CAS Sesimbra, Portugal | March 14th, 2019

PLASMA SOURCES I

Research Group for Plasma Wakefield Accelerators **FLASH**FORWARD Deutsches Elektronen-Synchrotron DESY, Particle Physics Division, Hamburg, Germany

Accelerator Research and Development, Matter and Technologies Helmholtz Association of German Research Centres, Berlin, Germany

simulation by Alberto Martinez de la Ossa

X

Jens Osterhoff

Many thanks for support and material to...

Simon Hooker (Oxford University) Nelson Lopes (IST Lisbon)

Disclaimer: presentation is only an incomplete and subjective snapshot of the field!

Timon Mehrling (LBNL) Greg Boyle, Severin Diederichs, Carl Lindstrøm, Kris Põder (all DESY)

Active plasma lens

AWAKE alkali vapor oven

Capillary discharge waveguide

Multi-compartment plasma cell

Gas jet

Lecture Series on Plasma Sources and Diagnostics

> Plasma Sources I

- Thursday, March 14, 9:00 10:00
- Conceptual aspects
- > Plasma Sources II
 - Friday, March 15, 9:00 10:00
 - Technical aspects
- > Plasma Diagnostics
 - Tuesday, March 19, 10:00 11:00
 - **Diagnostics:** how to measure plasmas

Jens Osterhoff | Twitter: @FForwardDESY | Web: forward.desy.de | Sesimbra | March 14, 2019 | Page 8

technical compatibility?

- > Design aspects for a plasma source
- > Plasma generation mechanisms
- > Tailoring plasma properties to control wakefield and plasma processes

technical compatibility?

Design aspects

> Adjustable plasma density n _e	
> Tailored density profile n _e (x,t)	
Defined (and adjustable) length L	
> Controlled species composition	

- > Controlled plasma temperature profile T_e(x,t)
- > Spatial uniformity
- > Temporal stability

- > Durability (# of events)
- Support traversing of driver and witness
- > Accessible to diagnostics
- Materials and gas flow compatible with vacuum requirements

> Cost

Plasma generation: ionization

How to create a plasma

Plasma can be formed by different mechanisms

- Collisional ionization
 - discharges, laser-heated electrons, particle beams

e

Collisional

How to create a plasma

Plasma can be formed by different mechanisms

- Collisional ionization
 - discharges, laser-heated electrons, particle beams
- Single-photon ionization
 - high-energy photons: $h v > I_p$

How to create a plasma

Plasma can be formed by different mechanisms

- Collisional ionization
 - discharges, laser-heated electrons, particle beams
- Single-photon ionization
 - high-energy photons: $h v > I_p$

Keldysh parameter:
$$\gamma_{\rm K} = \sqrt{\frac{I_{\rm P}}{2U_{\rm P}}}$$

- > $\gamma_{\rm K}$ > 1 \rightarrow Multi-photon ionization
- > $\gamma_{\rm K} \ll 1 \rightarrow$ Field ionization (tunneling or barrier suppression)

Multi-photon ionization (MPI)

> MPI typically relevant only for moderate laser intensities (or in temporal and spatial wings)

- Example: $\gamma_{\rm K}$ > 1 for I < 1.1×10¹⁴ W cm⁻² and λ = 800 nm
- > Ionization rate $\Gamma_{i \rightarrow f} = \sigma_{i \rightarrow f}^{(N)} I^N$
- > Cross-section from Fermi's Golden Rule

Tunneling ionization

- > External E-field comparable to binding field
- > External field distorts atomic potential
- > Valence electron can tunnel through barrier
- > Accurate solution can be found by solving the Schrödinger equation \rightarrow complex

> Described by simplified models, popular: ADK (Ammosov, Delone, and Krainov)

M. V. Ammosov *et al. Sov. Phys. JETP* **64** 1191 (1986) P. B. Corkum *Phys. Rev. Lett.* **71** 1994 (1993)

3/2/

Radius r (arb. units)

