Introduction to Plasma Physics Part II: Electron dynamics and wave propagation

Sesimbra, Portugal, 11-22 March 2019 | Paul Gibbon

Lecture 2: Electron dynamics and wave propagation

Electron motion in an EM wave

- Laboratory frame Finite pulse duration
- Ponderomotive force
- Plasma models
- Fluid equations

Electromagnetic waves

- Dispersion Relativistic self-focussing
- Langmuir waves
- Wave breaking amplitude
- Summary
- Further reading

Electromagnetic plane waves

Transverse EM wave can be described by general, elliptically polarized vector potential $A(\omega, k)$ travelling in the positive *x*-direction:

$$\mathbf{A} = A_0(\mathbf{0}, \delta \cos \phi, (1 - \delta^2)^{\frac{1}{2}} \sin \phi), \tag{16}$$

where $\phi = \omega t - kx$ is the phase of the wave; A_0 its amplitude $(v_{os}/c = eA_0/mc)$ and δ the polarization parameter :

- $\delta = \pm 1, 0 \rightarrow \text{linear pol.:}$
- $\delta = \pm \frac{1}{\sqrt{2}} \rightarrow \text{circular pol.:}$

$$\mathbf{A} = \pm \hat{\mathbf{y}} A_0 \cos \phi; \quad \mathbf{A} = \hat{\mathbf{z}} A_0 \sin \phi$$
$$\mathbf{A} = \frac{A_0}{\sqrt{2}} (\pm \hat{\mathbf{y}} \cos \phi + \hat{\mathbf{z}} \sin \phi)$$

Single electron motion in EM plane wave

Electron momentum in electromagnetic wave with fields *E* and *B* given by Lorentz equation (SI units):

$$\frac{d\boldsymbol{p}}{dt} = -\boldsymbol{e}(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}), \qquad (17)$$

with $\boldsymbol{p} = \gamma m \boldsymbol{v}$, and relativistic factor $\gamma = (1 + p^2/m^2 c^2)^{\frac{1}{2}}$.

This has an associated energy equation, after taking dot product of \mathbf{v} with Eq. (17):

$$\frac{d}{dt}\left(\gamma mc^{2}\right) = -e(\boldsymbol{v}\cdot\boldsymbol{E}), \qquad (18)$$

Solution recipe

Bardsley et al., Phys. Rev. A 40, 3823 (1989) Hartemann et al., Phys. Rev. E 51, 4833 (1995)

- **1** Laser fields $\boldsymbol{E} = -\partial_t \boldsymbol{A}, \ \boldsymbol{B} = \boldsymbol{\nabla} \times \boldsymbol{A}$
- 2 Use dimensionless variables such that $\omega = k = c = e = m = 1$ (eg: $\mathbf{p} \rightarrow \mathbf{p}/mc$, $\mathbf{E} \rightarrow e\mathbf{E}/m\omega c$ etc.)
- **3** First integrals give conservation relations: $p_{\perp} = A$, $\gamma - p_x = \alpha$, where $\gamma^2 - p_x^2 - p_{\perp}^2 = 1$; $\alpha = \text{const.}$
- **4** Change of variable to wave phase $\phi = t x$
- **5** Solve for $\boldsymbol{p}(\phi)$ and $\boldsymbol{r}(\phi)$

Solution: laboratory frame

Lab frame: the electron initially at rest before the EM wave arrives, so that at t = 0, $p_x = p_y = 0$ and $\gamma = \alpha = 1$.

$$p_{x} = \frac{a_{0}^{2}}{4} \left[1 + (2\delta^{2} - 1)\cos 2\phi \right],$$

$$p_{y} = \delta a_{0}\cos\phi,$$
 (19)

$$p_{z} = (1 - \delta^{2})^{1/2} a_{0}\sin\phi.$$

Integrate again to get trajectories:

$$x = \frac{1}{4}a_0^2 \left[\phi + \frac{2\delta^2 - 1}{2}\sin 2\phi \right],$$

$$y = \delta a_0 \sin \phi,$$

$$z = -(1 - \delta^2)^{1/2} a_0 \cos \phi.$$
(20)

NB: solution is *self-similar* in the variables $(x/a_0^2, y/a_0, z/a_0)$

Linearly polarized wave ($\delta = 1$)

Circularly polarized wave ($\delta = \pm 1/\sqrt{2}$)

Oscillating p_x component at 2ϕ vanishes, but drift p_D remains.

