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Non-Linear Imperfections

B equation of motion

—= Hills equation
—= sine and cosine like solutions + one turrpr

B Poincare section
— normalized coordinates

B resonances
— tune diagram and fixed points

B non-linear resonances
— driving terms

B perturbation treatment of non-linear resonances
— amplitude growth and detuningguadrupole

—= fixed points and slow extractiosextupole

—= pendulum model and octupole
resonance overlap

B Hamiltonian dynamics and variable transformatio
— Hamilton function

—= generating functions

— Equations of motion for action angel variex



Poincare Section |

X

I Display coordinates |
after each turn:

Y
X

I Linear3 — motion:

x=|BE) *Sin@MQi+g)
x'=[cospm Qi+ g )x( )s siaft Gip IBE)

2
— P yx%*2a x% +B X =const | X

s ,
—> ellipse &‘/ ’

I the ellipse orientation and the half axis length

vary along the machine



Poincare Section 11

I for the sake of simplicity assumeg = 0

at the location of the Poincare Section

»
X=VBrecos(21mQ i + @)
X=r-sin(2n Qi +®@, )/\p

2 12 |
X 4+ X = ¥’= const. X

[

— horizontal ellipse

mm for a #0

one can define a new set of coordinates via
linear combination ok  and such

that one axis of the ellipse is parallel to x—axi:



Poincare Section 111

B Display normalized coordinates:

i

=<
N
\

_ XIB
B normalized coordinates:
x/VB =r-cos(2nmQ i+ @,)
[BeX'=-rsin(2m i +@,)
X' \B

@ X/ B~
—> circles in the \

Poincare Section




Resonances |

I tune diagram with linear resonances:

A

Qy

n+1

stability:

avoid integer and

half integer n+0.5
resonances!
n n+0.5 n+1
| S
B higher order resonances:
_ 15 13
n +mQ =7
Qx Q/ “Qy 15 | | | \ &1 |
] 145t —
the rational numbers| _,
lie 'dense’ in the 135 N
13+
real number 125
1.2
there are resonances 1'11_f i
everywhere! \‘ 105
1

1 105 11 115 1.2 125 1.3 135 1.4} 145 1.t

avold low order resonances

| -
1/4 15 QX



Resonances ||

mm fixed points in the Poincare section:

Q=N+1/n

example: n = 4 @)

— every point is mapped on itself
after n turns!

— every point is a 'fixed point’

—= Mmotion remains stable if the

resonances are not driven

— sources for resonance driving terms?



Non—-Linear Resonances |

EE Sextupoles + octupoles

mm Magnet errors:

pole face accuracy
geometry errors

eddy currents

edge effects

Bl VVacuum chamber:

LEP I welding

Bl Beam-beam interaction

= careful analysis of all
components



Non—-Linear Resonances ||

Bl Taylor expansion for upright multipoles:

i 1 .
B,+1-B, = E " fn-<x+|y>

n

n=0
n+1
B
with: f :: Xn+1y
multipole |order| B x By
dipole 0 0 Bo
quadrupole 1 Ly f X
sextupole | 2 | fxy 3 (¢ - ¥)
2
octupole |3 | 2 fs(ByxX -Y) = g (x°= 3x y)

B skew multipoles:
rotation of the magnetic field by 1/2 of the
azimuthal magnet symmetry90° for dipole

45 for guadrupole

30° for sextupole; et



Perturbation |

B perturbed equation of motion:

2
dx (21 _F(XY)
ds? +<T° QX>°X_ v-

2
dy ,l2m, o)., - F )
d SZ L Q/ Vop

Bl assume motion in one degree only:

y= 0 Is a solution of the vertical equation of mati

+BEO, :%. 'F]. )E] FX:—\é.@

B perturbed horizontal equation of motion:
d3 T i 1

X 2 - N
332 +<T y Qx>x —W-kn(s) * X

B normalized strength:

n
K =03 s f [T/m ];
; p [GeVIc]

k] =1/m™




Perturbation |1

B perturbation just infront of Poincare Section:

Ax':f B ods = -
Ve P
where | ’ Is the length of the perturbation

B perturbed Poincare Map:

Xe(B kn> 0

2TQ >

r X/ p Increase in'r
21

iIncrease in 'Q

I stability of particle motion over many turns?



