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CAx

Computer-Aided

Manufacturing

(CAM)

Computer-Aided Design 

(CAD)
Computer-Aided Engineering

(CAE – e.g. FEA, CFD)

Computer-Aided Technologies (CAx)
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Design and 

Analysis*

Virtual 

Prototyping

Physical 

Prototyping

Final Product 

Testing

$ Relatively cheap

$$ Not so cheap

$$$ Really expensive

CAD/CAE

*The more time spent here, the less money and time spent later

Computer-Aided Design and Engineering (CAD/CAE)
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CAE Fields

Computational 
Fluid 

Dynamics

(CFD)

Finite‐Element 
Analysis

(FEA)

Multidisciplinary 
design 

optimization

(MDO)

Multibody

Dynamics

(MBD)
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FEM Theory in a Nutshell

𝐾 𝑢 = 𝐹

𝑀 ሷ𝑢 + 𝐶 ሶ𝑢 + 𝐾 𝑢 = 𝐹

Static problems

Dynamic problems

𝐾 , 𝐶 , 𝑀 = 𝐾0 , 𝐶0 , 𝑀0

𝐾 , 𝐶 , 𝑀 = 𝑓 𝑢, ሶ𝑢, ሷ𝑢

Linear problems:

Nonlinear problems:
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FEM Theory in a Nutshell

The displacements of all the points in a continuum

under the action of external forces depends on the

displacements of discrete points known as nodes.

This dependence is regulated by interpolating 

functions known as shape functions.

To study a body with FEM, we must thus 

discretize the continuum in a finite number of 

elements, each one featuring a number of nodes 

which depends on the type of element chosen.
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FEM Theory in a Nutshell

Shape functions

Compatibility EquationsC

𝑢 = 𝑁 𝑠 N

𝜀 = 𝜕 𝑢 = 𝜕 𝑁 𝑠

Material Constitutive Law (e.g. Hooke’s law)M𝜎 = 𝐷 𝜀 = 𝐷 𝜕 𝑁 𝑠

FEM: solving for the nodal displacements 𝑠 𝑠 = 𝐾 −1 𝐹

N C M+ + Solution known in all points of the 

structure (not only at the nodes!)

After calculation of 𝑠 :
𝜕 =

ൗ𝜕 𝜕𝑥 0 0

0 ൗ𝜕 𝜕𝑦 0

0 0 ൗ𝜕 𝜕𝑧

ൗ𝜕 𝜕𝑦 ൗ𝜕 𝜕𝑥 0

0 ൗ𝜕 𝜕𝑧 ൗ𝜕 𝜕𝑦

ൗ𝜕 𝜕𝑧 0 ൗ𝜕 𝜕𝑥
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Properties of shape functions

1. It must be a continuous function, and must possess a derivative at least until to the 

n-1 order required by the problem under study (e.g. n = 1 for a truss element, n = 2 

for a beam or plane element, etc.)

2. It must reproduce rigid motion of the element with a null deformation energy (i.e. in 

an eigenvalue problem, the rigid motion d.o.f. gave a null eigenvalue  in a 3D 

space, for an unconstrained body there will be 6 null eigenvalues)

3. It must guarantee a constant deformation along the element (minimal condition 

when element size tends to zero)

4. It must guarantee continuity among elements (i.e. identical displacement field on a 

segment belonging to two adjacent elements)

5. It should be geometrically isotropic (i.e. displacement field is invariant wrt the 

reference system, not presenting preferential directions)

Complete

Compatible

Conform

Polynomials
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Shape function of a truss element

1 2

𝑁 = 1 −
𝑥

𝑙

𝑥

𝑙

𝑢 = 𝑎1 + 𝑎2𝑥 = 1 𝑥
𝑎1
𝑎2

𝑎1, 𝑎2 are coefficients that can be 

calculated imposing the b.c. 𝑥1 = 0, 𝑥2 = 𝑙

x

y

u1
u2𝑙

 Displacements will be varying linearly over the length of 

the element, while strains and stresses will be 

constant

 This shape function respects the properties discussed 

earlier, in particular the n order of the problem under 

study

 Choose the right element for the right problem! In case of 

bending and shear, use a beam element instead
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Linear vs quadratic elements

Linear elements: computationally more efficient, but when a nonlinear stress state is 

expected, use quadratic elements or more linear elements over the thickness

Fixed support

Distributed load

Linear elements Quadratic elements

1.48

-1.48

Bending stress (MPa)
1.50

-1.50

Bending stress (MPa)



FEM Solvers
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 Explicit solvers: derive the unknowns (displacements, velocities, accelerations) at a time instant 

t+Δt by developing the equilibrium equations at the time t.

 Implicit solvers: derive the unknowns at a time instant t+Δt by developing simultaneous 

equilibrium equations at the time t and t+Δt.

