

Marco Pedrozzi :: Paul Scherrer Institute Marco.Pedrozzi@psi.ch

Radio Frequency Systems

"Mini-CAS" course on Mechanical and Materials Engineering for Accelerators, April 9, 2021

Copyright statement and speaker's release for video publishing

The author consents to the photographic, audio and video recording of this lecture at the CERN Accelerator School. The term "lecture" includes any material incorporated therein including but not limited to text, images and references.

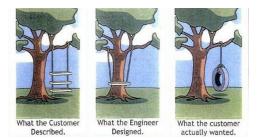
The author hereby grants CERN a royalty-free license to use his image and name as well as the recordings mentioned above, in order to broadcast them online to all registered students and to post them without any further processing on the CAS website.

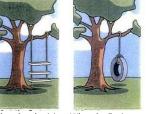
The author hereby confirms that the content of the lecture does not infringe the copyright, intellectual property or privacy rights of any third party. The author has cited and credited any third-party contribution in accordance with applicable professional standards and legislation in matters of attribution.

Outlook Presentation

- Introduction
- Overview function RF systems and their generic topology
- Transmissions Lines
- Itroduction to RF (accelerating) structures
- Excursion in the UHP machining for RF

From where I am calling you for the CAS www.psi.ch




Covered by this class

- We will concentrate on classical normal conducting RF systems. We will not cover the particluar engineering aspects of Superconducting RF systems
- We will illustrate via few examples, *most related to applications and developments at PSI*, the mechanical engineering aspects relevant for the desing and production of RF accelerating structures and RF components
- Beside some key formula, basic concepts and key parameters we will try to minimize the mathematics and concentrate on the interface between RF requirements and mechanical engineering/production

What the physicist What the Engineers specified designed

What the project required

RF & Engineering: some important aspects to keep in mind

RF systems are always (very) expensive

⇒ It is not uncommon if representing a large fraction of the total accelerator/project budget

RF handles high power & voltages

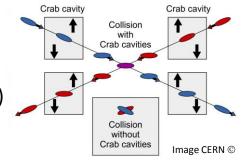
- ⇒ Complex system with high potential of failures (can strongly influence the accelerator reliability)
- \Rightarrow Requires careful design and engineering
- \Rightarrow Engineers must always consider maintainability during the design phase

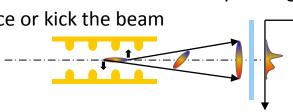
Some other constraints

- ⇒ Choice of the RF frequency is often restricted to already existing (commercial) RF sources & components. Developments may be unavoidable but deviations from standards imply substantial additional costs and time
- \Rightarrow Space in the existing or planned (costs) facilities
- \Rightarrow Significant development and procurement time

Overdesign, reliability and maintenance not always compatible...*

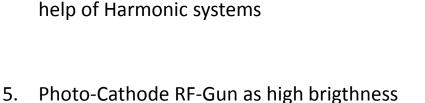
Page 6


Function of RF: few quick examples


1. Create a large voltage for the acceleration of charged particles or to compensate the Synchrotron radiation losses in Storage Rings

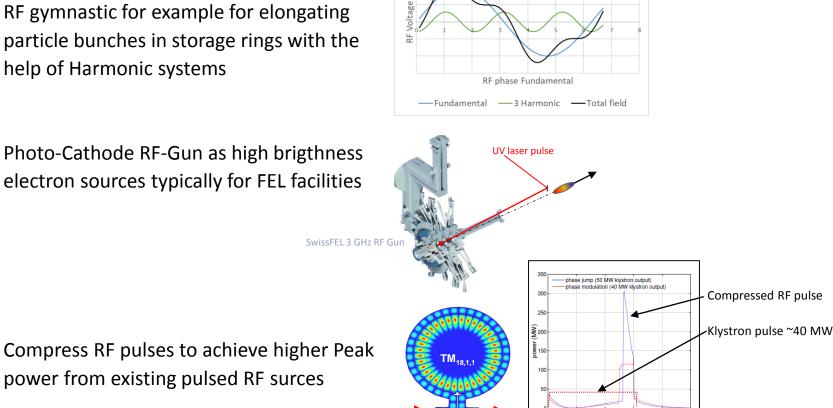
2. Deflect particle bunches transversally to diagnose the longitudinal phase space or kick the beam

 Deflect colliding bunches to increase the collision luminosity (Crab cavities: <u>https://home.cern/news/news/accelerators/crab-cavities-colliding-protons-head</u>)



- Compress RF pulses to achieve higher Peak 6. power from existing pulsed RF surces

RF gymnastic for example for elongating



PAUL SCHERRER INSTITUT

4.

Function of RF: few quick examples (cont)

time (us)

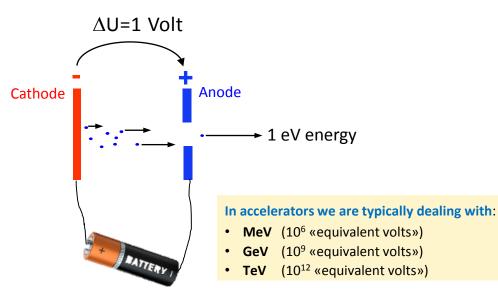
Nomenclature Frequency bands

IEEE Standard 521-2002

Standard Radar Frequency Letter-Band Nomenclature

	Band	Frequency Range	Wavelength	
	HF	3 MHz to 30 MHz	10 meter to 1 meter	Typical for
	VHF	30 MHz - 300 MHz	1,000cm to 100cm	Proton & Ion accelerators
Typical for	UHF	300 MHz - 1 GHz	100cm to 30 cm	
Electron accelerators	L band	1 GHz to 2 GHz	30cm to 15cm	
	S band	2 GHz 4 GHz	15cm to 7.5cm	
	C band	4 GHz - 8 GHz	7.5cm to 3.8cm	
	X band	8 GHz - 12 GHz	3.8cm to 2.5cm	
	K _u band	12 GHz - 18 GHz	2.5 to 1.7 cm	
	K band	18 GHz - 27 GHz	1.7 to 1.1 cm	
	K _a band	27 GHz - 40 GHz	1.1 to 0.75 cm	
	V band	40 GHz - 75 GHz	0.75 to 0.40 cm	
	W band	75 GHz - 100 GHz	0.40 to 0.27 cm	
	mm	110 to 300 GHz	0.27 to 0.10 cm	