> ADK ionization rate

$$W[\text{fs}^{-1}] = 1.52 \times \frac{4^{n*}}{n*\Gamma(2n*)} \left(20.5\frac{E_I}{E}\right) \exp\left(-6.83\frac{E_I^{3/2}}{E}\right)$$
$$E_I = \text{Ionization potential (eV)}$$
$$E = \text{Electric field (GV / m)}$$
$$n* = 3.68Z/\sqrt{E_I} \quad \text{Effective quantum number}$$

Tunneling ionization

> ADK ionization model only valid below

$$E_{crit} = \frac{1}{16Z} \left(\frac{U_{ion}}{U_H}\right)^2 E_{\alpha}$$
$$E_{\alpha} = m_e c \alpha^4 / r_e e \approx 5.14 \,\text{GV/cm}$$

> (Special case) model extensions exist. Care needed!

M. V. Ammosov *et al. Sov. Phys. JETP* **64** 1191 (1986) P. B. Corkum Phys. Rev. Lett. 71 1994 (1993)

1

Radius r (arb. units)

> ADK ionization rate

$$W[\text{fs}^{-1}] = 1.52 \times \frac{4^{n*}}{n*\Gamma(2n*)} \left(20.5\frac{E_I}{E}\right) \exp\left(-6.83\frac{E_I^{3/2}}{E}\right)$$
$$E_I = \text{Ionization potential (eV)}$$
$$E = \text{Electric field (GV / m)}$$
$$n* = 3.68Z/\sqrt{E_I} \quad \text{Effective quantum number}$$

Tunneling ionization

> ADK ionization model only valid below

$$E_{crit} = \frac{1}{16Z} \left(\frac{U_{ion}}{U_H}\right)^2 E_{\alpha}$$
$$E_{\alpha} = m_e c \alpha^4 / r_e e \approx 5.14 \,\text{GV/cm}$$

> (Special case) model extensions exist. Care needed!

M. V. Ammosov *et al. Sov. Phys. JETP* **64** 1191 (1986) P. B. Corkum *Phys. Rev. Lett.* **71** 1994 (1993)

Radius r (arb. units)

> ADK ionization rate

$$W[\text{fs}^{-1}] = 1.52 \times \frac{4^{n*}}{n*\Gamma(2n*)} \left(20.5\frac{E_I}{E}\right) \exp\left(-6.83\frac{E_I^{3/2}}{E}\right)$$
$$E_I = \text{Ionization potential (eV)}$$
$$E = \text{Electric field (GV / m)}$$
$$n* = 3.68Z/\sqrt{E_I} \quad \text{Effective quantum number}$$

Barrier suppression ionization

(a) Noble gas ions

(b) Miscellaneous ions

Ion	$I_{\rm P}~({\rm eV})$	$I_{\rm BSI}~({\rm Wcm^{-2}})$
He^+	24.59	$1.4\cdot 10^{15}$
He^{2+}	54.42	$8.8\cdot10^{15}$
Ne^+	21.6	$8.6 \cdot 10^{14}$
Ne^{2+}	40.96	$2.8 \cdot 10^{15}$
Ne^{7+}	207.3	$1.5 \cdot 10^{17}$
Ar^{8+}	143.5	$2.6 \cdot 10^{16}$
Xe^+	12.13	$8.6 \cdot 10^{13}$
Xe^{8+}	105.9	$7.8 \cdot 10^{15}$

Ion	$I_{\rm P}~({\rm eV})$	$I_{\rm BSI}~({\rm Wcm^{-2}})$
H^+	13.61	$1.4 \cdot 10^{14}$
C^+	11.2	$6.4 \cdot 10^{13}$
C^{4+}	64.5	$4.3 \cdot 10^{15}$
N $^{5+}$	97.9	$1.5 \cdot 10^{16}$
O^{6+}	138.1	$4.0 \cdot 10^{16}$

