
A Transverse Feedback System Using Multiple **Pickups for Noise Minimization**

Mouhammad Alhumaidi and Abdelhak M. Zoubir Email: {malhumai,zoubir}@spg.tu-darmstadt.de Signal Processing Group

Motivation

• define
$$\mathbf{w} = [w_1, w_2, \cdots, w_{M-2}, 1 - \sum_{i=1}^{M-2} w_i]^T \in \mathscr{R}^{M-1 \times 1}$$

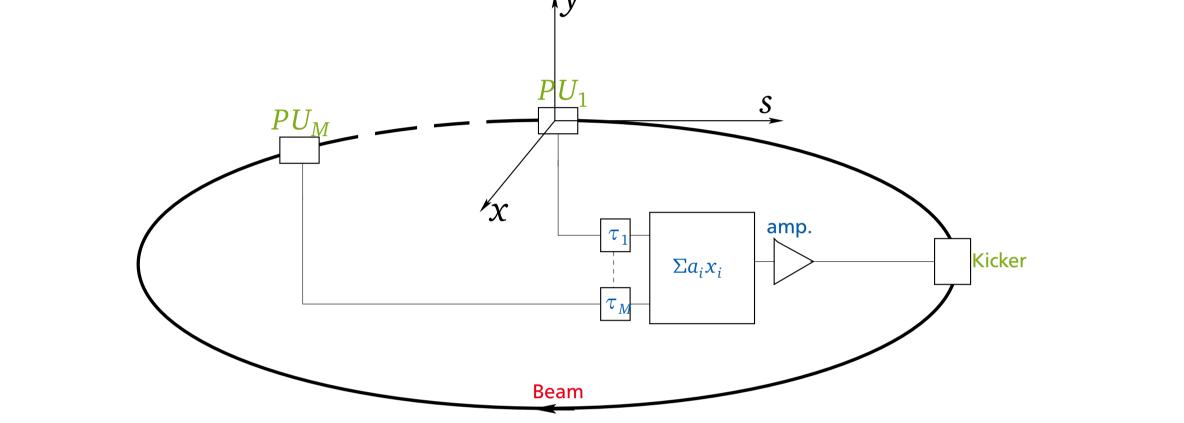
Transversal beam oscillations can happen:

directly after injection

• due to higher beam intensity, which excites instabilities, when natural damping becomes not enough for attenuation

then we have

$$\mathbf{w}^{T}\begin{pmatrix} \bar{x}_{i} \\ \vdots \\ \bar{x}_{M-1} \end{pmatrix} = x' + \mathbf{w}^{T} \mathbf{\Lambda} \mathbf{z} \quad \forall w_{1}, \ \cdots, w_{M-2} \in \mathscr{R}^{M-2}$$


 \implies Transversal Feedback System (TFS) must be used for actively damping beam transversal instabilities, however:

- at the Pickups (PUs) only beam displacement is measured
- noise generated by the PUs deteriorates feedback

 \implies multiple PUs for estimating beam direction at Kicker position with minimized noise

System model

Block diagram of proposed technique and coordinates for circular accelerator:

- Further notation will use x(s) as beam horizontal displacement at position s, \tilde{x}_i at position s_i of PU_i and x'(s) as beam direction in horizontal plane at position s
- $\tilde{\mathbf{x}} = [\tilde{x}_1, \tilde{x}_2 \cdots, \tilde{x}_M]^T$ denotes vector of beam horizontal displacements at the M PUs positions
- $x_i = \tilde{x}_i + z_i$ denotes output signal of PU_i , where z_i denotes noise perturbation

• $\mathbf{x} = [x_1, x_2, \dots, x_M]^T$ denotes vector of PUs output signals and $\mathbf{z} = [z_1, z_2, \dots, z_M]^T$ denotes

Solving the optimization problem is equivalent to finding the optimal vector \mathbf{w}_{opt} , which minimizes the noise power, where

$$[a_1, \cdots, a_M]_{opt} = \mathbf{w}_{opt}^T \mathbf{\Lambda}$$

This equivalence is due to the same number of degrees of freedom we have

 $\mathbf{w} = \mathbf{D}\hat{\mathbf{w}} + \mathbf{e}_{M-1}$

where $\mathbf{D} \in \mathscr{R}^{M-1 \times M-2}$ with all-ones on the main diagonal, all -1 on the last row and zeros elsewhere

$$\hat{\mathbf{w}} = [w_1, w_2, \cdots, w_{M-2}]^T$$
 and $\mathbf{e}_{M-1} = [0, 0, \cdots, 0, 1]^T \in \mathbb{R}^{M-1 \times 1}$