Example S-Band in Linacs: US frequency 2.856 GHz - European frequency 2.998 GHz (different standards)


Small parenthesis: definition of eV (used in next slides)

Just a practical units for particle energy

1 **eV** = 1.602×10⁻¹⁹ J

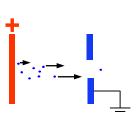
Refer to the electron/proton charge

Electrons 0.8 0.6 SwissFEL 0.4 HIPA SIS **Protons** 0.2 0.1 0.01 100 1000 10000 10 100000 Kinetic energy (**MeV**)

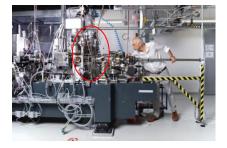
$$E_k = E - E_0 = (\gamma - 1)m_0c^2 \rightarrow \frac{v}{c} = \sqrt{1 - \frac{1}{\gamma^2}} = \sqrt{1 - \left(\frac{1}{1 + \frac{E_{cin}}{m_0c^2}}\right)^2}$$

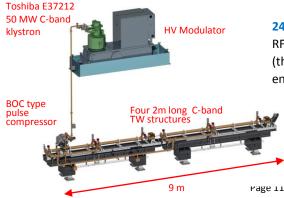
Velocity of the particles v/c

RF and DC acceleration



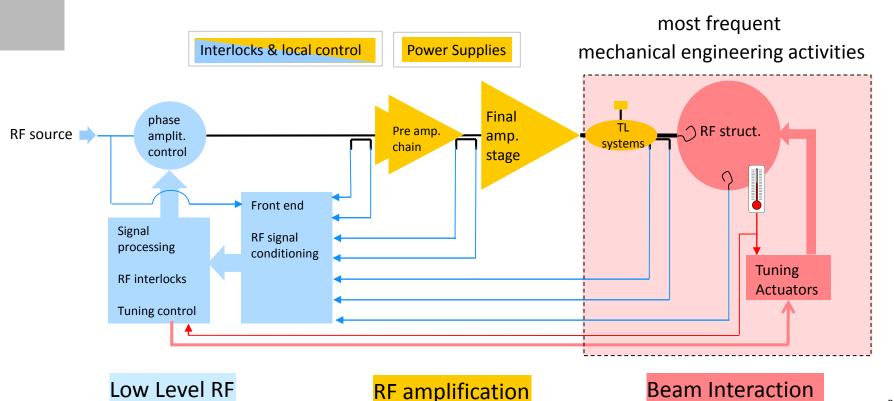
- RF allow reaching higher energy gains than DC Configurations with a more compact topology
- The fields are confined inside the RF structure => The RF structure is grounded




1 MV Cockcroft-Walton: the first stage in the High Intensity Proton Accelerator (HIPA) facility

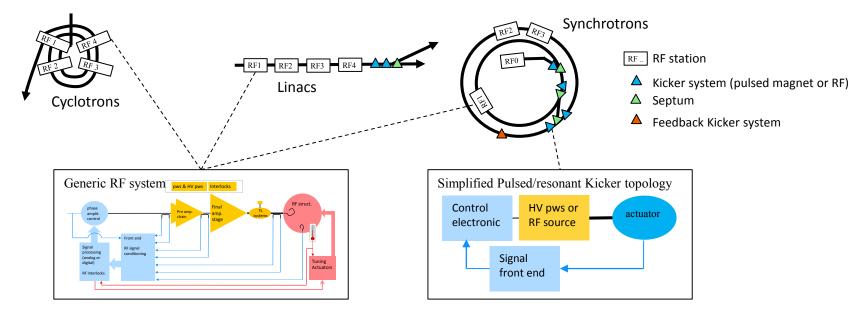
HV Housing of the ~1 MeV Proton source

7.1 MeV SwissFEL RF-Gun Peak gradient 100 MV/m



240 MeV energy gain SwissFEL C-Band RF-Module Gradient ~30 MV/m (the cavities would allow >56 MV/m if enough RF power)

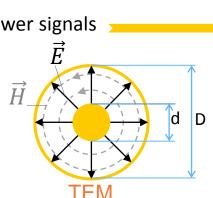
General Topology of an RF System *cw (continuous-wave) or pulsed)*



RF in the context of an accelerator

From the operation point of view each RF station or extraction element is seen and handled as a **black-box system** delivering the required accelerating voltage/amplitude and phase stability.

From the RF point of view one RF station is a **complex combination of sub-systems** that must carefully be "matched" to guarantee a stable and reliable user operation.


Transmission line: coaxial

- Very common transmission line for low power signals
- Impedance of the line

 $Z \approx \frac{60}{\sqrt{\varepsilon_r}} \ln\left(\frac{D}{d}\right) \quad [\Omega]$

 $Z = 50 \Omega \iff D/d=2.302$ $Z = 75 \Omega \iff D/d=3.493$

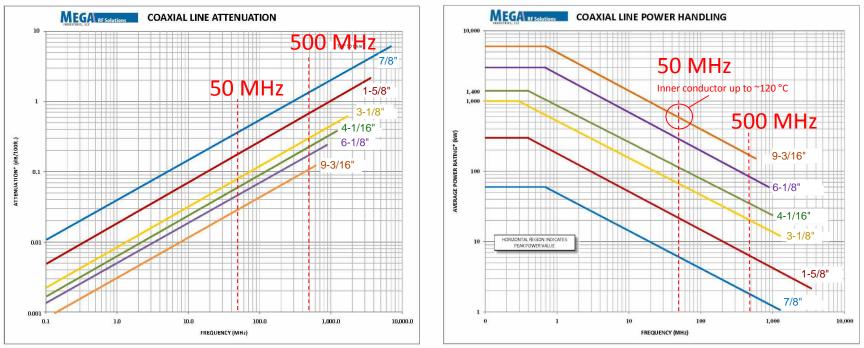
See for example: https://www.zseries.in/electronics%20lab/c ables/coaxial/#.YGrbtu2xVjE