> At high fields the barrier is completely suppressed (Barrier Suppression Ionization)

$$I_{\rm BSI} \ge \frac{I_{\rm P}^4 \pi^2 c \epsilon_0^3}{2Z^2 e^6} \gtrsim 4.00 \cdot 10^9 \frac{I_{\rm P}^4}{Z^2}$$
 in W cm⁻² with $[I_{\rm P}] = \text{eV}$

Field ionization by particle beams

 $E_{r,\text{peak}}(r \approx 1.6\sigma_r)$

Courtesy Patric Muggli Max Planck Institute for Physics, Munich Coulomb fields of particle beams can trigger ionization
 Field maximum is off-axis for symmetric beams

Field ionization by particle beams

 $E_{r,\text{peak}}(r \approx 1.6\sigma_r)$

Courtesy Patric Muggli Max Planck Institute for Physics, Munich Coulomb fields of particle beams can trigger ionization
 Field maximum is off-axis for symmetric beams

Tailoring plasma properties to control wakefield processes

What do we want to control?

> Plasma density $n_{e}(x,t), n_{i}(x,t)$

- injection (n_e density down-ramps)
- dephasing (n_e density up-ramps)
- laser guiding (transverse n_e profiles)
- emittance preservation in beam release (tailored plasma to vacuum transition)
- emittance preservation in beam capturing/matching (tailored vacuum to plasma transition)
- hosing seed mitigation (tailored vacuum to plasma transition)
- head-erosion mitigation (preionized beam-driven)
- decoupled acceleration and focussing fields (hollow-core channels)
- positron acceleration (hollow-core channels)
- chirp mitigation (alternating plasma densities)

> Control: set parameters with high precision Stability: small event fluctuations

What do we want to control?

> Plasma density $n_{e}(x,t), n_{i}(x,t)$

- injection (n_e density down-ramps)
- dephasing (n_e density up-ramps)
- laser guiding (transverse n_e profiles)
- emittance preservation in beam release (tailored plasma to vacuum transition)
- emittance preservation in beam capturing/matching (tailored vacuum to plasma transition)
- hosing seed mitigation (tailored vacuum to plasma transition)
- head-erosion mitigation (preionized beam-driven)
- decoupled acceleration and focussing fields (hollow-core channels)
- positron acceleration (hollow-core channels)
- chirp mitigation (alternating plasma densities)

> Plasma temperature $T_{e}(x,t), T_{i}(x,t)$

- usually of lesser concern: $T_{e/i} \approx I_p \ll U_p$
- important for non-wakefield applications, e.g. active plasma lenses

> Control: set parameters with high precision Stability: small event fluctuations

What do we want to control?

> Plasma density $n_{e}(x,t), n_{i}(x,t)$

- injection (n_e density down-ramps)
- dephasing (n_e density up-ramps)
- laser guiding (transverse n_e profiles)
- emittance preservation in beam release (tailored plasma to vacuum transition)
- emittance preservation in beam capturing/matching (tailored vacuum to plasma transition)
- hosing seed mitigation (tailored vacuum to plasma transition)
- head-erosion mitigation (preionized beam-driven)
- decoupled acceleration and focussing fields (hollow-core channels)
- positron acceleration (hollow-core channels)
- chirp mitigation (alternating plasma densities)

> Plasma temperature $T_{e}(x,t), T_{i}(x,t)$

- usually of lesser concern: $T_{e/i} \approx I_p \ll U_p$
- important for non-wakefield applications, e.g. active plasma lenses

> Plasma constituents (also from gas mixtures)

- unionized electronic levels \rightarrow ionization injection, ionization defocussing
- ion mass \rightarrow ion motion effects, thermal conductivity
- tracer atoms \rightarrow diagnostics

> Control: set parameters with high precision Stability: small event fluctuations

Plasma density control

- > Plasma density n_e (x,t) governs acceleration process
- > Usually: flat acceleration section

Plasma density control

- > Plasma density n_e (x,t) governs acceleration process
- > Usually: flat acceleration section

Plasma density control

- > Plasma density n_e (x,t) governs acceleration process
- > Usually: flat acceleration section

Plasma density control - down-ramp injection

> Plasma density n_e (x,t) governs acceleration process

- Phase velocity of plasma wake reduced on density down-slope
- Velocity of plasma electrons may exceed v₀, leads to trapping
- > Trapping possible in multiple buckets

Plasma density control - phase locking

> Plasma density n_e (x,t) governs acceleration process

DESY.

