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• Cavity modes – longitudinal and transverse

• Gaussian beams & the q parameter

• Ray optics & ABCD matrices

• Beam focusing

Outline



CERN High Gradient Accelerator School, Sesimbra Portugal, March 2019 3

Cavity 

• Pump gain medium to upper level

• A photon decays spontaneously & stimulates more emission

• The photons bounce back and forth along the cavity – if the number of photons emitted
each round trip exceeds losses (mirrors etc.) laser is above threshold 

• One of the mirrors allows a small amount of this light out – laser output!

• Laser output controlled by gain of medium and longitudinal & transverse modes of cavity
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Longitudinal modes

• Laser oscillator is just a resonator
• Resonant cavity modes exist
• Other frequencies ‘don’t fit’

𝐿 = 𝑞


2
Resonant modes fulfil:

∆ =
𝑐

2𝑛𝐿

Cavity mode spacing given by:

n is refractive index – may be 1

Form a ‘comb’ of equally spaced modes in frequency space
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Longitudinal modes

• Length of cavity determines resonant
frequencies and mode spacing

• Laser gain medium has certain bandwidth

• Combination determines what 
wavelengths can lase
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Lasing on longitudinal modes

The oscillator can lase on these modes

Doesn’t mean it will!

Need to be above threshold – gain > cavity losses for lasingThese modes won’t lase

These modes will lase

• Can make the laser run 
on a single longitudinal 
mode – SLM

• Very narrow bandwidth
• Spectroscopy etc.
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Mode locking
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Short  pulse oscillator

Fourier transform of comb of frequencies is train of pulses in time
Duration of individual pulse given by total bandwidth
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Pulse train output

• If we can lock all the lasing cavity modes in phase we have a short pulse in the oscillator
• Each round trip a small amount is transmitted through the output coupler
• So laser output is a train of ultrashort pulses
• ‘Front end’ of chirped pulse amplification system
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Transverse cavity modes

aka ‘what the laser looks like as you stare into it just before it blinds you’
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Transverse cavity modes (safely)

• Not an infinite plane wave – boundary conditions!
• What is the form of that wave that is self consistent after one round trip in 

cavity?
• Paraxial approximation

Cylindrical symmetry:
Solutions are Laguerre – Gaussian modes

Rectangular symmetry:
Solutions are Hermite – Gaussian modes

HG more common – broken symmetry in 
oscillator

Lowest order mode is a Gaussian
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Gaussian beams

Important as lowest order lasing mode of (most) cavities

• Want to know how this beam propagates 
through an optical system:

• How does the beam change?

• How does it focus?

This is a simulation. You will never see a real beam this good.
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Gaussian beams 
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Gaussian beams

• IMPORTANT: ‘spot size’ w(z)
‘beam waist’ w(0)
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Gaussian beam size 

• IMPORTANT: ‘spot size’ w(z) is 1/e2 radius of beam intensity profile

1

𝑒2
w(z)

Beam diameter is 2w

Both of these will be completely different to the way your accelerator 
colleagues define charged particle beam size
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Propagation of Gaussian beams
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Rayleigh range

No such thing as a collimated beam, but 2zR is a reasonable approximation

• Can define new quantity zR – the ‘Rayleigh range’
• Distance over which spot size wo goes to 2wo

• Beam area has doubled.



CERN High Gradient Accelerator School, Sesimbra Portugal, March 2019 18

Gaussian beam propagation
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ABCD matrices

This just gives free space propagation – how to model beam through optical system?
Back to ray optics

• Define input light ray: position xin and angle in

• Propagate through optical system

• Have output light ray: position xout and angle out

• Related by 2 x 2 matrix

𝐴 𝐵
𝐶 𝐷

=
Exact form of matrix 
depends on optical system
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ABCD matrices

• Common matrices:

• Propagation in free space      
1 𝐿
0 1

• Focusing with thin lens 
1 0

−1/𝑓 1

Can multiply several 
matrices together to model 
e.g. cavity, telescope 

Best bit – works for Gaussian beams too!

q2 =
𝐴𝑞1 + 𝐵

𝐶𝑞1 + 𝐷

So if you know initial q parameter and ABCD matrix can 
find spot size and curvature anywhere
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Gaussian beam focusing (theory)

𝑤𝑜 =
𝑓

𝜋𝑤𝑖

2wo2wo

2wi

• Want high intensity  small spot size
• Gaussian beam focus with lens focal length f 

Beam waist 

Input spot size
Small spot:
• Short focal length f
• Short wavelength 
• Large input spot wi



22

Gaussian beam focusing (practice)
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Beam at focus

What your supervisor thinks the beam should look like:

v. what the beam actually looks like
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Top hat beams

• High power laser beams often top hat spatial profile rather than Gaussian
• More efficiently extract gain from laser amplifier
• Often use concept of f/# (f – number) for focusing
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f number and focusing

• ‘f/#’ is a property of focusing (collimating) system e.g. lens, parabola

• Given by f/# = 
𝑓

𝐷

• f – lens/parabola focal length
• D – diameter

• We say ‘ f 10’ or f 18’ 

• Caution! D is really size of beam on optic here – ‘effective’ f/#
• e.g. f = 150mm, D = 50mm, spot diameter 40 mm

• Smaller f/# for smaller spot 
• f = 150mm, D = 100mm, spot diameter 40mm – haven’t changed focus size!

From focusing formula we find 

𝑤 ≈  ∗ 𝑓/#
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Adaptive optics

Can we make the focus better?
Want to remove aberrations from the laser beam wavefront to give best focus
Use of adaptive optics to correct beam – stolen from astronomy

Use deformable mirror to correct 
wavefront and produce best focus
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Conclusion

• Studied:

• Longitudinal cavity modes and mode locking

• Transverse cavity modes

• Gaussian beam propagation and focusing

• Adaptive optics


