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Introduction to Plasma Physics
Part II: Electron dynamics and wave
propagation
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Electromagnetic plane waves

Transverse EM wave can be described by general, elliptically
polarized vector potential A(ω, k) travelling in the positive
x-direction:

A = A0(0, δ cosφ, (1− δ2)
1
2 sinφ), (16)

where φ = ωt − kx is the phase of the wave; A0 its amplitude
(vos/c = eA0/mc) and δ the polarization parameter :

δ = ±1, 0→ linear pol.:

δ = ± 1√
2
→ circular pol.:

A = ±ŷA0 cosφ; A = ẑA0 sinφ

A = A0√
2

(±ŷ cosφ+ ẑ sinφ)
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Single electron motion in EM plane wave

Electron momentum in electromagnetic wave with fields E and B
given by Lorentz equation (SI units):

dp
dt

= −e(E + v × B), (17)

with p = γmv , and relativistic factor γ = (1 + p2/m2c2)
1
2 .

This has an associated energy equation, after taking dot product
of v with Eq. (17):

d
dt

(
γmc2) = −e(v · E), (18)

Electron dynamics and wave propagation Electron motion in an EM wave 34 67



Solution recipe
Bardsley et al., Phys. Rev. A 40, 3823 (1989)
Hartemann et al., Phys. Rev. E 51, 4833 (1995)

1 Laser fields E = −∂tA, B =∇× A

2 Use dimensionless variables such that
ω = k = c = e = m = 1
(eg: p → p/mc, E → eE/mωc etc.)

3 First integrals give conservation relations:
p⊥ = A, γ − px = α, where γ2 − p2

x − p2
⊥ = 1; α = const.

4 Change of variable to wave phase φ = t − x

5 Solve for p(φ) and r(φ)
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Solution: laboratory frame
Lab frame: the electron initially at rest before the EM wave
arrives, so that at t = 0, px = py = 0 and γ = α = 1.

px =
a2

0

4

[
1 + (2δ2 − 1) cos 2φ

]
,

py = δa0 cosφ, (19)

pz = (1− δ2)1/2a0 sinφ.

Integrate again to get trajectories:

x =
1
4

a2
0

[
φ+

2δ2 − 1
2

sin 2φ
]
,

y = δa0 sinφ, (20)

z = −(1− δ2)1/2a0 cosφ.

NB: solution is self-similar in the variables (x/a2
0, y/a0, z/a0)
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Linearly polarized wave (δ = 1)

Electron drifts with
average momentum

pD ≡ px =
a2

0
4 ,

or velocity
vD
c = vx = px

γ =
a2

0
4+a2

0
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Circularly polarized wave (δ = ±1/
√

2)

Oscillating px component at 2φ
vanishes, but drift pD remains.

Orbit is Helix with:

radius kr⊥ = a0/
√

2

momentum p⊥/mc = a0/
√

2

pitch angle θp = p⊥/pD =
√

8a−1
0

Electron dynamics and wave propagation Electron motion in an EM wave Laboratory frame 38 67



Finite pulse duration - LP

Pulse with
temporal envelope
in the wave vector
Eq. (16).

A(x , t) = f (t)a0 cosφ,

No net energy
gain!
Lawson-Woodward
theorem
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Finite pulse duration - CP

No oscillations in
px , but drift still
there.

v × B oscillations
also nearly vanish,
but ’DC’ part
retained:

longitudinal
ponderomotive
force!
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Motion in laser focus

Single electron oscillating slightly off-centre of focused laser
beam:

pf

E (r)y

e−

I(r)laser

y

x

After 1st quarter-cycle, sees lower field

Doesn’t quite return to initial position

⇒ Accelerated away from axis
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Ponderomotive force: transverse

In the limit v/c � 1, the equation of motion (25) for the electron
becomes:

∂vy

∂t
= − e

m
Ey (r). (21)

Taylor expanding electric field about the current electron position:

Ey (r) ' E0(y) cosφ+ y
∂E0(y)

∂y
cosφ+ ...,

where φ = ωt − kx as before.
To lowest order, we therefore have

v (1)
y = −vos sinφ; y (1) =

vos

ω
cosφ,

where vos = eEL/mω .
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Ponderomotive force: transverse (contd.)

Substituting back into Eq. (21) gives

∂v (2)
y

∂t
= − e2

m2ω2 E0
∂E0(y)

∂y
cos2 φ.

Multiplying by m and taking the laser cycle-average,

f =

∫ 2π

0
f dφ,

yields the transverse ponderomotive force on the electron:

fpy ≡ m
∂v (2)

y

∂t
= − e2

4mω2

∂E2
0

∂y
. (22)
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General relativistic ponderomotive force
Rewrite Lorentz equation (17) in terms of the vector potential A:

∂p
∂t

+ (v.∇)p =
e
c
∂A
∂t
− e

c
v×∇×A. (23)

Make use of identity:

v×(∇×p) =
1

mγ
p×∇×p =

1
2mγ

∇ | p |2 − 1
mγ

(p.∇)p,

separate the timescales of the electron motion into slow and fast
components p = ps + pf and average over a laser cycle, get
pf = A and

f p =
dps

dt
= −mc2∇γ, (24) Exercise

where γ =
(

1 + p2
s

m2c2 + a2
y

)1/2
, ay = eAy/mc.
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Ejection angle of electrons from laser focus
Moore, Meyerhofer et al. (1995)
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Ionized gases: when is plasma response important?