Implicit codes

 Unconditionally stable

 Large time steps

 Matrix inversion

 Coupled equations

 Convergence problem

Explicit codes

 Conditionally stable

 Small time steps

 «Lumped» matrix multiplication

 Uncoupled equations

 «Keep going»

 Explicit solvers: suggested for fast transient and highly nonlinear problems

 Implicit solvers: suggested for slow transient and static problems



FEM tips: from reality to model
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 Simplification of the model: removal of details not contributing to the solution of the problem 

under study

 Screws, welds typically defeatured in the FEA, and calculated “by hand” extracting internal 

loads from FEA

 Chamfers, radii can be verified via submodels

 Loads and boundaries:

 As accurate as possible representation of the real working conditions

 Compromise sometimes to be made to simplify the problem (e.g. nonlinear contacts, etc.)

 Most critical step of the process

 Safety factors! (i.e. factor of ignorance)

 When approximating, always be on the conservative side

 Start simple, complexify later 
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Particle accelerator components: typical loads
Temperature 

gradient
Mechanical forces Electromagnetic 

forces

Displacements
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Accelerations Beam loads (RF & 
particle losses)

Can be typically studied 

with implicit FE codes
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Examples
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FRESCA2: a facility for testing SC samples
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Simplified model 

for computations

Federico Carra (CERN, EN/MME) - 06/11/2020



FRESCA2: design of the OHV

17

Two main design cases:

1. Operation: 

 Internal pressure in the OHV 3.9 bara

 Thermal gradient 2-300 K

 EM torque 3500 Nm

 Most likely failure scenario is by plastic 

deformation

2. Vacuum loss during OHV purging: 

 External pressure on the OHV 1.5 bara

 Most likely failure scenario is by buckling
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FRESCA2 OHV: operational scenario
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 Use shell elements 

wherever possible wrt solids

 Nonlinearity of materials 

(temperature, strain, …)

 Structure verified against EN-

13445 Direct Route: plastic 

strain must be less than 5%

 T field can be calculated in a 

separated thermal analysis, 

then imported into structural 

(thermomechanical coupling)
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FRESCA2 OHV: operational scenario
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 Direct route requires 𝑚𝑎𝑥 𝜀1 , 𝜀2 , 𝜀3 < 5%

 How to make sure of accuracy of the results?

 Convergence study

 Submodeling

0.4%
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FRESCA2 OHV: vacuum loss during purging

0.08%

 Direct route check: 0.08% < 5% not enough!

 (Especially) with external pressure, important to verify buckling
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FRESCA2 OHV: vacuum loss during purging – Buckling

 Which kind of buckling study?

 When going with FEM, better to directly take the most accurate one (GMNIA)

 Also required by direct route. It accounts for large deformation theory, material nonlinearities, and initial 

geometry imperfections (e.g. shape errors, etc.)
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FRESCA2 OHV: vacuum loss during purging – Buckling

How to perform a GMNIA?

Steps:

1. LSA: Run a linear elastic static analysis (no 

imperfections), with nominal loads

2. LBA: Perform a bifurcation analysis (eigenvalue 

buckling) and determine the linear buckling modes, 

and the load multipliers wrt (1)

3. GMNIA: Run a nonlinear material, large 

deformation analysis, importing the deformed 

geometry of (2) as initial geometry of the analysis. 

Increase the loads progressively until:

 Buckling occurs, or

 The safety factor required by the Standard is 

reached

LSA LBA

GMNIA
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Conclusions
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 Nowadays, Computer-Aided Engineering (CAE) is of paramount importance in the design phase of 

components, to decrease cost, time, risk for the project

 CAE require a number of iterations with CAD, with the goal of optimizing the component

 What cannot be calculated, must be validated through tests / prototypes (calculation cannot 

replace everything!)

 Thanks to the increase in the computational power, the Finite-Element Method (FEM) has been, in 

the last years, the most adopted tool for CAE

 When engineering particle accelerator components, implicit codes are typically adopted over 

explicit ones

 Explicit codes become necessary when dealing with short transient simulations (e.g. beam impact 

on dumps, windows, etc.) and with strongly nonlinear problems (e.g. fabrication technologies: 

cutting, welding, brazing, forming, etc.)

 Graphical interfaces of FEM tools are becoming simpler: easier for the work, riskier if we do 

not well master the method!
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Symbols
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 𝑀 : mass matrix 𝑘𝑔

 𝐶 : damping matrix Τ𝑁 Τ𝑚 𝑠

 𝐾 : stiffness matrix Τ𝑁 𝑚

 ሷ𝑢 : acceleration vector Τ𝑚 𝑠2

 ሶ𝑢 : velocity vector Τ𝑚 𝑠

 𝑢 : displacement vector 𝑚

 𝐹 : external force vector 𝑁

 𝑠 : nodal displacements vector 𝑚

 𝑁 : shape functions matrix −

 𝜀 : strain vector −
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 𝜕 : strain-displacement matrix 𝑚−1

 𝜎 : stress vector 𝑃𝑎

 𝐷 : material constitutive matrix 𝑃𝑎

 𝑎 : polynomial coefficients vector −

 𝑃 : position matrix 𝑚

 𝑎 : nodal position matrix 𝑚

 𝜀1: maximum principal strain −

 𝜀2: middle principal strain −

 𝜀3: minimum principal strain −



Thank you!

