Plasma Radius Measurement Using Schlieren Imaging

Anna-Maria Bachmann, Max-Planck Institute for Physics, Munich

Advanced Wakefield Experiment (AWAKE) at CERN

- **Plasma based Acceleration**
 - Proton beam propagates through the Rubidium Plasma
 - Co-propagating laser seeds self-modulation instability (SMI)
 - Generation of the Wakefield
 - Acceleration of injected electrons

Formation of Micro Bunches through SMI

Formation of Micro Bunches through SMI

- Ionizing laser (blue): Creates Rb plasma in the cell's center
- Imaging laser (red): Transverse image of the plasma column

Schlieren Imaging

Basic Principle
- Blocking of non-deflected rays
- Imaging of deflected rays

Visualization of Density Perturbations
Imaging transparent objects by making the strength of bending visible using Schlieren imaging

Plasma Radius Measurement

Refractive Index of Rb close to Transition Line D2

Difference in refractive index determines the strength of bending of the rays

- for vapor
 \[n(\nu) = \frac{1}{\sqrt{1 + \frac{\nu_f}{\nu_0}}} \]
- for plasma
 \[n = \sqrt{1 - \frac{c^2}{v^2}} \]

Schlieren Set Up for Plasma Radius Determination

- Laser wavelength close to transition line D2:
 - refractive index of vapor in the ground state >1 (or <1)
 - refractive index of plasma ~1
 - Plasma column as transparent object with different refractive index
 - Bending of the rays which propagate through the object

Current Set Up at MPP

- Pump beam: Creating column of excited atoms in the center of the cell
- Imaging beam: Used for Schlieren imaging of the column of excited atoms
- Knife edge: Razor blade as cut off in the focal plane of lens L1