Simultaneous field ionization of many atoms produces a plasma
with electron density ne, temperature Te ∼ 1− 10 eV.
Collective effects important if

ωpτinter > 1

Example (Gas jet)

τinter = 100 fs, ne = 1019 cm−3 → ωpτinter = 18
Typical gas jets: P ∼ 1bar; ne = 1018 − 1019 cm−3 so collective
response important and cannot ignore charge separation.

Exploit plasma effects for: nonlinear refractive properties and
high electric & magnetic fields, namely: for particle
acceleration, or source of short-wavelength radiation.
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Nonlinear wave propagation in plasmas

Starting point for most analyses is the Lorentz equation of
motion for the electrons in a cold (Te = 0), unmagnetized
plasma, together with Maxwell’s equations.

Two additional assumptions:

1 The ions are initially assumed to be singly charged (Z = 1)
and are treated as a immobile (vi = 0), homogeneous
background with n0 = Zni .

2 Thermal motion is neglected – OK because the temperature
remains small compared to the typical oscillation energy in
the laser field: kBTe � mev2

os.
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Lorentz-Maxwell equations

Starting equations (SI units) are as follows:

∂p
∂t

+ (v · ∇)p = −e(E + v × B), (25)

∇·E =
e
ε0

(n0 − ne), (26)

∇×E = −∂B
∂t
, (27)

c2∇×B = − e
ε0

nev +
∂E
∂t
, (28)

∇·B = 0, (29)

where p = γmev and γ = (1 + p2/m2
ec2)1/2.
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The EM wave equation I

Substitute E = −∇φ− ∂A/∂t ; B = ∇× A into Ampère Eq.(28):

c2∇× (∇× A) +
∂2A
∂t2 =

J
ε0
−∇∂φ

∂t
,

where the current J = −enev .
Now we use a bit of vectorial magic, splitting the current into
rotational (solenoidal) and irrotational (longitudinal) parts:

J = J⊥ + J || = ∇×Π +∇Ψ

from which we can deduce (see Jackson!):

J || −
1
c2∇

∂φ

∂t
= 0.
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The EM wave equation II

Now apply Coulomb gauge ∇ · A = 0 and transverse part of
Lorentz eqn vy = eAy/γ, to finally get:

∂2Ay

∂t2 − c2∇2Ay = µ0Jy = − e2ne

ε0meγ
Ay . (30)

The nonlinear source term on the RHS contains two important
bits of physics:

ne = n0 + δn → Coupling to plasma waves

γ =
√

1 + p2/m2
ec2 → Relativistic effects

Electron dynamics and wave propagation Electromagnetic waves 50 67



Dispersion properties: EM waves

For the moment we switch the plasma oscillations off (ne = n0)
in Eq.(30) and look for plane wave solutions A = A0ei(ωt−kx).
The derivative operators become: ∂

∂t → iω; ∂
∂x → −ik , yielding:

Dispersion relation

ω2 =
ω2

p

γ0
+ c2k2 (31)

with associated
Nonlinear refractive index

η =

√
c2k2

ω2 =

(
1−

ω2
p

γ0ω2

)1/2

(32)

where γ0 = (1 + a2
0/2)1/2, and a0 is the normalized oscillation

amplitude as in (14).

Electron dynamics and wave propagation Electromagnetic waves Dispersion 51 67



Linear propagation characteristics (a0 � 1; γ0 → 1)
Underdense plasmas

From the dispersion relation (31) a number of important features
of EM wave propagation in plasmas can be deduced.

For underdense plasmas (ne � nc):

Phase velocity vp =
ω

k
' c

(
1 +

ω2
p

2ω2

)
> c

Group velocity vg =
∂ω

∂k
' c

(
1−

ω2
p

2ω2

)
< c
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Propagation characteristics (2)
Overdense plasmas

In the opposite case, ne > nc , or ω < ωp, the refractive index η
becomes imaginary. The wave can no longer propagate, and is
instead attenuated with a decay length determined by the
collisionless skin depth c/ωp.
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Underdense plasmas: nonlinear refraction effects

Real laser pulses are created with focusing optics & are subject
to:

1 diffraction due to finite focal spot σL: ZR = 2πσ2
L/λ

2 ionization effects dne/dt ⇒ refraction due to radial density
gradients

3 relativistic self-focusing and self-modulation

⇒ η(r) =

√(
1− ω2

p(r)

γ0(r)ω2

)
4 ponderomotive channelling⇒ ∇r ne

5 scattering by plasma waves⇒ k0 → k1 + kp

All nonlinear effects important for laser powers PL > 1TW
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Focussing threshold – practical units
Litvak, 1970; Max et al.1974, Sprangle et al.1988

Relation between laser power and critical power:

PL =
(mωc

e

)2
(

c
ωp

)2 cε0

2

∫ ∞
0

2πra2(r)dr

=
1
2

(m
e

)2
c5ε0

(
ω

ωp

)2

P̃,

' 0.35
(
ω

ωp

)2

P̃ GW, where P̃ ≡ πa2
0(ω2

pσ
2
L/c2)

The critical power P̃c = 16π thus corresponds to:
Power threshold for relativistic self-focussing

Pc ' 17.5
(
ω

ωp

)2

GW. (33)
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Focussing threshold – example

Critical power

Pc ' 17.5
(
ω

ωp

)2

GW, (34)

Example

λL = 0.8µm, ne = 1.6× 1020 cm−3

⇒ ne

nc
=
(ωp

ω

)2
= 0.1

⇒ Pc = 0.175TW
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Propagation examples: long pulses

i) PL/Pc � 1 ii) PL = 2Pc
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Plasma waves
Recap Lorentz-Maxwell equations (25-29)

∂p
∂t

+ (v · ∇)p = −e(E + v × B),

∇·E =
e
ε0

(n0 − ne),

∇×E = −∂B
∂t
,

c2∇×B = − e
ε0

nev +
∂E
∂t
,

∇·B = 0
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Electrostatic (Langmuir) waves I

Taking the longitudinal (x)-component of the momentum
equation (25) and noting that |v × B|x = vy Bz = vy

∂Ay
∂x from

(??) gives:
d
dt

(γmevx ) = −eEx −
e2

2meγ

∂A2
y

∂x

We can eliminate vx using Ampère’s law (28)x :

0 = − e
ε0

nevx +
∂Ex

∂t
,

while the electron density can be determined via Poisson’s
equation (26):

ne = n0 −
ε0

e
∂Ex

∂x
.
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Electrostatic (Langmuir) waves II

The above (closed) set of equations can in principle be solved
numerically for arbitrary pump strengths. For the moment, we
simplify things by linearizing the plasma fluid quantities:

ne ' n0 + n1 + ...

vx ' v1 + v2 + ...

and neglect products like n1v1 etc. This finally leads to:

Driven plasma wave(
∂2

∂t2 +
ω2

p

γ0

)
Ex = −

ω2
pe

2meγ2
0

∂

∂x
A2

y (35)

The driving term on the RHS is the relativistic ponderomotive
force, with γ0 = (1 + a2

0/2)1/2.
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Plasma (Langmuir) wave propagation

Without the laser driving term (Ay = 0), Eq.(35) describes linear
plasma oscillations with solutions

Ex = Ex0 sin(ωt),

giving the dispersion relation:

−ω2 + ω2
p = 0. (36)

The linear eigenmode of a plasma has ω = ωp.

To account for a finite temperature Te > 0, we would reintroduce
a pressure term ∇Pe in the momentum equation (25), which
finally yields the Bohm-Gross relation:

ω2 = ω2
p + 3v2

t k2. (37)
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Summary: dispersion curves
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Numerical solutions – linear Langmuir wave

Numerical integration of the electrostatic wave equation on slide
59 for vmax/c = 0.2

0.0 3.1 6.2

p

-0.5

0.0

0.5

1.0

1.5

u,
E

,n
e/

n 0

u
E
ne/n0

NB: electric field and density 90o out of phase
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Numerical solutions – nonlinear Langmuir wave

Solution of fully nonlinear electrostatic wave equation (see
Akhiezer & Polovin, 1956)

0 2 4 6 8

p

-2

0

2

4

6

8

u,
E

,n
e/

n 0

a)

0.0 3.1 6.2

p

-2

0

2

4

6

8

u,
E

,n
e/

n 0

b)
u
E
ne/n0

Typical features : i) sawtooth electric field; ii) spiked density; iii)
lengthening of the oscillation period by factor γ
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Maximum field amplitude - wave-breaking limit
For relativistic phase velocities, find

Emax ∼ mωpc/e

– wave-breaking limit – Dawson (1962), Katsouleas (1988).

Example

me = 9.1× 10−28g

c = 3× 1010cms−1

ωp = 5.6× 104(ne/cm−3)1/2

e = 4.8× 10−10statcoulomb

Ep ∼ 4× 108
(

ne

1018 cm−3

)1/2

V m−1
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Summary

Electrons in EM wave oscillate transversely and longitudinally

Net energy gain only when symmetry of plane-wave broken,
eg: finite focus/duration→ ponderomotive force

Waves in plasmas described by fluid equations

EM waves: propagation determined by ω0/ωp and γ; coupling
to plasma via nonlinear current

Longitudinal plasma waves (Langmuir waves) can be driven
by laser ponderomotive force: field strengths O(109) Vm−1

possible
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Further reading (I)

1 J. Boyd and J. J. Sanderson, The Physics of Plasmas

2 W. Kruer, The Physics of Laser Plasma Interactions,
Addison-Wesley, 1988

3 J. D. Jackson, Classical Electrodynamics, Wiley 1975/1998

4 J. P. Dougherty in Chapter 3 of R. Dendy Plasma Physics,
1993

5 P. Gibbon, Short Pulse Interactions with Matter, IC Press,
London, 2005
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