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Linear Imperfections

B equation of motion in an accelerator

—= Hills equation

—= Sine and cosine like solutions + one turmr

B dipole perturbations

—= closed orbit response
— dispersion orbit

e integer resonances

I quadrupole perturbations

—= fune error

— = beta—beat

— half-integer resonances

B orbit correction
— |ocal orbit bumps

—= harmonic filtering

— = SVD
— most effective corrector



Variable Definition

O Variables in moving coordinate system:

_d
X="ds %
i _ dS. d ¥'= px
dt dt ds oN
\V

O Hill's Equation:

2

d X
ds?

+ K(s)* x=0; K(s)=K(s+L);

o) drift
K(s) = {10’ dipole
0.3 BLT/m] quadrupole

p[GeV]



Sinelike and Cosinelike Solutions

B system of first order
linear differential equations:

B Floguet theorem:

. ) VWs)-sin(cp(s)Hg)
=)= [cos fp(s) + @ ) 4 )} sip(s) +@ PHE)

[BG) * cos (p(s) +q )
C(s) =
Ps)

[sin (@(s) + @ )*ta()s coe(s) + @

(BO=p6+L) 0@ =[5 ds a@)= 1)



Closed Orbit

() particles oscillate around an ideal orbit:

(O additional dipole fields perturb the orbit:

mm error in dipole field

I energy error

CX:L — q-B-l N<1_M)> . q-B-l
p p+Ap P P

mm offset in quadrupole field
« =gy B, =-g.y
y:—gox X:X0+)/z —>By:—go)%—go/;(

dipole component *



Sources for Orbit Errors

O Quadrupole offset:

mm alignment +/-0.1 mm

mm ground motion
mm Slow drift

mm civilisation
HE MmMoon
mm Seasons

mm Ccivil engineering
O Error in dipole strength

mm power supplies

mm calibration

O Energy error of particles
mm |njection energy (RF off)

mm RF frequency

B momentum distribtion



Closed Orbit Response

B inhomogeneous equation:
s F(s
d X2 + K(S) . % = G(S); G(S) _ ( )Lorentz
ds Ve D

0

01 0
— - l| +<K O> °l:§; G:<G>

——> y(s)=a-_S(s) +b_C(s)uxs)

— = we need to find only one solution!

B variation of the constant:

W(s) = 96)u(s); 9(s)=c-_S(s) +d_C(s);



Closed Orbit Response

B variation of the constant in matrix form:

Y(S) = (s-u(s); with

V@ -« sin (@) +¢@ ) VWS) .« COS@S) + @ )
b(s)=

cos ) + ¢ ) [BE), ~sin ) + @/ {BE)

B substitute into differential equation:

~  §(s)-u(s) = G(s)

S

— u(s) = f o(t)- G(O) dt

So

S
— Y(s) =a- S(s) + kb C(s) #( ){ﬂt )_}g(t) ok

So



Closed Orbit Response

B periodic boundary conditions:

S

(s) = a-_S(s) + b_C(s) $(s) f B(t )+ G(t) d

sO

with

V) X (@) XS =x(s + L X(s) =X (s+)

periodic boundary conditions determine
coefficients a and b

—

sO+circ

_(B6) Q)f B(t) G(t) cosp(t )-06 )= Qi

2 SIN(TTe




Dipole Error and Orbit Stability

() _Q: number of B-oscillations per turn

B Q=N

> the perturbation adds up

/\ watch out for integer tunes!

Bl Q-N+05

» the perturbation cancels
after each turn

X(S) _1B6) Q)jgﬁ ) G(t) cospt )-o$ )™ Qt

2 sin(rte



Closed Orbit Response

B Example:

«(s) = PS) jﬁﬁa)-e(w coshpt )-o6) = Q] d

2 sin(Tte Q).
with
_ -1 Ap
Gty =—>. 5P
=00 P
»
A

X(s) = D(s} 1
with
o) =P LB oot )-8 ® Ol

2 Sin(Tte Q). o(t)

—>  Dispersion Orbit




(b — Beat

I guadrupole error:

AB[T/m]
p,[GeV]

AK(S) = 0.3

2

d X

>+ K(s)* x =X+ AK(S);
ds

—= Vvariation of the constant:

sO+circ

BE)
ABGS = > sineTe Qj B(t). Ak(t) cos[2p(t )-0¢ )2t Qi

sO

—

B — beat oscillates with twice the betatron freqy



Quadrupole Error and
Orbit Stability

(O _Quadrupole Error:

— = orbit kick proportional to

beam offset in quadrupole

B Q=N+0.5

1. Turn: x>0

= amplitude increase

2. Turn: x<0

= amplitude increase

¥ watch out for half Integer tunes!




Tune Error

B one turn map:

cosine— and sine-like solutions to Hill's equoa

with
M=l cos(2T Q)+4d sinf2 Q)

1 0 a P TR
= — V=114 +
=1, 1) 9 _y_a,v[ 118

remember: cos( 2T Q) :—; trace M

M-l cos(2T Q)
sin( 2t Q)

—  the coefficients of:

provide the optic functions af s



Tune Error

B transfer matrix for single quadrupole:

1 0
™\ ker 1
B matrix for single quadrupole with error:

1 0
M= [k + Ak]<1 1

B one turn matrix with quadrupole error:

M= g M
trace M

—

cos(21T Q) = cos(R (Q)% B-A -1k sin(2, Q)



Tune Error

B distributed perturbation:

cos(2 Q) = cos(ZX Q) SN2 Q), B+ Ak ds

2
— AQ_L B'Ade
4 T
e.
B chromaticity: K™D J

momentum error—= AK= —ko-T

__ 1 .4g.-ks.ds 2
AQ 4 TT P+ X3



Problems Generated by Orbit Errrors

() _INnjection errors:
mm aperture —— beam losses

mm filamentation— beam size

() closed orbit errors:
X—y coupling

aperture
energy error
field imperfections

dispersion —= beam size at IP

beam separation

Alm:

AXx, Ay <4 mm
rms < 0.5 mm

> peam monitors and
orbit correctors



(O Synchrotron:

——>» the orbit determines the
particle energy!

mm assume: L > design orbit
v A
{\
——

2 energy increase

(O Equilibrium: §f =h.f

m—tn
 —
O

rev_ 2.T[ Me y

—> E depends on orbit and magnetic field!