Perturbation 111

B coordinates after 'i’ itteration and before kick

1) X/VB=r-cos(@®) x-VB=-r-sin(P,)

(2)
with: ®. =@, +2Q

B coordinates after the perturbation kick:
(3) X rkick /1B = X/ (B

(4) |+k|ck \/7 X r-l_ n kn. Xin. W

B write new coordinates In circular coordinates
(5) X! VB = (r+tAr).cos(e, +Ag)

6) X .+ VB =—(rtAr)-sin(®; +4¢)



Perturbation IV

B solve for A r andAg , ™
—> substitute (1) and (2) into (3) and (4)
——> set new expression equal to (5) and (
— use:sin(a+b) = sin(a) cos(b) + cos(a) sin
cos(a+b) = cos(a) cos(b) — sin(a) biy

and: sin(A@ ) =A@ ;codp )=1

to solve forA 1" andAq@ .
7 Ar, ==AXe Ve sin@. )
AQ, = —AX e\ B* (:os.([)i )
[r +A X-Vp- sin®; )]
B substitute the kick expression:

(7) Ar= L ke X+ (B siff )

i nl!

8 A ki X TPT o )
¢, =

[r +Ar ]




Perturbation V

B quadrupole perturbation:
Ar= 1<l xVp- sirg, )

with: x =g r- codp, )

Ar= 1+l Fpe siRQ. )

sum over many turns with: @ = 27Q- |

—> | > Ar=0 unless: Q = p/2

(half integer resonang
B tune change (first order in the perturbation):

AQ, = |« ke B+ [1+cOsR@ )]/2

average change per turn; @.= 270Q- |

<AQi>:I- KB 4T ]_> Q=Q,+<A @




Perturbation VI

B resonance stop bandQ = p/2

the map perturbation generates a tune oscilla

BQi:I- kB codfr Qi 4)

—= particles will experience the half integer

resonance If their tune satisfies:

[ (p/2 —<AQ> ) < (gg «\ Q>)< (p/2<AQ>J

A

Qy

B tune diagram: | n+1 /N N\ /) /)
s RV A
avold integer and C) C) C)
C C CP

. . ~

half integer n o.ss(b vAvEY
resonances and sta;ﬁj C) C)

d d -
away from the N allap

VEVEVEVIVY
resonance 'stop band n+0.5 n+1

Y

QX



Perturbation VlilI

B sextupole perturbation:
Ar=1-k X (B sinp, )2
with: x.= g r- cosp, )

2 3/2

Ar= 1+l Fpe" [3 siff; )+siB@ 8]

sum over many turns: @ = 210

— r=0 unIess:Q:porQ:p/%

B tune change (first order in the perturbation):

[3cogft Qi@®, )
+ cosbrt Qi +9, ))/8

sum over many turns:
(unlessQ =por Q =p/3

2

2mAQ =1+l Fpe

<AQ> :O]

—  stop band increases with amplitlic



Perturbation Vilili

B what happens fo = p; p/3  ?

2 3/2| k

[3 sigft Qi®, ) :
|+ sinGt Q i +3p, )]/8.

Ar= 1«1 F

3/2. !

2t =1+l ¥ g :[3008([ Qi@, ),

-+ cosbTt Qi+, )8

amplitude 'r’ increases every tur== instability

— dephasing and tune change

—>= Motion moves off resonance

—  stop of the instability

— What happens in the long run?



Perturbation I X

B |et us assume = p/3

—_—— — — — — =

3 sig 1) +singg )]/ 8

Ar= 1k & 3 3/2'

= I-Iglr-B [3coep( )+co$[Q§ )] /¢

the first terms change rapidly for each turn

—>= the contribution of these terms are smzc
and we omit these terms in the followir
(method of averaging)



Perturbation X

Bl fixed point conditionsQ = p/3;k >0

Ar/tun=0 and Ag/turn=2mp/3

3/2

with: AT= 1+l Fp° sin@ )¢

Ap. =21Q + 1 K ir[f’fz cos@ )/

— (pfixed point: T[/3’ T[’ 51-[/3’

_16T[ (Q —p/3)

r =
fixed point 3/2
l Kk, B

— 1 = (0 also provides a fixed point in the

X; X (infinit set in ther, @ plane)



Perturbation XI

B fixed point stability:

linearize the equation of motion around the

fixed points:

Poincare map: r =r +f(r ¢, )

single sextupole kick:

2 32

= f=|ek Fpe sin® )/8

g=1-1 irBS-/Z cos( )/8

—= |Inearized map around fixed points:

[ I CRI] r
A I -0 ¢ 00, || .

