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Imperfections

Linear



orbit correction 

sine and cosine like solutions + one turn map

local orbit bumps

harmonic filtering

SVD

most effective corrector

Linear Imperfections

equation of motion in an accelerator

dipole perturbations 

closed orbit response

dispersion orbit

integer resonances

quadrupole perturbations 

tune error

beta−beat

half−integer resonances

Hills equation
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 Variable Definition

Hill’s Equation:
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Variables in moving coordinate system:
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Sinelike and Cosinelike Solutions

system of  first order
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Closed Orbit

particles oscillate around an ideal orbit:

additional dipole fields perturb the orbit:

energy error
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error in dipole field

offset in quadrupole field
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momentum  distribtion

power supplies

calibration

civil engineering
seasons
moon

slow drift

civilisation

injection energy (RF off)

RF frequency

Energy error of particles

ground motion

Sources for Orbit Errors

alignment +/- 0.1 mm

Quadrupole offset:

Error in dipole strength
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Closed Orbit Response

Lorentz

variation of the constant:

inhomogeneous equation:

we need to find only one solution!

F(s)
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substitute into differential equation:

Closed Orbit Response

with

variation of the constant in matrix form:
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periodic boundary conditions:

with

x (s) = x (s + L);   x(s) = x(s + L);

Closed Orbit Response

periodic boundary conditions determine
coefficients       anda b
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the perturbation adds up

Kick

Q = N + 0.5 

the perturbation cancels
after each turn

Kick

Dipole Error and Orbit Stability

Q: βnumber of     −oscillations per turn

watch out for integer tunes!
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Closed Orbit Response

Dispersion Orbit

Example:

with

with
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variation of the constant:

quadrupole error:

− Beat
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− beat oscillates with twice the betatron frequency
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Quadrupole Error: 

amplitude increase

1. Turn: x > 0

Q = N + 0.5 

F

kick

amplitude increase

beam offset in quadrupole

F

x < 02. Turn:

watch out for half integer tunes!

Orbit Stability

Quadrupole Error and

orbit kick proportional to 
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Tune Error

provide the optic functions at s0

cosine− and sine−like solutions to Hill’s equation

with

remember:

the coefficients of:

one turn map:
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one turn matrix with quadrupole error:

transfer matrix for single quadrupole:

trace M

matrix for single quadrupole with error:

Tune Error
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Tune Error

distributed perturbation:

momentum error k = − k 
0

0
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k = e   g 
p chromaticity:
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x−y coupling

aperture            beam losses

filamentation        beam size

aperture

energy error

field imperfections

beam separation

dispersion          beam size at IP

rms < 0.5 mm
    x,     y < 4 mm∆

beam monitors and 

injection errors:

orbit correctors

∆

closed orbit errors:

Problems Generated by Orbit Errrors

Aim:
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a)
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assume: L > design orbit

the orbit determines the 
particle energy! 

Synchrotron:

RF
f    = h   f

rev

f   = 1
2

q
m

B
rev

energy increase

Equilibrium:

E depends on orbit and magnetic field!



from the quadrupole alignment errors

magnets is dominated by the contributions

the orbit error in a storage ring with conventional

β  -functions at the location of the dipole error 

Orbit Correction

orbit perturbation is proportional to the local

alignment errors at QD causes mainly

horizontal orbit errors

alignment errors at QF cause mainly

vertical orbit errors



place orbit corrector and BPM next  

to the main quadrupoles  

vertical BPM and corrector next to QD  

QF MB

horizontal BPM and corrector next to QF  

QD

Orbit Correction

BPM

HX

BPM

HV

aim at a local correction of the dipole error due

to the quadrupole alignment errors 

orbit in the opposite plane? 

relative alignment of BPM and quadrupole? 
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deflection angle:

trajectory response:

[no periodic boundary conditions]

 Local Orbit Bumps I

dipole

ii



closure of the perturbation within one turn   

possibility to correct orbit errors locally  

local orbit excursion   

π

closure with one additional corrector magnet

closure with two additional corrector magnets

three corrector bump

Local Orbit Bumps II

closed orbit bump:

- bump

compensate the trajectory perturbation with

additional corrector kicks further down stream
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o
requires 90  lattice

closure depends on lattice phase advance

sensitive to lattice errors

sensitive to BPM errors

requires large number of correctors

requires horizontal BPMs at QF and QD

s

limits / problems:

(quasi local correction of error)

QF QD QF QD

- bump:π

QF

Local Orbit Bumps III

x
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requires only horizontal BPMs at QF

works for any lattice phase advance

limits / problems:

Local Orbit Bumps IV

x

s

3 corrector bump:(quasi local correction of error)

sensitive to BPM errors

large number of correctors
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unperturbed solution (smooth approximation):

orbit perturbation due to random kicks:
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Harmonic Filtering I
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30 40 50

inserting Ansatz into Hill’s equation:

60 70 80 90
harmonic number ’n’

with: d   = n

the spectrum peaks around the tune

small number of correctors are efficient

Q = 64.3

Harmonic Filtering II
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COR  = [a  , a  ,...., a  ]m

1 2
BPM  = [b  , b  ,...., b  ]n

BPM:  vector of all BPM data

BPM  =  A   COR;   A = n   m  matrixx

global orbit correction:

find a set of corrector settings that satisfies: 

ORB:  vector of all measured orbit data

1 2 nORB  = [c  , c  ,...., c  ]

ORB - A  COR = 0 

linear relation between BPM and corrector data:

SVD I

COR:  vector of corrector amplitudes
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= xi
i = 1

m
p
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with X

(A is normally not even a square matrix)

ORB - A   B   ORB

find a matrix B such that:

SVD II

minimise the norm:

COR = A    ORB
-1

problem:

A is normally not invertible

mathematical solution:

attains a minimum
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singular value decomposition SVD:

D is a diagonal matrix: 

SVD III

ij ji(a a  )

1A = O   D   O2

define: 
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0

0
1/
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1

0
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B = O   D   O
t t

2 1

SVD IV

1 2 12

(by using all possible corrector magnets)

A   B = (O   D   O  )   (O   D   O  )
t t

algorithm is not stable if D has small
eigenvalues

if m = n SVD algorithm minimises the norm

if k = m = n one obtains a zero orbit
(by using a all possible corrector magnets)

k = min(m,n)

SVD allows you to adjust k corrector magnets

define the correction matrix:



BPM - A  COR = xi
i = 1

m
p
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with X

with a small set of ’k’ corrector magnets

minimise

selective + cross-correlation between 

orbit residues and remaining correctors

MICADO:

selective: keep the already selected correctors

much faster!

finite chance to miss best choice

can generate orbit bumps

brut force:

time consuming but good result

select all possible combinations

Most Effective Corrector

orbit is perturbed by a few large perturbations:
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assume: L > design orbit

the orbit determines the 
particle energy! 

Synchrotron:

RF
f    = h   f
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energy increase

Equilibrium:

E depends on orbit and magnetic field!


