Magnets for Cyclotrons

S. Zaremba
Accelerator Physicist, IBA
(szz@iba.be)

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
Summary

- Designed or calculated
- Trends and consequences
- Isochronism and methods to obtain it
- Initial magnet design
- Calculations of 2-D models
- Calculations of 3-D models
- Few words about mechanical design

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
Designed or Calculated?

- Cyclotron magnet design should always consider interaction with subsystems:
 - RF system
 - vacuum pumping
 - ion source or injection system
 - extraction system or internal target
 - diagnostic probes
Designed + Calculated

- Design + Calculations = iterative process
 - start: rough, simple model
 - loop1: fast calculations by hand
 - loop2: calculations of 2-D magnet models
 - loop3: detailed calculations of 3-D magnet models
 - stop: cyclotron magnet well designed
Cyclotrons - general trends

• Purpose of the cyclotron
 - Past and now
 • less and less of nuclear physics
 - Now and future
 • specific applications
 • sometimes single task (p-therapy, Pd production)

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
Trend consequences

• Very important for end-user and designer:
 – low radiation doses for personnel
 – reliability, cost and simplicity

• Important for end-user, interesting for designer (=challenging):
 – occupied space, weight
 – beam quantity, beam quality
Consequences cont’d

• Less important for end-user, interesting for designer:
 – consumed electric power

• Now not important
 – versatility
Well designed cyclotron magnet

- Isochronous magnetic field during acceleration
- Axial (vertical) and radial focusing of beam
- Operation point far from resonances
 - Fast passage through resonance(s) zone(s)
- Possibility to install all subsystems
Isochronous field

• The isochronous magnetic field for compensation of relativistic mass increase and synchronism with a phase of RF system

• The requested field shape can be obtained by different methods or, more frequently, combination of methods
Methods to obtain isochronism

• With iron of the magnet poles
 – Increase hill angle/valley angle ratio
 – Shimming of pole edges or shims based on equation:

\[
\frac{\Delta B(r)}{B(r)} = \gamma^2(r) \frac{\Delta f_p(r)}{f_p(r)}
\]

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
Shimmed pole edge, C18/9

CAS, Zeegse, The Netherlands, 24 May - 2 June 2005
Removable pole edges C235

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
Methods to obtain isochronism

- With iron of the magnet poles
 - decrease gap between poles as a function of radius e.g. C235, 235 MeV protons
 \[
 \frac{r^2}{1120^2} + \frac{(\text{halfgap})^2}{48^2} = 1 \quad \text{halfgap}_{\text{min}} = 4.5
 \]
 - added iron shims in the valley

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
Elliptical gap between poles C235

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
Isochronism for two types of ions

- Movable iron shims for two different \((q/m)\) types of ions.
 - the shape of iron shims obtained using previous methods e.g.
 - C18/9, 18 MeV H\(^-\) and 9 MeV D\(^-\) cyclotron,
 - C10/5, 10 MeV H\(^-\) and 5 MeV D\(^-\) cyclotron.
 - two positions of shims

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
Movable iron shims, C18/9

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
Movable iron shims, C18/9

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
Movable iron shims, C10/5

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
Isochronism for many types of ions

- Correction trim coils
 - frequently on poles
 - sometimes around poles e.g. AGOR, 15 trim coils around poles
 - variable final kinetic energy
 - flexibility against cost

- Trimming rods

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
Correction trim coils, AGOR

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
Magnet – initial calculations

• The maximum kinetic energy T determines magnetic rigidity

$$B \cdot \rho = \sqrt{T^2 + 2TE_0} / (300 \cdot Z)$$

where: B – field (Tesla), ρ – bending radius (m), Z – charge state, T – kinetic energy and E_0 - rest mass (MeV)
Strategic decisions of design

• To decide
 – magnetic field level on poles, \(B_{hill} \)
 – pole mechanical radius
 – gap between poles
 – valley gap and field, \(B_{valley} \)
 – number of sectors, \(N \)
 – median plane: horizontal or vertical

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
Magnetic field on poles

- Determined by the type of accelerated ions
 - negative ions, H^- and D^-
 - low field then large pole radius (EM stripping)
 - easy, 100% extraction by stripping
 - fully stripped positive ions
 - high field, small pole radius
 - complicated extraction system or self-extraction
Gap between poles

• Compromise between
 – small gap
 • reduced number of At of coils
 • pole radius reduced, orbits close to outer edge
 – large gap
 • large space: injection, extraction, probes
 • easier vacuum pumping
 • lower field

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
Valley gap

- Compromise between
 - small gap
 - low flutter
 - axial focusing problems
 - spiralization of poles necessary
 - large gap
 - deep valley design
Deep valley design

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
Azimuthally varying field

H^{-} measured magnetic field

Two measured magnetic field in C18/9 cyclotron

Difference between magnetic fields provided by iron insert (flap) movement.

