gas/plasma to wall under grazing incidence
- > Operation in a large parameter range
 - Inner diameter: 50 500 µm
 - Glass walls: optically smooth
 - Length: limited by laser damping length (several meters for 100µm diameter capillary)
 - Laser intensity: limitations owing to imperfect beam quality and stability
 - Gas pressure control: 0-500 mbar, pulsed (1shot / 10s)

Courtesy Brigitte Cros LPGP, CNRS-Université Paris-Sud

- > Hot plasma column produced by longitudinal line focus
- > Plasma expands rapidly, driving shock into surrounding gas
- > On-axis density well is formed

C.G. Durfee & H.M. Milchberg, Phys. Rev. Lett. **71**, 2409 (1993)

Plasma waveguide: hydrodynamic expansion

> Original scheme

- ~100 ps laser pulse creates and heats plasma
- On-axis density ~5×10¹⁸ cm⁻³
- Matched spot WM ~10-20 µm
- Length < 30 mm

> Ignitor-heater method

- Two, crossed beams create plasma:
- fs-duration "ignitor"
- ps-duration "heater"
- > Clustered gases
 - Efficient energy absorption of clusters facilitates heating
 - Ionized and heated by fs-duration pulse
 - Generates lower on-axis densities ~1×10¹⁸ cm⁻³

- > Plasma ignition by high-voltage discharge
- > After t ~ 80 ns plasma is in quasi-equilibrium: Ohmic heating is balanced by conduction of heat to wall
- > Ablation rate small: cap. lasts for >10⁶ shots
- > n_e ≈ 10¹⁷ 10¹⁹ cm⁻³

Original work

D. J. Spence & S.M. Hooker, Phys. Rev. E 63, 015401 (2000)
A. Butler *et al.*, Phys. Rev. Lett. 89, 185003 (2002)
N.A. Bobrova *et al.*, Phys. Rev. E 65, 016407 (2002)

- > Plasma ignition by high-voltage discharge
- > After t ~ 80 ns plasma is in quasi-equilibrium: Ohmic heating is balanced by conduction of heat to wall
- > Ablation rate small: cap. lasts for >10⁶ shots

Original work

D. J. Spence & S.M. Hooker, Phys. Rev. E 63, 015401 (2000)
A. Butler *et al.*, Phys. Rev. Lett. 89, 185003 (2002)
N.A. Bobrova *et al.*, Phys. Rev. E 65, 016407 (2002)

- > Plasma ignition by high-voltage discharge

Original work

D. J. Spence & S.M. Hooker, Phys. Rev. E 63, 015401 (2000) A. Butler et al., Phys. Rev. Lett. 89, 185003 (2002) N.A. Bobrova et al., Phys. Rev. E 65, 016407 (2002)

Z_{R} = 2 mm, guiding over 16 mm, guiding efficiency > 90 %

> Path to highest LWFA electron energies

312 um 40 TW > 10¹⁸ W cm⁻² $4.3 \times 10^{18} \text{ cm}^{-3}$

E = (1.0 + - 0.06) GeV $\Delta E = 2.5\%$ RMS $\Delta \theta = 1.6 \text{ mrad RMS}$ Q = 30 pC

W. P. Leemans et al., Nature Physics 2, 696 (2006)

> Path to highest LWFA electron energies

A. J. Gonsalves *et al.,* Phys. Rev. Lett **122,** 084801 (2019)

ne Oct

Capillary diameter Input laser power Input intensity Plasma 312 um 40 TW > 10¹⁸ W cm⁻² 4.3 × 10¹⁸ cm⁻³

E = (1.0 + - 0.06) GeV $\Delta E = 2.5\% \text{ RMS}$ $\Delta \theta = 1.6 \text{ mrad RMS}$ Q = 30 pC

W. P. Leemans *et al.,* Phys. Rev. Lett **113,** 245002 (2014) W. P. Leemans *et al.,* Nature Physics **2,** 696 (2006)

Advanced capillary discharge waveguides

- Combination of gas jet and capillary for controlled injection
- Beam energy controlled by adjusting position of laser focus -
- $\Delta E_{RMS} = 1.9\%$, $\Delta Q_{RMS} = 45\%$, $\Delta \theta_{RMS} = 0.57$ mrad

A.J. Gonsalves et al., Nat. Phys. 7, 862 (2011)

Advanced capillary discharge waveguides

- Combination of gas jet and capillary for controlled injection
- Beam energy controlled by adjusting position of laser focus
- $\Delta E_{RMS} = 1.9\%$, $\Delta Q_{RMS} = 45\%$, $\Delta \theta_{RMS} = 0.57$ mrad

Jens Osterhoff | Twitter: @FForwardDESY | Web: forward.desy.de | Sesimbra | March 14, 2019 | Page 73

Open-geometry discharge plasma channel

R. Bendoyro et al., IEEE Trans. Plasma Science 36, 1729 (2008)

Courtesy Nelson Lopes IST, Lisbon

Summary of Plasma Sources II

Plasma source	ne (cm ⁻³)	Length	Trans. diag. access	Matched spot (µm)	Warı a
Gas cell	10 ¹⁵ - 10 ¹⁹	2 - 500 mm	(+ restricted)	NA	
Gas jet	10 ¹⁷ - 10 ²⁰	1 - 10 mm	~	NA	
Vapour oven	10 ¹⁴ - 10 ¹⁷	300 - 104 mm	✗ (+ restricted)	NA	
Grazing- incidence	0 - 10 ¹⁹	5 - 1000 mm	restricted	15 - 150	
Capillary discharge	10 ¹⁷ - 10 ¹⁹	7 - 100 mm	restricted	30 - 50	
Hydrodynamic expan.	10 ¹⁸ - 1 0 ¹⁹	≲ 30 mm		10 - 30	
Open- discharge	~ 10 ¹⁷	20 - 40 mm		60 - 70	

Warning! All figures approximate!

Summary of Plasma Sources II

- > Many factors must be considered when choosing a source type
- > Wide range of solutions have been developed for different scenarios
- > Future challenges
 - Operation at lower densities and over longer lengths
 - Operation at high repetition rates/high average power
 - Long operating life, 24/7 in user facilities

ce type nt scenarios

s /er