- > Phase velocity of plasma wake increased on density up-slope
- Plasma wave phase velocity v_Φ may be locked to velocity of injected beam
- > Electrons can be locked in acceleration phase

Rittershofer et al., Phys. Plasmas 17, 063104 (2010)

Plasma density control - beam release

> Plasma density n_e (x,t) governs acceleration process

> Beams at plasma exit

- ~% level energy spread
- *≤* mm beta function, ~mrad divergence

> Leads to transverse emittance growth in free drift

$$\varepsilon_n^2 \cong \langle \gamma \rangle^2 \cdot (\sigma_E^2 \sigma_{x'}^4 s^2 + \varepsilon^2)$$

→ K. Floettmann, Phys. Rev. STAB 6, 034202 (2003)

$$\epsilon = \sqrt{\langle}$$

Plasma density control - beam release

> Plasma density n_e (x,t) governs acceleration process

> Beams at plasma exit

- ~% level energy spread
- ≤ mm beta function, ~mrad divergence
- > Leads to transverse emittance growth in free drift
- > Plasma-to-vacuum transition length $\gg \beta$ for adiabatic mitigation of emittance growth
- Strong focussing elements for beam capturing required

Plasma density control - beam capturing/matching

> Plasma density n_e (x,t) governs acceleration process

> External beams need to be matched to wakefield to preserve normalized emittance

Plasma density control - beam capturing/matching

> Plasma density n_e (x,t) governs acceleration process

External beams need to be matched to wakefield to preserve normalized emittance

Plasma density control - beam capturing/matching

> Plasma density n_e (x,t) governs acceleration process

- External beams need to be matched to wakefield to preserve normalized emittance
- > Matching conditions

$$\alpha_{match} = 0 \qquad \beta_{match} \simeq \frac{c}{\omega_{\beta}}$$

- > Matched β (~ mm) can be challenging to achieve
- > If matching technically difficult, adiabatic up-ramp may help

Centroid equations

Beam centroid equation

$$\frac{\partial^2 X_b}{\partial t^2} + \omega_\beta^2 \left(X_b - X_c \right) = 0$$

Channel centroid equation assuming linear plasma sheath response* $\frac{\partial^2 X_c}{\partial \xi^2} + \frac{k_p^2}{2} \left(X_c - X_b \right) = 0$

Channel centroid equation including relativistic sheath electrons and varying current and blowout radius along beam**

$$\frac{\partial^2 X_c}{\partial \xi^2} + \frac{k_p^2 c_{\psi}(\xi) c_r(\xi)}{2} \left(X_c - X_b \right) = 0$$
$$c_r(\xi) = 4I_b(\xi) / I_A(k_p R(\xi))^2$$
$$c_{\psi}(\xi) = 1 / (1 + \psi(\xi))$$

Dramatic implications for PWFA

Beam centroid deviations are amplified exponentially in time and along the beam!

*D. H. Whittum, et al. Phys. Rev. Lett. 67, 991 (1991). **C. Huang, et al. Phys. Rev. Lett. 99, 255001 (2007).

Jens Osterhoff | Twitter: @FForwardDESY | Web: forward.desy.de | Sesimbra | March 14, 2019 | Page 29

Centroid equations

Beam centroid equation

$$\frac{\partial^2 X_b}{\partial t^2} + \omega_\beta^2 \left(X_b - X_c \right) = 0$$

Channel centroid equation assuming linear plasma sheath response* $\frac{\partial^2 X_c}{\partial \xi^2} + \frac{k_p^2}{2} \left(X_c - X_b \right) = 0$

Channel centroid equation including relativistic sheath electrons and varying current and blowout radius along beam**

$$\frac{\partial^2 X_c}{\partial \xi^2} + \frac{k_p^2 c_{\psi}(\xi) c_r(\xi)}{2} \left(X_c - X_b \right) = 0$$
$$c_r(\xi) = 4I_b(\xi) / I_A(k_p R(\xi))^2$$
$$c_{\psi}(\xi) = 1 / (1 + \psi(\xi))$$

Dramatic implications for PWFA

Beam centroid deviations are amplified exponentially in time and along the beam!