- No cutoff frequency for TEM mode, but for high frequencies and large dimensions other modes (with cut off are present) => limitation for high power @ high frequency
- For high power **rigid** coaxial lines \Rightarrow difficulty: cooling of central conductor

Commercial rigid coax. from Spinner https://www.spinner-group.com

More on coax.see for example: https://cds.cern.ch/record/865921/files/p210.pdf

Some Rigid coaxial standards (50 Ω)


Standard designation		
Size in inch	D (mm)	d (mm)
1-5/8"	38.79	16.87
3-1/8"	76.89	33.40
4-1/16"	99.95	43.46
6-1/8"	151.92	66.04
9-3/16"	228.60	99.31

Peak Voltage
$$V_p = E_d \frac{d}{2} ln \left(\frac{D}{d} \right)$$
 [Ω

 E_d : insulator breakdown gradient (V/m)

tendency: the higher the frequency, the lower the breakdown strength

Reprint from: https://www.megaind.com/assets/files/catalogs%2FMega-Coaxial-Catalog.pdf

Transmission line: Coax Important information to keep

Rigid coax lines are necessary to handle high power

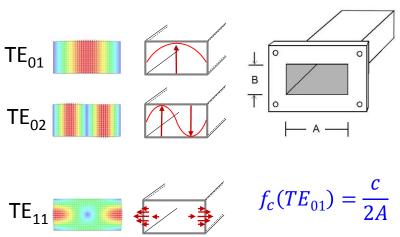
No Cutoff frequency for the TEM Mode. Signals can propagate from DC to high frequencies

Many commercial supplier delivers Rigid coax components, Sizes are standardized but manufacturer have sometime special dimensions.

For accelerator applications 50 Ω lines are commonly used \Rightarrow ratio outer/inner diameter

The power losses in the coax lines increases with frequency but decreases if increasing the size of the line. The optimization stops when TE Modes starts propagating or the losses are too important (increasing with frequency).

For RF frequencies higher than ~500 MHz rigid coax are not suited for high power (>100 kW)

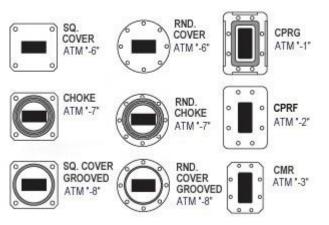


Transmission line: Waveguides Rectangular WG basics

For High Power, high frequency and narrow-band applications rectangular Waveguide are commonly used to transport the RF power from the source to the RF structure.

- A WG allow the propagation of different modes with different cutoff frequencies (f_c) .
- The size is selected depending on the chosen RF frequency to keep one single mode propagating (TE₀₁)

		monue un	mension			
WR Designation	Standard Freq Range (GHz)	A (mm)	B (mm)	Cutoff TE10 (GHz)	Cutoff Next mode (GHZ)	
WR340	2.20 - 3.30	86.360	43.180	1.74	3.47	
WR284	2.60 - 3.95	72.136	34.036	2.08	4.16	S-Band
WR229	3.30 - 4.90	58.166	29.210	2.58	5.15	
WR187	3.95 - 5.85	47.549	22.149	3.15	6.30	C-Band
WR159	4.90 - 7.05	40.386	20.193	3.71	7.42	
WR137	5.85 - 8.20	34.849	15.799	4.30	8.60	
WR112	7.05 - 10.00	28.499	12.624	5.26	10.52	
WR90	8.2 - 12.4	22.860	10.160	6.56	13.11	X-Band
WR75	10.0 - 15.0	19.050	9.525	7.87	15.74	
WR62	12.4 - 18.0	15.799	7.899	9.49	18.98	


With c being the speed of light

Standard WG (Industrial references are easily available in Internet) $$_{\rm Page\,17}$$

Transmission line: Waveguides WG Flanges

North American EIA Standard Flanges

European IEC Standard Flanges

Examples of WR284 Flanges developed by acc. institutes

- High power
- Vacuum compatible
- Excellent electrical contacts

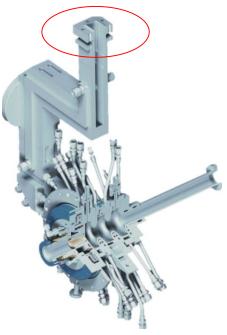
Female SLAC

Reprint standard flanges from: <u>https://www.microwave-link.com/microwave/microwave-waveguide-flange/</u>

Transmission line: Waveguides Important information to keep

Interface to WR284 with LIL flange

Waveguide are standardized industrial products, the operating frequency determines the WG dimensions

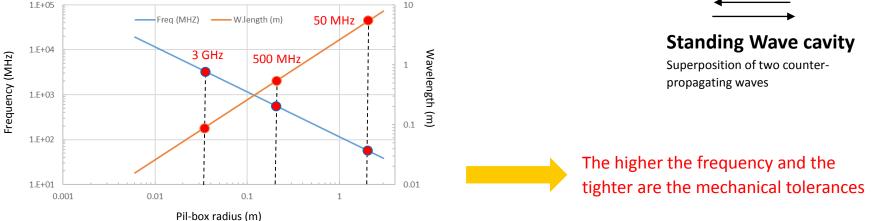

In the specified frequency band only the mode with the lowest cutoff frequency (TE01) propagates => well defined polarization of the electric field => no mode conversion/superposition

The RF and mechanical design of the interface with the RF structure must be matched to the required WG standard

Waveguide can be operated in Vacuum, on air or with insulating gases as Sulfur hexafluoride (SF6) => Flange quality is essential

