Possible Experiments With

A High-Energy Proton Bunch And

A Plasma

Patric Muggli Max Planck Institute for Physics, Munich

CERN muggli@mpp.mpg.de

https://www.mpp.mpg.de/~muggli

© P. Muggli

ABSTRACT

We explore possible experiments that could be performed with a CERN-SPS, 400GeV/c, proton bunch with up to 3x10¹¹ particles traveling in a plasma. Planned experiments include driving wakefields. However other topics could include resonantly driving wakefields a harmonic frequencies, looking for current filamentation instability and possibly driving a shock, as well as using the self-modulation instability to both defocus and slow down the proton bunch.

CERN's Accelerator Complex

\diamondSPS beam: high energy, small \sigma_r^*, long \beta^*

MAX-PLANCK-GESELLSCHAFT P. Muggli, IPAC 2017 05/2017

Rb VAPOR/PLASMA SOURCE

 $\$ Anomalous dispersion for n_{Rb} measurement: <0.3% accuracy! $\$ $\$ $\$ P. Muggli

MAX-PLANCK-GESELLSCHAFT P. Muggli, IPAC 2017 05/2017

Rb VAPOR/PLASMA SOURCE Instrumentation

♦ Somewhat complex control system
 ♦ Worked well
 ♦ Produced expected Rb vapor density

♦No safety incident with Rb

F. Braunmueller, MPP

♦ Fiber/Ti-Sapphire laser: ~100fs, E_{max}=450mJ
♦ Rb: ϕ_{IP} =4.177eV, I_{app}~1.7x10¹²Wcm⁻²,
♦ r₀~1mm, Z_R~5m, I_{max}>10x10¹²Wcm⁻²
♦ Field ionization => n_e=n_{Rb}, uniformity and ramps
♦ Virtual plasma for alignment

Rb VAPOR SOURCE (heat exchanger)

Development of the ends

Installed in AWAKE!

P. Muggli, IPAC 2017 05/2017

- \diamond Chromox screens => beam evolution: x(z), y(z)
- \diamond Optical transition radiation (OTR) => time integrated transverse image (x,y)
- \diamond OTR + streak camera => time resolved (ns, ps) image (x,t)
- Microwave diagnostics: Schottky diodes, heterodyne system

Challenges:

◇e⁻ bunch: σ_z < λ_{pe} ◇E_{z, seed} ~10MeV/m → energy loss ◇p⁺ bunch transverse field defocusing for e⁻ ◇Need I_e >I_{p+}?

MAX-PLANCK-GESELLSCHAFT P. Muggli, IPAC 2017 05/2017

- ♦ Fully equipped facility: 400GeV p⁺ bunch, 10m plasma, diagnostics
- ♦ AWAKE plasma wakefield acceleration experiment
- ♦ e⁻ beam SMI seeding
- ♦ Wakefields at second harmonic
- \diamond Drive shocks with p⁺ bunch CFI?