*D. H. Whittum, et al. Phys. Rev. Lett. 67, 991 (1991). **C. Huang, et al. Phys. Rev. Lett. 99, 255001 (2007).

Excellent agreement between analytical estimates, numerical solution and PIC*

* T. J. Mehrling et al., PRL 118, 174801 (2017)

Excellent agreement between analytical estimates, numerical solution and PIC*

* T. J. Mehrling et al., PRL 118, 174801 (2017)

> Linear scalings for LWFAs

- Accelerating field $E_z \propto \omega_p \propto \sqrt{n_e}$
- Dephasing length
- Energy gain

$$L_d \approx \frac{\lambda_p^3}{\lambda^2} \propto \frac{1}{n_e^{3/2}}$$
$$\Delta W = E_z L_d \propto \frac{1}{n_e}$$

Simple scaling (in linear regime) shows, factor 10 increase in energy requires:

- Factor 10 decrease in electron density:
 10¹⁹ cm⁻³ → 10¹⁸ cm⁻³ → 10¹⁷ cm⁻³
- Factor 30 increase in length:
 - 1 2 mm → 30 60 mm → 900 1800 mm

> Linear scalings for LWFAs

- Accelerating field $E_z \propto \omega_p \propto \sqrt{n_e}$
- Dephasing length
- Energy gain

$$L_d \approx \frac{\lambda_p^3}{\lambda^2} \propto \frac{1}{n_e^{3/2}}$$
$$\Delta W = E_z L_d \propto \frac{1}{n_e}$$

Simple scaling (in linear regime) shows, factor 10 increase in energy requires:

- Factor 10 decrease in electron density:
 10¹⁹ cm⁻³ → 10¹⁸ cm⁻³ → 10¹⁷ cm⁻³
- Factor 30 increase in length:
 1 2 mm → 30 60 mm → 900 1800 mm

The laser intensity must be maintained over the acceleration length

- limited by laser diffraction
- Rayleigh range typically only millimeters

Example :

 $w_0 = 10 \,\mu\mathrm{m}; \,\lambda = 1 \,\mu\mathrm{m}$

 $\Rightarrow Z_R = 0.3 \,\mathrm{mm}$

> Transverse index of refraction gradient may guide lasers

- > Transverse index of refraction gradient may guide lasers
- > Plasma channel: transverse variation of electron density gives correct refractive index profile
 - Transverse plasma density gradient gives transverse index of refraction gradient

$$\eta = \sqrt{1 - \left(\frac{\omega_p}{\omega}\right)^2}$$
 $pprox 1 - \frac{1}{2} \frac{n_e(r)e^2}{\gamma m_e \epsilon_0 \omega^2}$

- Changes laser phase velocity $v_{\phi} = c/\eta$
- > Parabolic channel will match Gaussian beam of spot size W
- > Shape of channel is not very important: matched spot size mainly determined by channel depth
 - cf. Durfee et al., Opt. Lett. 19, 1937 (1994)

$$V_M = \left(\frac{r_{ch}^2}{\pi r_e \Delta n_e}\right)^{1/4} \qquad n_e(r) = n_e(0) + \Delta n_e \left(r/r_{ch}\right)^2$$

> Relativistic self-focusing: transverse variation of intensity gives correct refractive index profile

- Leads to self-focusing/guiding above a critical power

$$P_c = 17.4 \left(\frac{\omega}{\omega_p}\right)^2 \,\mathrm{GW} \qquad \qquad \mathbf{X}$$