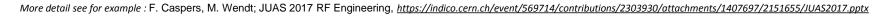
High power operation in vacuum requires very clean surfaces. An advantage if compatible with 120-150 °C bake-out

The best flanges were designed by acc. Institutes and commercialized => good electrical contact and vacuum compatibility


SwissFEL RF-Gun

Basic RF accelerating structures Pill box cavity

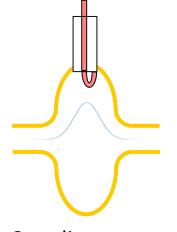
Nice example with analytic solutions => closed cylindrical Waveguide In a cylindrical WG TE and TM modes can propagate (\neq cut off frequencies)

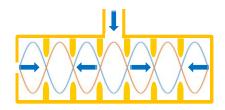

Fundamental mode for accelerating structures TM₀₁₀ The Resonance frequency is independent of **h**

 $f_o =$

 $2\pi a$

а 2.40483 c

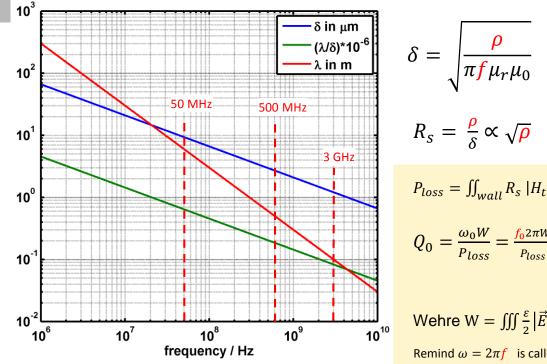




Some more realistic types of acc. structures

we need apertures for the beam and to power the structure

Standing wave Elliptical shape Standing wave Multi Cells Traveling wave Multi Cells


Constraints: The longitudinal size of the cells and spacing musts be adjusted to the transit time of the particle bunches to keep the synchronism with the RF

RF and Wall losses

The magnetic field H tangential to the surfaces induce a current $\vec{J}_A = \vec{n} \times \vec{H}$ in the skin depth δ

 ρ_{copper} = 0.017 Ω .mm²/mm resistivity $\mu_0 = 4\pi \cdot 10^{-7} \text{ A/N}^2$ permeability constant $\mu_r = 1$ (in Vacuum) relative permeability is the surface resistance (1 m Ω at 1 GHz) $P_{loss} = \iint_{wall} R_s |H_t| dA$ is the total power loss on the cavity wall $Q_0 = \frac{\omega_0 W}{P_{loss}} = \frac{f_0 2\pi W}{P_{loss}}$ defines the (unloaded) Quality factor of the cavity

typically between 15000-50000 for copper cavities

Wehre W = $\iiint \frac{\varepsilon}{2} \left| \vec{E} \right|^2 + \frac{\mu}{2} \left| \vec{B} \right|^2 dV$ is the energy stored in the cavity

Remind $\omega = 2\pi f$ is called angular frequency

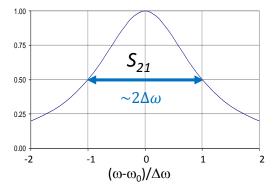
Reprint: Meinke, H. and Gundlach, F. W., Taschenbuch der Hochfrequenztechnik, Dritte Auflage, Springer-Verlag, Berlin (1968)

Some basic parameters you may face discussing with the RF designer

Coupling factor from an external power source $\beta = \frac{P_{ext}}{P_{loss}}$

 β =1 matched to the wall losses (no Beam) \Rightarrow ext. source just compensating the losses

 $Q_{ext} = \frac{\omega_0 W}{P_{ext}} = \frac{Q_0}{\beta}$ (P_{ext} can be alternatively interpreted as the losses from the coupler when the RF source is turned off)


With external source the total quality factor becomes $Q_L = \frac{Q_0}{1+\beta}$

Shunt impedance: $R = \frac{|V_{acc}|^2}{2P_{loss}}$ \longrightarrow Optimized by the RF designer to minimize the power requirements

R «upon» Q:
$$\frac{R}{Q} = \frac{|V_{acc}|^2}{2\omega W_0}$$

figure of merit of the cavity shape (material independent) as high as possible

Cavity Bandwidth:
$$\Delta \omega = \frac{\omega_0}{2Q}$$

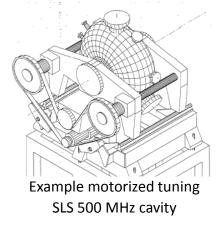
Cavity filling time: $\tau_L = \frac{1}{\Delta \omega}$

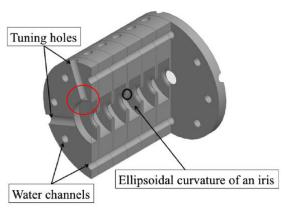
Two ports measurement S21

P_{ext}/

How to adjust the Resonant frequency

Permanent adjustment


- Inelastic deformation of the cavity wall after manufacture
- Or, very precise manufacturing

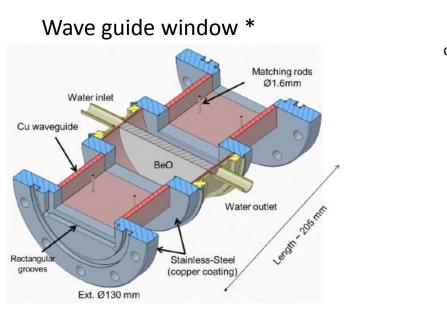

Dynamic adjustment:

- deformation of the cavity wall in elastic regime (fast)
- Motorized plunger (fast)
- Temperature variation (slow)

Radius	Res. Freq.	Δf with + 1°C
(m)	(MHZ)	(kHz)
0.0382	3000	-51
0.23	500	-8.52
2.2	52.2	-0.89

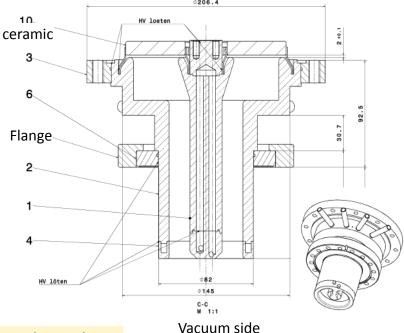
Example Pillbox resonant frequency variation for + 1 °C