(p_ 9(Pi+1 o (Pi+1 (p_
+1 ar 20 !

fixed point



Perturbation XllI

B Jacobin matrix for single sextupole kick:

Jacobian matrix

eri+ -1 eri+1 — _2 . 3/2
ar. L= 1 gcpi = -3 Ig B ﬁxed point /8
90Piv1 _ _ . ke 3/2 : © Qi+ —
CREF = l% 18 9,
=1/3; 1t; 511/3;and r /=0
fixed point fixed point
. 3/2 2 . |
_3 5( flxed point / 8A(P|
3/2 -
AP, =d<k;p/8-AT, stability?
AT A AT A
IR \x//
A | . A | -
e K :
PR //\

hyperbolic fixed point



Perturbation Xll1l

B Poincare Section for'r angl '

unstable )
hyperbolic fixed poinits .

unstable
hyperbolic

| L
fixed points % 2(//

stable fixed point




Perturbation XIV

B slow extraction:

septum magnet J /\/

XI

R

)

%4 X
S
i

I fixed point position:
161t (Q —% )

fixed point . kz‘B3/2

\

v

)

r —> changing the tune

during extractioh



Perturbation XV

B octupole perturbation:
Ar= 1<k X VB~ sirp, )6
with: x =g r- cosp, )
Ar=l-k Fp- [4siB@ )+sbg )18

sum over many turns: @, = 210 +,@

e r =0 unless: Q =p, p/2, p/4

B tune change (first order in the perturbation):

2mAQ =1k fg [4codt Qi¢p )
+ 3+ cosBm Qi+4p, )]/48

sum over many turns (unlesg:= p or Q = p/¢4

—>| <AQ>=1- ke ?-BZ [ 1621t




Perturbation XVI

B detuning with amplitude:
particle tune depends on particle amplitude

— tune spread for particle distribution

—> Stabilization of collective instabilge

— |nstall octupoles in the storagegi

—>= distribution covers more resonast
In the tune diagram

— avolid octupoles in the storagegi

— requires a delicate compromise

B Poincare section topology:

Q = p/4 and apply method of averaging

—> Ar= -k Fp- sin@ )/48

2

Ap =1k F [32- [3+cos@ )]/48nQ



Perturbation XVII

Bl fixed point conditions:Q s p/4;k >0

Ar/tumn=0 and Ag/turn=2mp/4
with: AT= 1k FgL sin(@, /48
Ap, =21Q + |+ lg k@ [3+cos@ )]/4

3 cpfixed poim: Tt/2: Tt 311/2: 211

r 1 | 96TT (p/d - Q )
fixed point | k3 Bz (3+1)

¢ = 1t/4; 31t/4; 511/4; 711/4

fixed point

r T\ | 96T p4-Q )
fixed point | k3 Bz (3_1)

+




Perturbation XVIlIlI

B fixed point stability for single octupole kick:

Jacobian matrix

er'+ - 1- er+1 —_ +
3 I’Ii == 1 eql)l 41 - !3( B frxed point B
Witz g ke @ 1 (3 1)/24; —oti=1
ar. ' 90,
5 2
A [ = i 4I ’ g p e f?)!red point /4@(%
Ap.. =l-ks @ (3t 1)/24 AT,
Stability for '—’ sign anq k >07?
AT A AT A
A N //» N
A | . L <> | .
| ! AQ ! AQ
N4 o=,

elliptical fixed point



Perturbation XIX

I Poincare Section for 'r ang’

unstable
hyperbolic .
fixed points

stable P
elliptical -~
fixed points

Island structure

B Poincare section in normalized coordinates:




Perturbation XX

B generic signature of non-linear resonances:

—>= chain of resonance islands

mm pendulum dynamics:

expand equation of motion around
resonance amplitude

dr : do
— =-F siIn —=G-r
ds ) ds

—>= (eneric equation of motion near resona

—= resonance width: AT :}} F/nG

res/max

island oscillation frequencypisland:N F- G/n

B pendulum motion:
libration:  oscillation around stable fixed pa

rotation: continous increase of phase vala

separatrix: separation between the two type



Integrable Systems

I trajectories in phase space do not intersect

deterministic system

B integrable systems:
all trajectories lie on invariant surfaces

n degrees of freedom

» N dimensional surfaces

I two degrees of freedom:

X, S —= motion lies on a torus

I Poincare section for two degrees of freedom
= motion lies on closed curves

S iIndication of integrability




Perturbation XXI

B 'chaos’ and non-integrabillity:

so far we removed all but one resonance
(method of averaging)

— dynamics Is integrable and therefore
predictable

re—introduction of the other resonances ’'peisi
the separatrix motion

—= motion can 'change’ from libration to rotatio

—>= (generation of a layer of 'chaotic motion’

N

no hope for exact deterministic solution in this &l



Perturbation XXII

B slow particle loss:

particles can stream along the 'stochastic lay

for 1 degree of freedom (plus 's’ dependence

the particle amplitude is bound by neighborin

Integrable lines

not true for more than one degree of freedom

B global 'chaos’ and fast particle losses:

If more than one resonance are present their
resonance islands can overlap

——>= the particle motion can jump from er

resonance to the other

——= 'global chaos’

——= fast particle losses and dynamic apes



Long Term Stability

() Non-linear Perturbation:

Bl amplitude growth

EmE detuning with amplitude

mEm coupling

>  Complex dynamics:

3 degrees of freedom

+ 1 invariant of the motion

+ non-linear dynamics

——> no global analytical solution!

= analytical analysis relies on

perturbation theory



Perturbation XXII1I

B why did we not find islands for a sextupole?

—= the pendulum approximation requires

an amplitude dependent tune!

unstable )
hyperbolic fixed poinits

I the sextupole detuning term appears only in
second order of the kick strength

—» higher order perturbation calculation



Perturbation XXIV

B so far we assumed on the right—hand side:

Q. = ZTQE)i T
this provides only first order solutions

B second order perturbation:

"(S)=1(s) 4 1 ()& ,r (s)+O( )

PE)=@s) +eB) Fe@ O+’ (¢ )

_ 3/2
with: e=f«1-r K,

B smooth approximation:

dr _ Ar do_ A
ds L and ds L
and assume:

B = constant along the machine



Perturbation XXV

B expand equation of motion into a Taylor serie

around zero order solution

dr _ do _
E_f(r,(p) ds g(r,(p)

—>= Single sextupole kick:

f=L". [sin(3p )+ 3sing )]/8

g=r- [cos(@ )+3ca()]/8
= O[3 r+9— 0] &% oE?)

do _ 21Q £ g ﬂ.r +6_ (p] e+ O(?)



Perturbation XXVI

Bl match powers of and solve equation of mofic

in ascending order af":

_2TP 2TV
B zero order: @ (s) = 3L St St P
0(8) =5 Q=p+v )

— substitute into equation of motion
and solve for@,(s) ard(s)

B first order:

08) =+ L[ sin(C s+ @, )34
sin(- -5 + @ )
r.(s) = 2_nv [cos@ s+@, )/3-

cos&f"-s+q)o])



Perturbation XXVIlI

I second order:

— > Substitute@,(s) ant,(s) into equat

of motion and order powers ef

o f
ou get terms of the formdrz - [ 3 .y +21.
JOH S ds ar 1 a0 !

ip: a_g.r+e—g‘
ds [er 1750

—

Cos(3® } cos(® ), cos@-) cos( ); aps( ) @os

— % o< cos(6p ); cos@ );cosf2 ),

I higher order resonances:"

a single perturbation generates ALL resoms
driving term strength and resonance width

decrease with increasing order!

— avold low order resonances!