Orbit Correction

the orbit error in a storage ring with convention

magnets is dominated by the contributions

from the quadrupole alignment errors

orbit perturbation is proportional to the local

B-functions at the location of the dipole error

— alighment errors at QF cause mainly

horizontal orbit errors

— alignment errors at QD causes mainly
vertical orbit errors



Orbit Correction

B aim at a local correction of the dipole error due

to the quadrupole alignment errors

= place orbit corrector and BPM next

to the main quadrupoles

= horizontal BPM and corrector next to QF

vertical BPM and corrector next to QD

> orbit in the opposite plane?

relative alignment of BPM and quadrupole?



LLocal Orbit Bumps I

B deflection angle:

T] |

9_:fGi(t)dt = 0.3 BITI
| p[GeV]

dipole

I trajectory response:

[no periodic boundary conditions]

—>  x(5)= (B, BE) -6,

—> X(s)= (B/BE) * 6"

sin[@S) @ ]

cosip(s)y @ |



Local Orbit Bumps ||

mm closed orbit bump:

compensate the trajectory perturbation with

additional corrector kicks further down stream

—»  closure of the perturbation within one turn

—>= |ocal orbit excursion

—>  possibility to correct orbit errors locally

——» closure with one additional corrector magn
— T - bump
——» closure with two additional corrector mags

— three corrector bump



Local Orbit Bumps |11

B 71T - bump: (quasi local correction of errpr
X ............
T mﬁf QD QF
I l 1.5
01 0 63
— e :m ° p

B limits / problems:

—» closure depends on lattice phase advat
— requires 90 lattice

— = Sensitive to lattice errors

— requires horizontal BPMs at QF and QL

— 3= Sensitive to BPM errors

—» requires large number of correctors



Local Orbit Bumps IV

mmm 3 corrector bump(quasi local correction of errpr

—> 0 :< sin(AQz; ) coS(AQ, 4 )> . % 0,

—» works for any lattice phase advance

—= requires only horizontal BPMs at Q|

B |imits / problems:

— 3= Sensitive to BPM errors

— |arge number of correctors

—> can hot control 'x



Harmonic Filtering |

B unperturbed solution (smooth approximation

2m
C

I Tt 2 I o S
X 2 ¢ x=0—3 x5)= Adc

B orbit perturbation due to random kicks:

X'+ K(s) x=_> 6-s$)

= F(s)

I periodic boundary conditions:



Harmonic Filtering |l

Bl inserting Ansatz into Hill’s equation:

— x(s): E CL éZC_”n

n

with: d =
n — 2m 2 om 2
SRR
—» the spectrum peaks around the tune

/ \

A I \
] \
\

|\
%__——-%1—4"\’\\%\( % | | \%rj‘l——%———»_

30 40 50 60 70 80 90
harmonic number "n

—  small number of correctors are efficient



SVD I

I linear relation between BPM and corrector date

COR: vector of corrector amplitudes

—>» COR =[3 ,3 ,.....2 |
BPM: vector of all BPM data

> BPM =[b . ,...b ]

—» BPM = A- COR; A=R”R m matrix

mmm global orbit correction:

ORB: vector of all measured orbit data
—>» ORB =[¢,,G ..., ¢ ]

—» find a set of corrector settings that satisfie



SVD Il

B mathematical solution:

COR=A- ORB

I problem:

A Is normally not invertible
(A is normally not even a square matrix)

— = Mminimise the norm;j| ORB - A- COR/|

1/p

with || X || =<§m \Xi\p>

=1

— = fInd a matrix B such that:
|ORB - A B+ ORB|

attains a minimum



SVD 111

B singular value decomposition SVD:

» A — Olo Do Q
O, and Q are orthogonal matrices: O '= O

@; —= &)
D Is a diagonal matrix:

R
D= 2 k< min(n,m)

o - 0
%
define:
1/011 0
1/g 1
A 0 22 AN 0
D = : — DD
1/
Kk 0 1



SVD IV

B define the correction matrix:

t /\ t
—> A-B=(0'D- Q) (@ P 0)

=== SV/D allows you to adjust k corrector magne

K = min(m,n)

=== |f K =M = n one obtains a zero orbit
(by using a all possible corrector magnets)

| mﬁ n SVD algorithm minimises the norm
(by using all possible corrector magnets)

=== algorithm is not stable if D has small
eigenvalues



Most Effective Corrector

I orbit is perturbed by a few large perturbations:

— minimise

m ) 1/p
IBPM - A-CORIl  with | X | :@\xi\ >

=1

with a small set of 'k’ corrector magnets

=== [Hrut force: select all possible combinations

— time consuming but good result

= Selective: keep the already selected correctors

—»= much faster!

—>= finite chance to miss best choice

—= Can generate orbit bumps

== |\]|CADO: selective + cross-correlation betweer
orbit residues and remaining correstc



(O Synchrotron:

——>» the orbit determines the
particle energy!

mm assume: L > design orbit
v A
{\
——

2 energy increase

(O Equilibrium: §f =h.f

m—tn
 —
O

rev_ 2.T[ Me y

—> E depends on orbit and magnetic field!