Example dimple tuning opening in a C-Band TW structure


Tendencies for frequency tune metho	ds
-------------------------------------	----

High Freq. :	fix tune & temperature
Low freq. :	elastic deformation & plungers

Image reprint: T. Sakurai et al, PHYSICAL REVIEW ACCELERATORS AND BEAMS 20, 042003 (2017)



PAUL SCHERRER INSTITUT

500 MHz Coaxial coupler SLS

A metallic thin coating on the vacuum side of the ceramic is commonly used to suppress multipactor and avoid accumulation of charges \Rightarrow prevents discharges

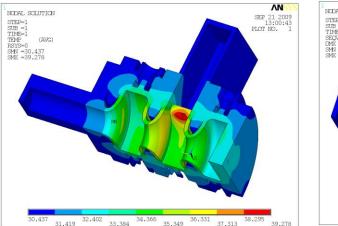
* Reprint window from: Julien Hillairet, et al.. Design and Tests of 500kW RF Windows for the ITER LHCD System. Fusion Engineering and Design, Elsevier, 2015

Thermal analysis & RF design

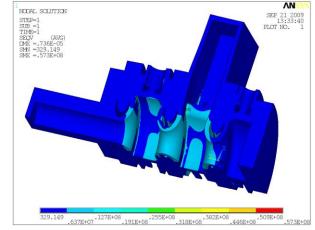
For high power applications (large wall losses) a detailed thermal analysis is required to refine both RF and mechanical design in order to:

- avoid hot spots & deformations, detuning of the structures) and damages
- optimize cooling channels

Multi-physics simulations are therefore required (for example using ANSYS*)


Example SwissFEL RF-Gun **

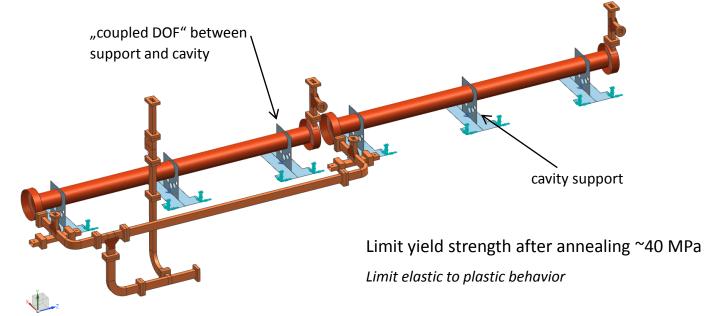
120 MV/m peak RF gradient
14 MW; 100 Hz; 3 μs RF pulse
β=2 for fast filling
3.3 kW average power dissipated
αk: 7500 W/m2K /
Water inlet 30°C

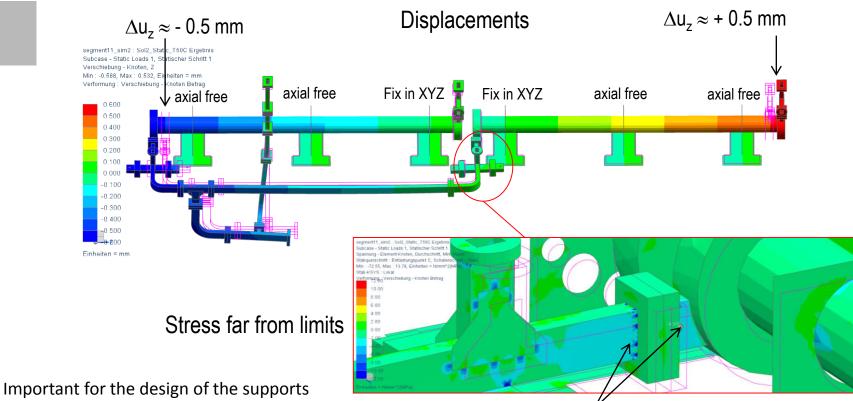

Always very important! Near collaboration between RF and mechanical engineer

*https://www.ansys.com/

Temperature distribution

Mechanical stresses


For more details on the RF-Gun design: J.-Y. Raguin et al, Proceedings of LINAC2012, Tel-Aviv, Israel Page 26


FEA boundary conditions for stress estimation due to thermal eleongations

- All cavity supports translational+rotational fixed in XYZ direction (3 point bearing)
- Each cavity is supported by 1 fixation in XYZ + 2 fixations in XY (with "Coupled DOF")
- All structures have temperatures of T_{initial} = 25°C and T_{thermal load} = 50°C (operation 30 °C)

 $\sigma_{\text{max, bending}} \approx 4.5 \text{ MPa}$

PSI Specifications for SwissFEL:

The impurities shall be in accordance with ISO 431 except:

Reasons

- Relatively easy to machine & with roughness at nm level ٠
- Low Secondary Emission coefficient to reduce multipacting & ٠ breakdown risks
- Excellent electrical (and thermal) conductivity \Rightarrow minimize power dissipation
- Easy to braze/weld
- Good availability and reasonable cost ٠

Copper must be 3D forged

- · To increase mechanical uniformity, hardness and strength of the material
- Minimize number and size of defects, cracks and empty inclusions that ٠ could lead to craters or virtual leaks in vacuum after machining.