• Setting the derivative of noise power with respect to \hat{w} to zero and solving, one can find

$$\mathbf{\tilde{v}}_{opt} = -(\mathbf{D}^T \mathbf{\Lambda} \mathbf{R}_{zz} \mathbf{\Lambda}^T \mathbf{D})^{-1} \mathbf{D}^T \mathbf{\Lambda} \mathbf{R}_{zz} \mathbf{\Lambda}^T \mathbf{e}_{M-1}$$

Simulations

Simulations of this technique has been done for the Synchrotron SIS 18 at the GSI

the noise vector at the PUs so:

$\mathbf{x} = \tilde{\mathbf{x}} + \mathbf{z}$

• For beam vertical displacement every thing holds by using y instead of x

Beam displacement-direction transmission from position s_0 to position s:

$$\begin{pmatrix} x \\ x' \end{pmatrix} = \mathbf{M} \begin{pmatrix} x_0 \\ x'_0 \end{pmatrix}$$

where
$$\mathbf{M} = \begin{pmatrix} \sqrt{\frac{\beta}{\beta_0}} (\cos(\Psi(s)) + \alpha_0 \sin(\Psi(s))) & \sqrt{\beta\beta_0} \sin(\Psi(s)) \\ \frac{1}{\sqrt{\beta\beta_0}} [(\alpha_0 - \alpha) \cos(\Psi(s)) - (1 + \alpha\alpha_0) \sin(\Psi(s))] & \sqrt{\frac{\beta_0}{\beta}} (\cos(\Psi(s)) - \alpha \sin(\Psi(s))) \end{pmatrix}$$
$$\Psi(s) = \int_{s_0}^s \frac{1}{\beta(s)} ds$$

knowing beam dispacements \tilde{x}_{i_1} and \tilde{x}_{i_2} and by solving transmission equations one can calculate beam direction at Kicker position as:

$$x' = \alpha_{i_1} \tilde{x}_{i_1} + \alpha_{i_2} \tilde{x}_{i_2}$$

using output signals of the M PUs:

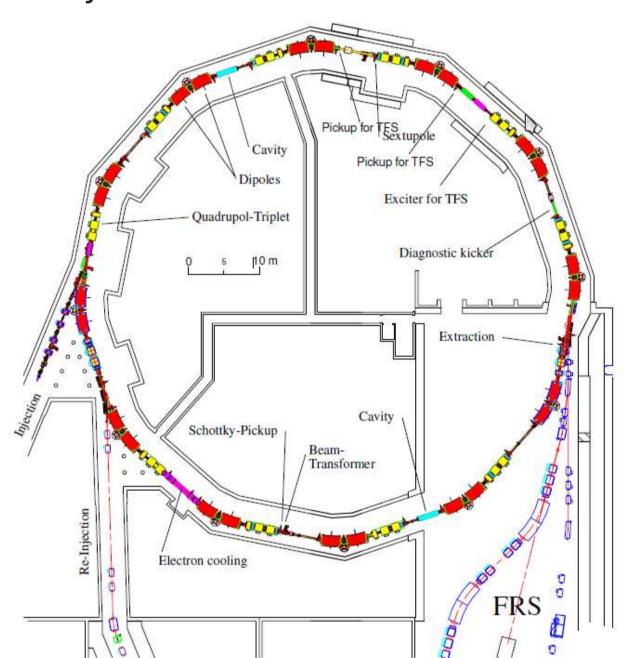
$$ar{x} = lpha_{i_1} x_{i_1} + lpha_{i_2} x_{i_2} \ = lpha_{i_1} ilde{x}_{i_1} + lpha_{i_2} ilde{x}_{i_2} + lpha_{i_1} z_{i_1} + lpha_{i_2} z_{i_2} \ = x' + z$$