Orbit is Helix with:

- radius $kr_{\perp} = a_0/\sqrt{2}$
- momentum $p_{\perp}/mc = a_0/\sqrt{2}$
- pitch angle $\theta_p = p_\perp/p_D = \sqrt{8}a_0^{-1}$

Finite pulse duration - LP

Pulse with temporal envelope in the wave vector Eq. (16).

$$\mathbf{A}(\mathbf{x},t)=f(t)\mathbf{a}_0\cos\phi,$$

No net energy gain! Lawson-Woodward theorem

Finite pulse duration - CP

No oscillations in p_x , but drift still there.

 $v \times B$ oscillations also nearly vanish, but 'DC' part retained:

longitudinal ponderomotive force!

Motion in laser focus

 Single electron oscillating slightly off-centre of focused laser beam:

- After 1st quarter-cycle, sees lower field
- Doesn't quite return to initial position
- \Rightarrow Accelerated away from axis

Ponderomotive force: transverse

In the limit $v/c \ll 1$, the equation of motion (25) for the electron becomes:

$$\frac{\partial v_y}{\partial t} = -\frac{e}{m} E_y(\mathbf{r}). \tag{21}$$

Taylor expanding electric field about the current electron position:

$$E_y(\mathbf{r}) \simeq E_0(y) \cos \phi + y \frac{\partial E_0(y)}{\partial y} \cos \phi + ...,$$

where $\phi = \omega t - kx$ as before. To lowest order, we therefore have

$$v_y^{(1)} = -v_{\mathrm{os}} \sin \phi; \quad y^{(1)} = \frac{v_{\mathrm{os}}}{\omega} \cos \phi,$$

where $v_{\rm os} = eE_L/m\omega$.

Electron dynamics and wave propagation

Ponderomotive force

Ponderomotive force: transverse (contd.)

Substituting back into Eq. (21) gives

$$\frac{\partial v_{y}^{(2)}}{\partial t} = -\frac{e^{2}}{m^{2}\omega^{2}}E_{0}\frac{\partial E_{0}(y)}{\partial y}\cos^{2}\phi.$$

Multiplying by *m* and taking the laser cycle-average,

$$\bar{f} = \int_0^{2\pi} f \, d\phi$$

yields the transverse ponderomotive force on the electron:

$$f_{py} \equiv \overline{m \frac{\partial v_y^{(2)}}{\partial t}} = -\frac{e^2}{4m\omega^2} \frac{\partial E_0^2}{\partial y}.$$
 (22)

General relativistic ponderomotive force

Rewrite Lorentz equation (17) in terms of the vector potential A:

$$\frac{\partial \boldsymbol{p}}{\partial t} + (\boldsymbol{v}.\nabla)\boldsymbol{p} = \frac{\boldsymbol{e}}{\boldsymbol{c}}\frac{\partial \boldsymbol{A}}{\partial t} - \frac{\boldsymbol{e}}{\boldsymbol{c}}\boldsymbol{v}\times\nabla\times\boldsymbol{A}.$$
(23)

Make use of identity:

$$\boldsymbol{v} \times (\nabla \times \boldsymbol{p}) = \frac{1}{m\gamma} \boldsymbol{p} \times \nabla \times \boldsymbol{p} = \frac{1}{2m\gamma} \nabla |\boldsymbol{p}|^2 - \frac{1}{m\gamma} (\boldsymbol{p} \cdot \nabla) \boldsymbol{p},$$

separate the timescales of the electron motion into slow and fast components $p = p^s + p^f$ and average over a laser cycle, get $p^f = A$ and

$$\boldsymbol{f}_{p} = \frac{d\boldsymbol{p}^{s}}{dt} = -mc^{2}\nabla\overline{\gamma}, \qquad (24)$$

where $\overline{\gamma} = \left(1 + \frac{p_{s}^{2}}{m^{2}c^{2}} + \overline{a_{y}^{2}}\right)^{1/2}, \quad \boldsymbol{a}_{y} = e\boldsymbol{A}_{y}/mc.$

Electron dynamics and wave propagation

Ponderomotive force

Ejection angle of electrons from laser focus Moore, Meyerhofer *et al.* (1995)

Ionized gases: when is plasma response important?

Simultaneous field ionization of many atoms produces a plasma with electron density n_e , temperature $T_e \sim 1 - 10$ eV. Collective effects important if

 $\omega_{p} \tau_{\text{inter}} > 1$

Example (Gas jet)

 $\tau_{\rm inter} = 100 \text{ fs}, n_e = 10^{19} \text{ cm}^{-3} \rightarrow \omega_p \tau_{\rm inter} = 18$ Typical gas jets: $P \sim 1 \text{bar}; n_e = 10^{18} - 10^{19} \text{ cm}^{-3}$ so collective response important and cannot ignore charge separation.