Example

$$n_e = 10^{18} \,\mathrm{cm}^{-3}, \lambda = 800 \,\mathrm{nm}$$

 $P_c = 8 \,\mathrm{TW}$

> Relativistic self-focusing: transverse variation of intensity gives correct refractive index profile

- Leads to self-focusing/guiding above a critical power

$$P_c = 17.4 \left(\frac{\omega}{\omega_p}\right)^2 \,\mathrm{GW} \qquad \qquad \mathbf{X}$$

Example

$$n_e = 10^{18} \,\mathrm{cm}^{-3}, \lambda = 800 \,\mathrm{nm}$$

 $P_c = 8 \,\mathrm{TW}$

S. Kneip et al., Phys. Rev. Lett. 103 035002 (2009)

Plasma density control - hollow core channels

Plasma density control - head erosion mitigation

- > Front of drive beam
 not in focussing channel
 → front is diverging
- > Beam erodes from the front "head erosion"
- > Etching speed scales with

$$\epsilon_N/\gamma N^{1.5}$$

from An et al., Phys. Rev. STAB 16, 101301 (2013)

Plasma density control - head erosion mitigation

- > Front of drive beam not in focussing channel \rightarrow front is diverging
- > Beam erodes from the front "head erosion"
- > Etching speed scales with

$$\epsilon_N/\gamma N^{1.5}$$

> Laser preionization provides focussing plasma for front of beam

Plasma density control - chirp mitigation

Plasma constituents control - ionization injection

Ionization of dopant gas near laser-pulse peak intensityDopant concentration

to tune injected charge and beam loading

idea: D.Umstadter *et al.*, Phys. Rev. Lett. **76**, 2073 (1996) *demonstration:* A.Pak *et al.*, Phys. Rev. Lett. **104**, 025003 (2010) C.McGuffey *et al.*, Phys. Rev. Lett. **104**, 025004 (2010)

Plasma temperature control

- > Initial plasma temperature $T_e(x,t)$, $T_i(x,t)$ usually small compared to Up \rightarrow effects usually neglected
- Influences wave-breaking threshold only at very high plasma temperatures

$\mu = 3k_{\rm B}T_{\rm e}(m_{\rm e}v_{\rm p}^2)^{-1}$

Plasma temperature control - APLs

> Temperature control of crucial importance for active plasma lenses

 \rightarrow F = I x B, tunable and symmetric focussing force for e⁻-beam

J. van Tilborg et al., Phys. Rev. Lett. 115, 184802 (2015)

- - results in transverse density and temperature gradient
 - ohmic resistance depends on temperature
 - local current density depends on local temperature
 - leads to B-field inhomogeneities \rightarrow nonlinear focussing fields \rightarrow emittance growth

Cap wall

at r=R

Plasma temperature control - APLs

> Temperature control of crucial importance for active plasma lenses

> Plasma heated by current, cooled on walls

- results in transverse density and temperature gradient
- ohmic resistance depends on temperature
- local current density depends on local temperature
- leads to B-field inhomogeneities \rightarrow nonlinear focussing fields \rightarrow emittance growth

Plasma temperature control - APLs

> Temperature control of crucial importance for active plasma lenses

- > Plasma heated by current, cooled on walls
 - results in transverse density and temperature gradient
 - ohmic resistance depends on temperature
 - local current density depends on local temperature
 - leads to B-field inhomogeneities \rightarrow nonlinear focussing fields \rightarrow emittance growth

> APLs need to be used long before thermal equilibrium is reached, when current density is still uniform

- Substitute Hydrogen/Helium with Argon to extend timescale of temperature equilibration ~ mion
- > Experiment at CLEAR, CERN: 216 MeV electrons, 50 µm rms size, 3 µm norm. emittance, 410 A current at 70 ns
- > Argon: emittance conservation measured Helium: emittance not conserved

Summary of Plasma Sources I

> Today

- **Design aspects for a plasma source**
- **Concepts:** plasma generation mechanisms
- **Concepts:** tailoring plasma properties to control wakefield processes

> Tomorrow: technical implementation and examples

