

MINI – CAS ON MECHANICAL ENGINEERING

METAL FORMING (INSIGHTS ON)

Antonello Astarita, Ph.D.

University of Naples «Federico II», Dept. Of Chemical, Materials and Production Engineering

antonello.astarita@gmail.com

antonello.astarita@unina.it

A «process» conceived to produce, starting from a semifinished product, parts with the desired shape and the desired properties (e.g. mechanical properties, corrosion behaviour, roughness and so on).

Material forming: the «science» that studies these processes

INFLUENCE OF THE BASE MATERIAL ON THE PROCESS EFFECTIVENESS

Experimental: Forging Tests

Test at T=940-960°C: filling defect (corner)

Test at T=1100°C, better material flow - flash; «Buy to Fly» Ratio: R_f= 4

FORGED IN ALPHA FIELD

Common metallic crystal structures

body-centred cubic (bcc) © 2012 Encyclopædia Britannica, Inc.

face-centred cubic (fcc)

hexagonal close-packed (hcp)

Plastic Deformation

- Slip forms small steps of crystal resulting from large dislocations along same plane
- Schmidt law stress reqd to initiate slip in a Pure single crystal is constant at a given temp
 - All planes don't have same RSS for given load. Deformation to start on plane having max RSS

٠

.

•

.

.

Slip v/s Twinning

Slip		Twinning	
Atomic moveme	ent		
whole number of atomic spacing		fractional atomic spacing	
Microscopic app	earance		
Thin lines		Wide bands or broad lines	
Lattice orientati	on		
No change in lattice orientation		Lattice orientation changes	
Time			
many mill	i sec	few micro sec	
RSS		no role	

Plastic Flow – Planes of atoms slip past one another

FCC SLIP SYSTEM

- The slip plane belongs to the {111} family
- Slips occur at <110> -type direction, within {111} planes
- There are several slips direction for a slip plane, forming different possible combination of slip system
- For FCC, 4 unique {111} planes and 3 independent <110> directions, results in 12 slips system.

Major Slip Systems

Crystal structure	Slip plane	Slip direction	Number of slip systems	Unit-cell geometry	Examples
bcc	{110}	$\langle \overline{1}11 \rangle$	$6 \times 2 = 12$		α-Fe, Mo, W
fcc	{111}	$\langle 1\overline{1}0 \rangle$	4 × 3 = 12	-A	Al, Cu, γ-Fe, Ni
hcp	(0001)	(1120)	$1 \times 3 = 3$		Cd, Mg, α-Ti, Zı

 Table 6.9 Major Slip Systems in the Common Metal Structures

550 °C anneal for 1 hour

650 °C anneal for 1 hour

Strain

Forming Limit Diagram

Relaxation test

Compression test

Jhonson Cook Model – a constitutive equation for metals

Forming Processes

geometry leading to more than 200 basic processes!

Forming Processes

Metal Forming Processes

360 mm 410 mm 920 mm H-HOM and FPC Main Body V-HOM and antenna

Radio Frequency Dipole Cavity: why F.E.?

Shaping + Electron beam welding of the subcomponents

Manufacturing Challenges:

1.Large deformation processes (deep drawing, hole extrusion..)

2. Multiple shaping processes on 4mm thick Niobium sheets

3.Tight geometrical tolerances (±0.1mm)

FEM analyses

- Better understanding of the physical phenomena involved in the process
 Determining process feasibility
- Faster iteration on the design of the fabrication tools

Bowl Case Study: Deep drawing

Multicell RF cavity

CERN Applications Hydroforming of tubes top die tube sealing punch bottom die Insertion of tube and closing of tooling

hydroforming by pressurisation and axial feeding

Opening of tooking for removal of part

Hydroforming of tubes

Hydroforming of tubes

Interesting processes: single point incremental forming

Interesting processes: single point incremental forming

Interesting processes: single point incremental forming

CONCLUDING REMARKS

- KNOW THE MATERIAL YOU ARE USING
- KNOW THE MECHANISMS RULING FORMING
- CHARACTERIZE THE PROPERTIES OF THE SPECIFIC RAW MATERIAL YOU ARE
 USING
- KNOW THE PROPERTIES YOU WANT IN THE FINAL PART
- FIND OUT A CONSTITUTIVE LAW
- CAREFULLY CHOSE THE FORMING PROCESS
- MORE THAN CAREFULLY CALIBRATE YOUR PROCESS
- (OFF) TOPIC: KNOW TOOLS AND FACILITIES USED AND REQUIRED

SUGGESTED READINGS

Cahn, Physical Metallurgy Cottrell, Dislocations and Plastic Flow in Crystals Dieter, Mechanical Metallurgy