Exploit plasma effects for: nonlinear refractive properties and high electric & magnetic fields, namely: for **particle acceleration**, or source of **short-wavelength radiation**.

Electron dynamics and wave propagation

Plasma models

Nonlinear wave propagation in plasmas

Starting point for most analyses is the Lorentz equation of motion for the electrons in a *cold* ($T_e = 0$), unmagnetized plasma, together with Maxwell's equations.

Two additional assumptions:

- 1 The ions are initially assumed to be singly charged (Z = 1) and are treated as a immobile ($v_i = 0$), homogeneous background with $n_0 = Zn_i$.
- 2 Thermal motion is neglected OK because the temperature remains small compared to the typical oscillation energy in the laser field: $k_B T_e \ll m_e v_{os}^2$.

Lorentz-Maxwell equations

Starting equations (SI units) are as follows:

$$\frac{\partial \boldsymbol{p}}{\partial t} + (\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{p} = -\boldsymbol{e}(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}), \qquad (25)$$
$$\nabla \cdot \boldsymbol{E} = \frac{\boldsymbol{e}}{\varepsilon_0} (n_0 - n_{\boldsymbol{e}}), \qquad (26)$$
$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}, \qquad (27)$$
$$\boldsymbol{c}^2 \nabla \times \boldsymbol{B} = -\frac{\boldsymbol{e}}{\varepsilon_0} n_{\boldsymbol{e}} \boldsymbol{v} + \frac{\partial \boldsymbol{E}}{\partial t}, \qquad (28)$$
$$\nabla \cdot \boldsymbol{B} = 0, \qquad (29)$$

where $p = \gamma m_e v$ and $\gamma = (1 + p^2/m_e^2 c^2)^{1/2}$.

The EM wave equation I

Substitute $\boldsymbol{E} = -\nabla \phi - \partial \boldsymbol{A} / \partial t$; $\boldsymbol{B} = \nabla \times \boldsymbol{A}$ into Ampère Eq.(28):

$$c^2
abla imes (
abla imes oldsymbol{A}) + rac{\partial^2 oldsymbol{A}}{\partial t^2} = rac{oldsymbol{J}}{arepsilon_0} -
abla rac{\partial \phi}{\partial t},$$

where the current $J = -en_e v$.

Now we use a bit of vectorial magic, splitting the current into rotational (solenoidal) and irrotational (longitudinal) parts:

$$oldsymbol{J} = oldsymbol{J}_{\perp} + oldsymbol{J}_{||} =
abla imes oldsymbol{\Pi} +
abla \Psi$$

from which we can deduce (see Jackson!):

$$oldsymbol{J}_{||} - rac{1}{c^2}
abla rac{\partial \phi}{\partial t} = \mathbf{0}.$$

The EM wave equation II

Now apply Coulomb gauge $\nabla \cdot \mathbf{A} = 0$ and transverse part of Lorentz eqn $v_y = eA_y/\gamma$, to finally get:

$$\frac{\partial^2 A_y}{\partial t^2} - c^2 \nabla^2 A_y = \mu_0 J_y = -\frac{e^2 n_e}{\varepsilon_0 m_e \gamma} A_y. \tag{30}$$

The nonlinear source term on the RHS contains two important bits of physics:

 $n_e = n_0 + \delta n \rightarrow$ Coupling to plasma waves $\gamma = \sqrt{1 + p^2/m_e^2 c^2} \rightarrow$ Relativistic effects

Dispersion properties: EM waves

For the moment we switch the plasma oscillations off $(n_e = n_0)$ in Eq.(30) and look for plane wave solutions $A = A_0 e^{i(\omega t - kx)}$. The derivative operators become: $\frac{\partial}{\partial t} \rightarrow i\omega$; $\frac{\partial}{\partial x} \rightarrow -ik$, yielding:

Dispersion relation

$$\omega^2 = \frac{\omega_p^2}{\gamma_0} + c^2 k^2 \tag{31}$$

with associated

Nonlinear refractive index

$$\eta = \sqrt{\frac{c^2 k^2}{\omega^2}} = \left(1 - \frac{\omega_p^2}{\gamma_0 \omega^2}\right)^{1/2}$$
(32)

where $\gamma_0 = (1 + a_0^2/2)^{1/2}$, and a_0 is the normalized oscillation amplitude as in (14).