Suitable for high RF accelerating gradients

Element	% in Cu-OFE	
Copper	99.99	
Cadmium max.	0.0001	
Phosphorus max.	0.0003	
Sulphur max.	0.0018	
Zinc max.	0.0001	
Mercury max.	0.0001	
Lead max.	0.001	
Selenium max.	0.001	
Tellurium max.	0.001	
Bismuth max.	0.001	
Arsenic		
Antimony		
Bismuth		
Selenium		
Tellurium	Total of these seven	
Tin	elements not to	
Manganese	exceed 40 ppm	

The resonant frequency depends on the dimensions of the cavity. Active deformations are used to tune the frequency but unwanted mechanical deformations (effect of vacuum, thermal excursions, stress) have the same effect

The highest the frequency the most sensitive is the RF structure to manufacturing tolerances or deformations \Rightarrow to match the design resonant frequency within the allowed tuning range

The power losses can be minimized with a "smart" RF design. Materials are of course important (OFHC copper). Thermal analysis starting from the simulated RF losses helps optimizing the design

The highest the unloaded quality factors Q_0 the lower are the wall losses, and narrow the bandwidths of the structure. The final quality factor Q_L depends on the coupling factor to the source.

The near collaboration between RF and mechanical engineer in an iterative process is essential to rapidly converge to a feasible and (reasonably) optimized design. Compromises between RF performances and mechanical feasibility can't be avoided.

PSI RF structures: frequency Zoo

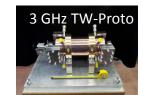
50 MHz Ring Zyklotron

SwissFEL

50 MHz Inj. II

150 MHz buncher

500 MHz Super-buncher

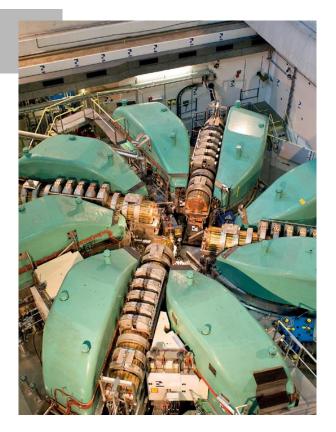


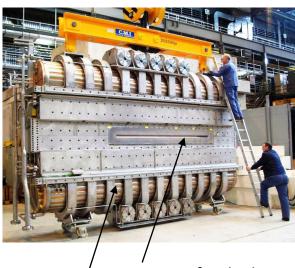
1.5 GHz 2 cell LEG

Disks for TW-struct.

12 GHz Deflector Assembly In SwissFEL

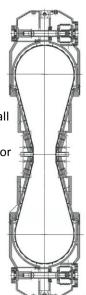
12 GHz


12 GHz Disc



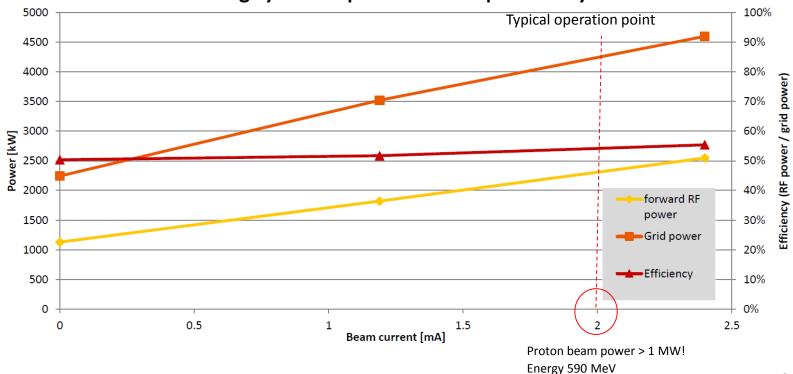
Examples: High Intensity Proton Accelerator at PSI, 50 MHz RF System

Opening for the beam


External structure for the frequency tuning by (pneumatic) deformation of the cavity

1 MW Tetrode final amplification stage

- Copper to minimize the wall losses
- Shape to reduce multipactor

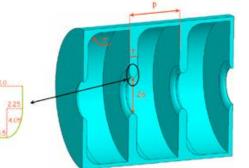


HIPA Ring cyclotron power consumption RF system

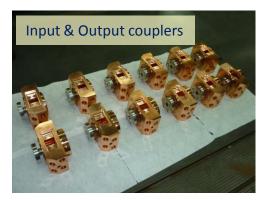
Example: SwisssFEL Injector S-band structures

PSI RF design

- Constant gradient + constant losses
- Dual feed racetrack couplers

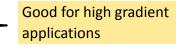

Classical technology with cell to cell dimple tuning after brazing

Manufacturing incl. machining, brazing & tuning by Research Instruments 2008-09


Parameter			Value	
Operating frequ	2998.	2998.8 MHz		
Phase advance p	20	$2\pi/3$		
Total number of	1	122		
Accelerating gra	20 N	20 MV/m		
Maximum pulse	equency 100	100 Hz		
Operating temp	.30	°C		
	v_g/c (%)	r/Q (k Ω /m)	Q	
First cell	2.91	3.85	11688	
Middle cell	1.87	4.23	11640	
Last cell	0.79	4.81	11589	

Coupler cell with waveguide

Geometry of 3 regular cells (120 regular cells + 2 coupling cells)


J.-Y. Raguin, "The Swiss FEL S-Band Accelerating Structure: RF Design", Proc. LINAC 2012, Tel-Aviv, Israel, 2012

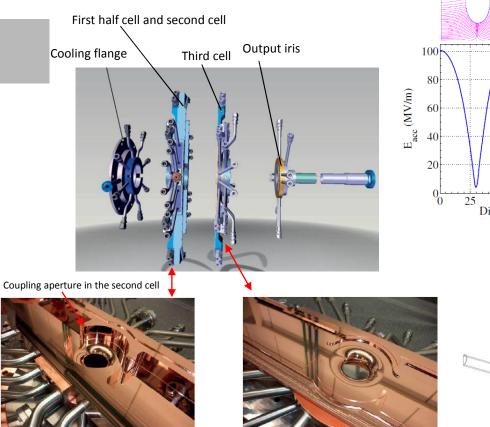
New frontiers with Ultra High Precision machining