Questions?
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Backup slides
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COMPATIBILITYEQUILIBRIUM MATERIAL LAWS
Displacements & strains Stress & strain
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IF are satisfied everywhere inside and on the surface of an elastic body 

strand strain fields are exactly correct

FE usually guarantees two of the laws are satisfied exactly:

E C M

E C M

C M

E is approximated, by: Principle of Virtual Work 

Principle of Minimum Potential

BUT, impossible for complex structures !

Solution will converge to exact answer as number of elements tends to infinity.

FEM Theory (backup)



Manual FE in 10 steps
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u ↔  ε↔   σ↔   P     

[k]{u}={P}

I .Displacement u=[N]{s}.

II. Strain {ε}=[B]{s}.

III. Define material property matrix [D].

IV. Stress {σ}=[D][B]{s}.

V. Determine element stiffness matrix and 

force vectors.

VI. Transform nodal variables to global.

VII. Assemble the global stiffness matrix 

and load vector.

VIII. Boundary conditions.

IX. Get unknown displacements and reactions.

X. {σ}=[D][B]{u}.
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Derivation of shape function for a truss element

𝑁 = 𝑃 𝐴 −1 = 1 −
𝑥

𝑙

𝑥

𝑙

𝑢 = 𝑎1 + 𝑎2𝑥 = 1 𝑥
𝑎1
𝑎2

= 𝑃 𝑎 → 𝑢1 = 1 𝑥1
𝑎1
𝑎2

; 𝑢2= 1 𝑥2
𝑎1
𝑎2

1 2

x

y

u1
u2𝑙

𝑏. 𝑐. : 𝑥1= 0; 𝑥2= 𝑥1 + 𝑙 = 𝑙

𝑠 =
𝑢1
𝑢2

=
1 0
1 𝑙

𝑎1
𝑎2

= 𝐴 𝑎 → 𝐴 −1 =
1

𝑙

𝑙 0
−1 1

→ 𝑎 = 𝐴 −1 𝑠 =
1

𝑙

𝑙 0
−1 1

𝑢1
𝑢2

(1)

(2)

(1) + (2) → 𝑢 = 𝑃 𝐴 −1 𝑠 = 1 𝑥
1

𝑙

𝑙 0
−1 1

𝑢1
𝑢2

= 1 −
𝑥

𝑙

𝑥

𝑙

𝑢1
𝑢2



Deformation matrix 𝐵 = 𝜕 𝑁

Applying principle of virtual works: 𝐾 = 𝑉׬ 𝐵 𝑇 𝐷 𝐵 𝑑𝑉
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Calculation of the element stiffness matrix
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Implicit and Explicit Problems

Implicit analysis 
- aim to solve the unknowns {x} through matrix inversion.

- in nonlinear problems - the solution is obtained in a number of steps and the solution for the current step is based on the 

solution from the previous step. 

- for large models - inverting the matrix is highly expensive and will require advanced iterative solvers 

- these solutions are unconditionally stable and facilitate larger time steps. 

Despite this advantage, the implicit methods can be extremely time-consuming when solving dynamic and nonlinear 

problems.

Explicit analysis 
- aim to solve for acceleration {x’’}

- in most cases, the mass matrix is considered as lumped → a diagonal matrix → inversion is straightforward 

- once the accelerations are calculated in nth step, the velocity at n+1/2 step and displacement at n+1 step are 

calculated

- in these calculations, the scheme is not unconditionally stable and thus smaller time steps are required. 

To be more precise, the time step in an explicit finite element analysis must be less than the Courant time step (the 

time taken by a sound wave to travel across an element).



Explicit vs Implicit
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Explicit Implicit
• can be unconditionally stable

• eventually problematic for strongly non-

linear models

• high memory requirements(inverting

stiffnes matrix)

• relatively inexpensive for long duration 

analysis

• equations are coupled

• matrix inversion

• convergence problem

• robust, even for strongly non linear

models

• low memory requirements

• expensive to conduct long term

simulations

• conditionally stable

• equations are uncoupled

• only matrix multiplication



Examples of studies performed (2)
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 Crab cavities (BE-RF)

 Studies for the design of dressed 

cavities and cryomodule, 

optimization of the thermal loss 

balance

 Explicit analyses for the sheet metal forming of cavity 

components (bowl, diabolo, etc.), to explore different 

tool shapes and forming steps as well as predict the 

stress-strain field and thickness distribution

DQW bowl and diabolo

Stress on He vessel 

and DQW cavity
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More on the TIDVG5 study
Job example: TIDVG5 hipping

 User: EN-STI

 Problem: TIDVG5 cooling circuit bursting 
during hipping

 Method: FEA (implicit + explicit)

 Proposed solution: reduce pipe/housing 
gap, adapted shape of housing

 Future developments: standardize 
bending process

Pipe bending, LS-Dyna

Hipping, 0.5 mm gap

Hipping, infinite gap

Fracture!

Pipe bending, Autodyn