Linear propagation characteristics ($a_0 \ll 1$; $\gamma_0 \rightarrow 1$) Underdense plasmas

From the dispersion relation (31) a number of important features of EM wave propagation in plasmas can be deduced.

For *underdense* plasmas ($n_e \ll n_c$):

Phase velocity
$$v_p = \frac{\omega}{k} \simeq c \left(1 + \frac{\omega_p^2}{2\omega^2}\right) > c$$

Group velocity $v_g = \frac{\partial \omega}{\partial k} \simeq c \left(1 - \frac{\omega_p^2}{2\omega^2}\right) < c$

Propagation characteristics (2)

Overdense plasmas

In the opposite case, $n_e > n_c$, or $\omega < \omega_p$, the refractive index η becomes imaginary. The wave can no longer propagate, and is instead attenuated with a decay length determined by the **collisionless skin depth** c/ω_p .

Underdense plasmas: nonlinear refraction effects

Real laser pulses are created with focusing optics & are subject to:

- **1** diffraction due to finite focal spot σ_L : $Z_R = 2\pi \sigma_L^2 / \lambda$
- 2 ionization effects $dn_e/dt \Rightarrow$ refraction due to radial density gradients
- 3 relativistic self-focusing and self-modulation

$$\Rightarrow \eta(\mathbf{r}) = \sqrt{\left(1 - rac{\omega_{
ho}^2(\mathbf{r})}{\gamma_0(\mathbf{r})\omega^2}
ight)}$$

- 4 ponderomotive channelling $\Rightarrow \nabla_r n_e$
- **5** scattering by plasma waves $\Rightarrow k_0 \rightarrow k_1 + k_p$

All nonlinear effects important for laser powers $P_L > 1 TW$

Focussing threshold – practical units Litvak, 1970; Max *et al.*1974, Sprangle *et al.*1988

Relation between laser power and critical power:

$$P_{L} = \left(\frac{m\omega c}{e}\right)^{2} \left(\frac{c}{\omega_{p}}\right)^{2} \frac{c\epsilon_{0}}{2} \int_{0}^{\infty} 2\pi r a^{2}(r) dr$$
$$= \frac{1}{2} \left(\frac{m}{e}\right)^{2} c^{5}\epsilon_{0} \left(\frac{\omega}{\omega_{p}}\right)^{2} \tilde{P},$$
$$\simeq 0.35 \left(\frac{\omega}{\omega_{p}}\right)^{2} \tilde{P} \text{ GW}, \text{ where } \tilde{P} \equiv \pi a_{0}^{2} (\omega_{p}^{2} \sigma_{L}^{2} / c^{2})$$

The critical power $\tilde{P_c} = 16\pi$ thus corresponds to:

Power threshold for relativistic self-focussing

$$P_c \simeq 17.5 \left(\frac{\omega}{\omega_p}\right)^2 \text{GW}.$$
 (33)

Electron dynamics and wave propagation

Electromagnetic waves

Focussing threshold – example

Critical power

$$P_c \simeq 17.5 \left(\frac{\omega}{\omega_p}\right)^2 \text{GW},$$
 (34)

Example

$$\lambda_L = 0.8\mu m, \quad n_e = 1.6 \times 10^{20} \text{ cm}^{-3}$$
$$\Rightarrow \frac{n_e}{n_c} = \left(\frac{\omega_p}{\omega}\right)^2 = 0.1$$
$$\Rightarrow P_c = 0.175\text{TW}$$

Electron dynamics and wave propagation

56 67

Propagation examples: long pulses

Electron dynamics and wave propagation

Electromagnetic waves

Plasma waves

Recap Lorentz-Maxwell equations (25-29)

$$\frac{\partial \boldsymbol{p}}{\partial t} + (\boldsymbol{v} \cdot \boldsymbol{\nabla})\boldsymbol{p} = -\boldsymbol{e}(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}),$$

$$\nabla \cdot \boldsymbol{E} = \frac{\boldsymbol{e}}{\varepsilon_0}(n_0 - n_e),$$

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t},$$

$$\boldsymbol{c}^2 \nabla \times \boldsymbol{B} = -\frac{\boldsymbol{e}}{\varepsilon_0}n_e \boldsymbol{v} + \frac{\partial \boldsymbol{E}}{\partial t},$$

$$\nabla \cdot \boldsymbol{B} = 0$$

Electrostatic (Langmuir) waves I

Taking the *longitudinal* (*x*)-component of the momentum equation (25) and noting that $|\mathbf{v} \times \mathbf{B}|_x = v_y B_z = v_y \frac{\partial A_y}{\partial x}$ from (**??**) gives:

$$\frac{d}{dt}(\gamma m_e v_x) = -eE_x - \frac{e^2}{2m_e\gamma}\frac{\partial A_y^2}{\partial x}$$