- This make sense for structures at high frequencies operating at fixe tune
- The idea is to manufacture on tune => i.e. the exact dimensions of the structures as simulated by the RF engineers
- Prerequisite
 - Very high level of confidence in the RF design simulation tools (HFFS*, CST**, ...).
 - $-\,$ Relay on UHP machining with tolerances in the μm range (qualify commercial partner for large series)
 - In house expertise for the mechanical design and production process (need time to be established)
 - In house expertise (and possibly the oven) for the brazing process
- Advantages
 - Structure ready for use direct after brazing.
 - Avoid «long» tuning process with possible contamination of the structure surfaces
 - Very low roughness of the surfaces typically Ra <15 nm

** https://www.3ds.com/products-services/simulia/products/cst-studio-suite/

UHP Machining and Temperatures

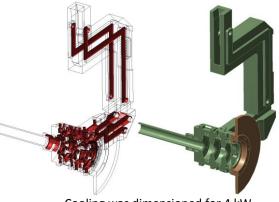
Manufacturing temperature \neq operating temperature of the structure


The dimensions on the manufacturing drawings must be adapted taking into account:

- The temperature of the UHP workshop environment (temperature stabilized)
- The final operating temperature of the cavity

Seems trivial but remember we want to achieve precisions in few µm range

UHP example: SwissFEL S-Band RF Gun

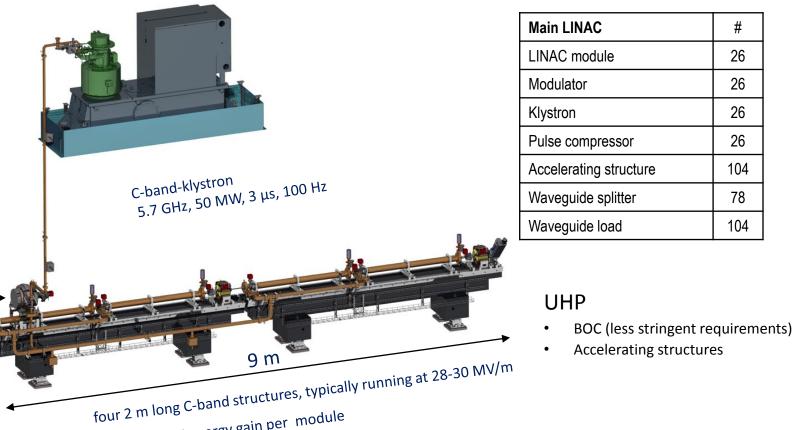

 $(I) \\ (I) \\ (I)$

First structure fabricated with UHP techniques at PSI (cells of cavity body).

Fabrication on tune according to RF simulations

No Correction of tuning and field balance required after final brazing.

Few µm tolerances (outer diameter cells)


BOC pulse

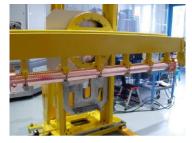
compressor

UHP example: C-band linac modules

220-240 MeV energy gain per module

Some production infrastructure

Metrology: Leitz Infinity: accuracy 0.3 µm.


UP-Machine HEMBRUG Slantbed-MIKROTURN-100-CNC Was used to establish the manufacture procedure at PSI Later delivered to the industrial partner for mass production

Brazing furnace @ PSI

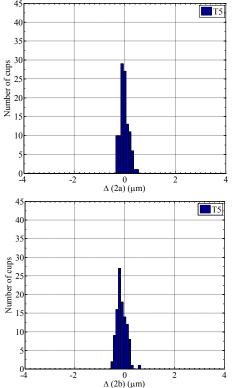
7 sequential cleaning baths with automatized cup handling

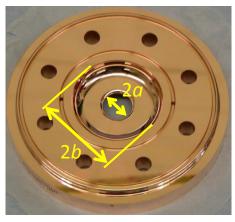
Handling tools

Automatized stacking with robot

UHP example: SwissFEL C-Band structures

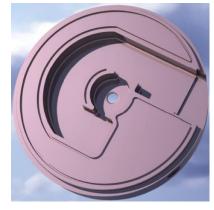
Structure ready to be brazed


- Structures are machined "on tune", no provisions for dimple tuning!
- Cup manufacturing with micron precision (VDL ETG Switzerland)
- Coupler manufacturing at VDL ETG
- Stacked by robot at PSI
- Vacuum-brazed at PSI
- Production rate: 1-2 / week
- Production finished August 2016


High power results for first structure:

- → Conditioned to 52 MV / m (limited by Power availability)
- → Break-down rate at 52 MV / m $\approx 2 \times 10^{-6}$
- → At nominal 28MV/m, break-down rate negligible (well below the specified threshold of 10⁻⁸)

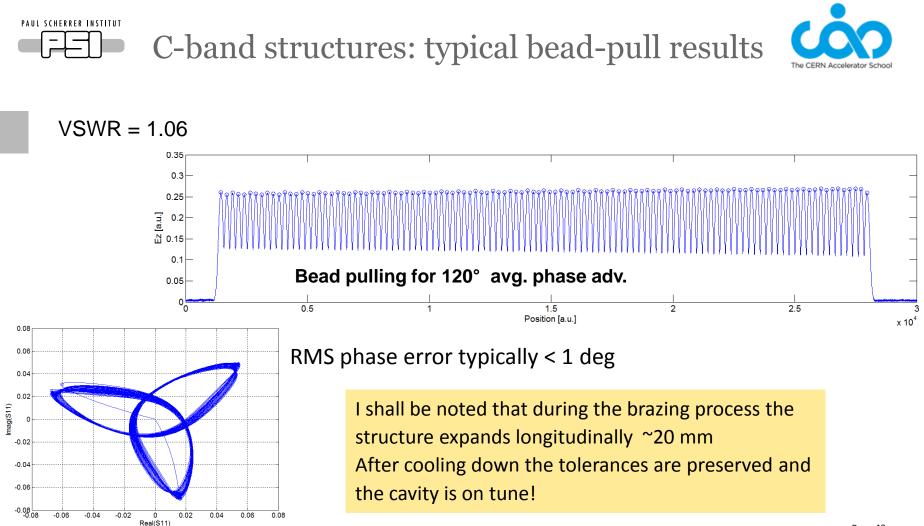
R. Zennaro et al., "Measurement and High Power Test of the First C-Band Accelerating Structure for SwissFEL", Proceedings of LINAC2014, Geneva, Switzerland