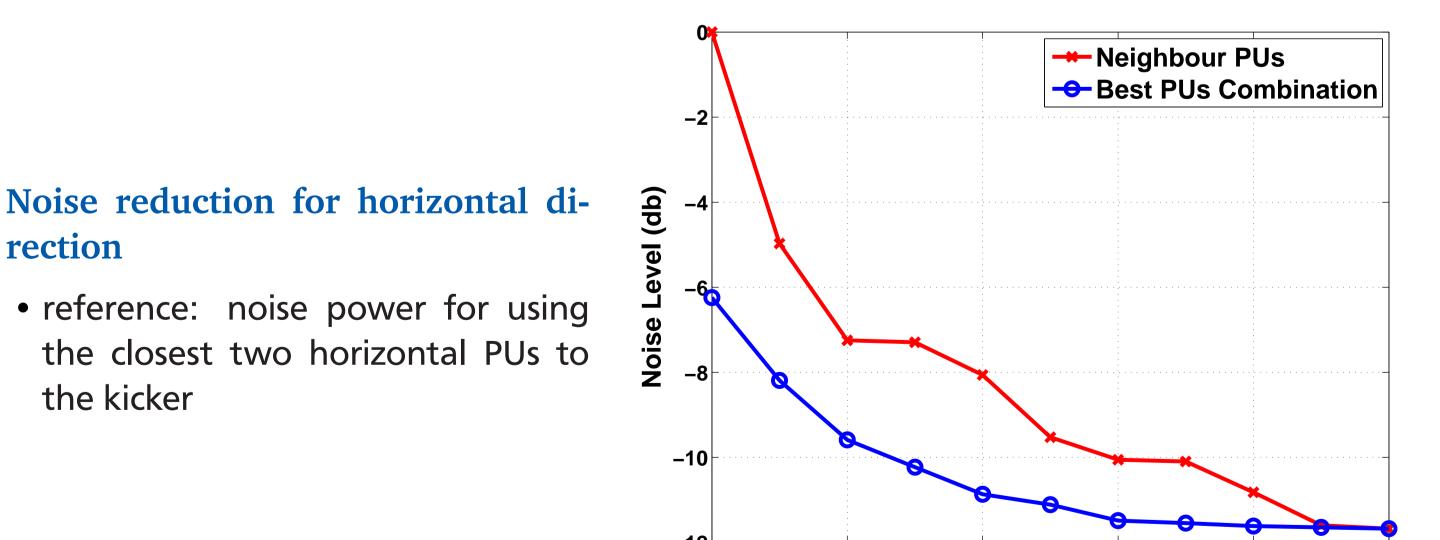
Proposed Technique

Basic idea:

• Filter out the noise by using multiple PUs signals

Optimization problem of finding optimal weighted sum of PUs signals can be formulated as:

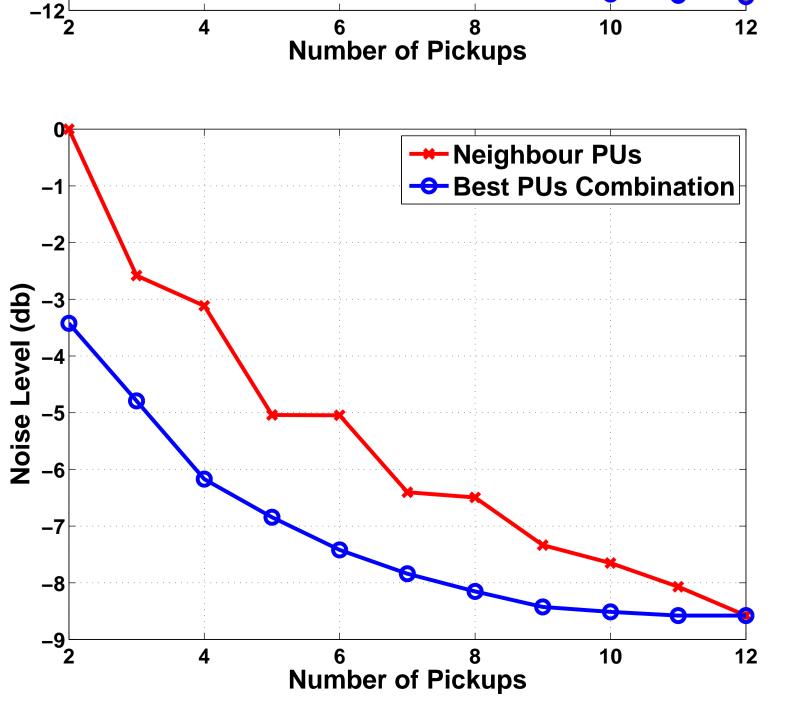

SIS 18 at the GSI


- 12 periods with 12 beam position PUs
- one Kicker

rection

the kicker

- from doublet mode to triplet mode focusing during acceleration
- tunes: $Q_x = 4.29$, $Q_y = 3.29$


$$[a_1, \cdots, a_M] = \underset{a_1, \cdots, a_M}{\operatorname{argmin}} \operatorname{E} |\sum_{i=1}^M a_i z_i|^2$$

s.t.
$$\sum_{i=0}^M a_i \tilde{x}_i = x'$$

Solution for this optimization can be solved through equivalent problem as follows:

 take $\begin{pmatrix} \bar{x}_i \\ \vdots \\ \bar{x}_{M-1} \end{pmatrix} = \underbrace{ \begin{pmatrix} \alpha_{11} \ \alpha_{12} \ 0 & \cdots & 0 \\ 0 \ \alpha_{22} \ \alpha_{23} \ 0 & \cdots & 0 \\ 0 \ 0 \ \cdots & 0 \ \cdots & 0 & \cdots \\ \vdots \ \vdots \ \cdots & 0 \cdots & \cdots \\ 0 \ \cdots & 0 \ \cdots & \alpha_{M-1M-1} \ \alpha_{M-1M} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_M \end{pmatrix}$ — $+\Lambda z$

Noise reduction for vertical direction

• reference: noise power for using the closest two vertical PUs to the kicker