We can eliminate v_x using Ampère's law (28)_x:

$$\mathbf{0} = -\frac{\mathbf{e}}{\varepsilon_0} n_{\mathbf{e}} \mathbf{v}_{\mathbf{x}} + \frac{\partial \mathbf{E}_{\mathbf{x}}}{\partial t},$$

while the electron density can be determined via Poisson's equation (26):

$$n_e = n_0 - rac{\varepsilon_0}{e} rac{\partial E_x}{\partial x}$$

Electrostatic (Langmuir) waves II

The above (closed) set of equations can in principle be solved numerically for arbitrary pump strengths. For the moment, we simplify things by *linearizing the plasma fluid* quantities:

$$n_e \simeq n_0 + n_1 + \dots$$

 $v_x \simeq v_1 + v_2 + \dots$

and neglect products like n_1v_1 etc. This finally leads to:

Driven plasma wave

$$\left(\frac{\partial^2}{\partial t^2} + \frac{\omega_p^2}{\gamma_0}\right) E_x = -\frac{\omega_p^2 e}{2m_e \gamma_0^2} \frac{\partial}{\partial x} A_y^2 \tag{35}$$

The driving term on the RHS is the *relativistic ponderomotive* force, with $\gamma_0 = (1 + a_0^2/2)^{1/2}$.

Plasma (Langmuir) wave propagation

Without the laser driving term ($A_y = 0$), Eq.(35) describes linear plasma oscillations with solutions

$$E_x = E_{x0}\sin(\omega t),$$

giving the dispersion relation:

$$-\omega^2 + \omega_p^2 = 0. \tag{36}$$

The linear eigenmode of a plasma has $\omega = \omega_p$.

To account for a finite temperature $T_e > 0$, we would reintroduce a pressure term ∇P_e in the momentum equation (25), which finally yields the Bohm-Gross relation:

$$\omega^2 = \omega_\rho^2 + 3v_t^2 k^2. \tag{37}$$

Summary: dispersion curves

Numerical solutions – linear Langmuir wave

Numerical integration of the electrostatic wave equation on slide 59 for $v_{\text{max}}/c = 0.2$

NB: electric field and density 90° out of phase

Numerical solutions – nonlinear Langmuir wave

Solution of fully nonlinear electrostatic wave equation (see Akhiezer & Polovin, 1956)

Typical features : i) sawtooth electric field; ii) spiked density; iii) lengthening of the oscillation period by factor γ

Maximum field amplitude - wave-breaking limit

For relativistic phase velocities, find

 $E_{
m max} \sim m \omega_{
m
ho} c/e$

- wave-breaking limit - Dawson (1962), Katsouleas (1988).

Example

$$m_{e} = 9.1 \times 10^{-28} \text{g}$$

$$c = 3 \times 10^{10} \text{cms}^{-1}$$

$$\omega_{p} = 5.6 \times 10^{4} (n_{e}/cm^{-3})^{1/2}$$

$$e = 4.8 \times 10^{-10} \text{statcoulomb}$$

$$E_{p} \sim 4 \times 10^{8} \left(\frac{n_{e}}{10^{18} \text{ cm}^{-3}}\right)^{1/2} \text{ V m}^{-1}$$

Summary

- Electrons in EM wave oscillate transversely and longitudinally
- Net energy gain only when symmetry of plane-wave broken, eg: finite focus/duration → ponderomotive force
- Waves in plasmas described by fluid equations
- EM waves: propagation determined by ω₀/ω_p and γ; coupling to plasma via nonlinear current
- Longitudinal plasma waves (Langmuir waves) can be driven by laser ponderomotive force: field strengths O(10⁹) Vm⁻¹ possible

Further reading (I)

- 1 J. Boyd and J. J. Sanderson, The Physics of Plasmas
- W. Kruer, *The Physics of Laser Plasma Interactions*, Addison-Wesley, 1988
- 3 J. D. Jackson, *Classical Electrodynamics*, Wiley 1975/1998
- J. P. Dougherty in Chapter 3 of R. Dendy *Plasma Physics*, 1993
- P. Gibbon, Short Pulse Interactions with Matter, IC Press, London, 2005