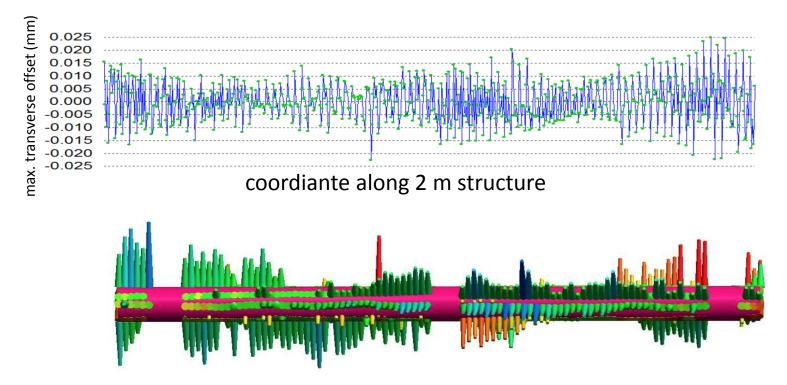
Regular cell

J coupler cell

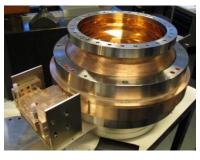
Typical examples of metrology on a structure: top histogram iris diameter, bottom histogram iris cell diameter

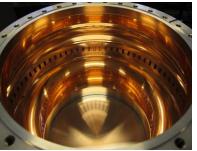

U. Ellenberger et al., Proceedings of FEL2013, New York, NY, USA, Basel, Switzerland

UHP & tricks for cup stacking



 \rightarrow Max. deviation from straight trajectory typically < 20 μ m


C-Band module: Preassembly and tuning of the waveguide train

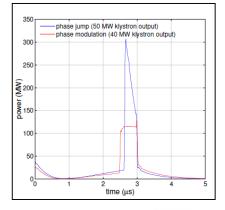


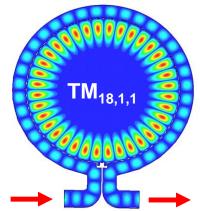
SwissFEL C-Band RF pulse compressors

RF design:

- ✓ intrinsic high Q_0 > 200000
- ✓ β=10

Adapted from the original design for S-Band of I. Syratchev (CERN).


Mechanical design:


Simple and robust design:

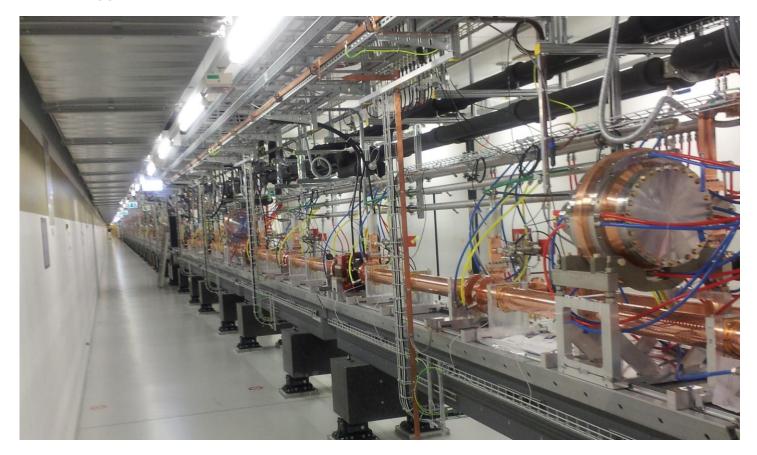
- ✓ Inner body from a single piece
- ✓ Two brazing steps
- ✓ Machined on tune

Production:

✓ 100% in house

- R. Zennaro et al., "C-band RF pulse compressor for the SwissFEL", Proc. IPAC 2013, Shanghai
- U. Ellenberger et al., "The SwissFEL C-Band RF Pulse Compressor: Manufacturing and Proof of Precision by RF Measurements", FEL 2014, Basel
- A. Citterio et al., "C-band Load Development for the High Power Test of the SwissFEL RF Pulse Compressor", LINAC 2014, Geneva
- I. V. Syratchev, "RF pulse compressor systems for CTF3", Proc. 5-th MDK Workshop, Geneva, June 2001.

BOC production @ PSI


Hermle C42 U: 5 axis machine for BOC production at PSI

The chosen RF mode (size of the cavity) allow for more relaxed tolerances $\pm 10 \mu m$ Mechanical stress was an issue => very thin wall in the coupling ring 1.8 mm

Impression in the SwissFEL tunnel 350 m of Linac

A very near exchange between RF and mechanical engineers is essential for an efficient development work \Rightarrow iterative process.

Very important to reach a common understanding of both mechanical and RF constraints to avoid loosing time with nearly unfeasible designs.

A core group with a mechanical engineer and experienced draft mans must be permanetly integrated within the RF team to:

- build and maintain the necessary engineering know-how in the field of RF (learn from the past experience)
- ensure an efficient communication with the workshop and extern suppliers

The progress with the RF simulation tools and UHP machining allows extreme precise design and fabrication on tune. Prototyping phase to validate the design may be avoided or strongly reduced.

Wir schaffen Wissen – heute für morgen

My thanks go to

- you all for listening
- the RF section at PSI
- the PSI Workshop
- The very fruitful exchanges with numerous colleagues from other institutions

Some references

- (1) CAS: **RF for Accelerators, 08 17 June 2010, Ebeltoft, Denmark** <u>https://cas.web.cern.ch/schools/ebeltoft-2010</u>
- (2) CAS: **RF Engineering, 01 10 May 2000, Seeheim, Germany** <u>https://cas.web.cern.ch/schools/seeheim-2000</u>
- (3) CAS: **RF Engineering for Particle Accelerators, 01 10 September 1991, Oxford, UK** <u>https://cas.web.cern.ch/schools/oxford-1991</u>