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
Number of sectors

- **1 or 2** - we’re serious designers, isn’t it
- **3** - large gap between poles, 3 dees, only harmonic modes=3, 6 if resonators coupled, more if independent
- **4** - two valleys with RF cavities, all harmonic modes possible, two valleys for other devices
- **>4** - better for SSC
Median plane orientation

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
Initial calculations, cont ’d

• from B_ρ: $\langle B(\rho) \rangle$ and radius ρ

• α - pole fraction on one symmetry period: $\langle B(\rho) \rangle = \alpha \cdot B_{\text{hill}} + (1-\alpha) \cdot B_{\text{valley}}$

• analytically flutter and betatron frequencies

\[
F = \frac{\langle B^2(\rho) \rangle}{\langle B(\rho) \rangle^2} - 1 = \alpha \cdot (1-\alpha) \cdot \left(B_{\text{hill}} - B_{\text{valley}}\right)^2 / \langle B(\rho) \rangle^2
\]

\[
\nu_{z}^2 = 1 - \gamma^2 + N^2 / \left(N^2 - 1\right) \cdot F \cdot \left(1 + 2 \cdot \tan^2 \xi\right)
\]

\[
\nu_{r}^2 = \gamma^2 + 3N^2 / \left(\left(N^2 - 1\right)\left(N^2 - 4\right)\right) \cdot F \cdot \left(1 + 2 \cdot \tan^2 \xi\right)
\]

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
Initial calculations, cont ’d

• total magnetic flux \(\Phi = B_{\text{hill}} \cdot S_{\text{all poles}} \)

• Ampere-turns from Ampere’s law

\[
\oint \vec{H} \cdot d\vec{l} = \frac{1}{\mu_0} \cdot (B_{\text{hill}} \cdot \text{gap}) + \frac{1}{\mu_0 \mu_{\text{iron}}} \cdot (B_{\text{iron}} \cdot L_{\text{iron}}) = nI
\]

• coil cooling estimation

\[
\Delta T\left(^\circ C\right) = 60 \cdot P(kW) / (4.19 \cdot N(l / \text{min}))
\]

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
Maximum field limited by coil power efficiency

High B obtained using ELLIPTIC gap

$B_{\text{max}} \sim 3 T$ close to coil

$B_{\text{min}} \sim B_{\text{coil}}$

$\Delta B =$ saturation magnetization $2.1 \, T$

At high radii,

$\langle B \rangle = k \cdot B_{\text{hill}} + (1-k) \cdot B_{\text{valley}}$

$k =$ Staking factor $= \text{hill angle}/90^\circ$

For best RF efficiency, $k=0.5$

BUT
to decrease machine dimensions

$k >0.5$ (more hill, thus more field)

CHOICE : $k=0.67$ (60° hills)

Radius close to coil is $R \sim 2.35/2.31 = 1.02 \, m$

$\langle B \rangle$ near coil is thus

$0.67 \times 3 + 0.33 \times (3-2.1) = 2.31 \, T$

$\gamma(235 \, \text{MeV}) = 1.25$

thus central field $B_0 \sim 2.31/1.25 = 1.8 \, T$

$\gamma(235 \, \text{MeV}) = 1.25$

Field gradient can be strong

$\nu_z = 0.2$

Flutter and spiral not too large

Spiral angle of pole completely determined since n, N, F and ν_z are known
Calculations of 2-D models

• confirmation of initial design
• very small grid-size possible
• usage of stacking factors k
• modification of the field induction

$$B_k = \mu_0 \cdot H + k \cdot (B - \mu_0 \cdot H)$$

• very efficient for highly saturated iron

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
2-D Modelling, C235
Calculations of 3-D models

• confirmation of previous designs
• model size limited only by computer hardware
• model as close to reality as possible, variable mesh size
• calculation results and measurements differ less than 3 percent

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
3-D modelling, C235

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
2-D and 3-D Modelling, C235

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
Calculations of 3-D models, cont ’d

• creation of magnetic field maps
• calculation of equilibrium orbits: frequency error, integrated phase shift, betatron frequencies, operation point
• iterative changes of 3-D model until isochronism of the field, correct focusing, absence of resonances

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
Integrated phase shift, C18/9, D⁻

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
Operation point, C18/9, D$^-$

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
Few words about mechanical design

• analysis of mechanical deformations
 – weight
 – magnetic forces
 – pressure due to vacuum

• mechanical partition of the magnet
 – minimum deformation
 – practical aspects of handling

• fitting together other subsystems
C30 artist view

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
C30

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
C30 poles and valleys

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
C18/9 poles and valleys

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
C235

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
C235 lower part

CAS, Zeegse, The Netherlands, 24 May - 2 June 2005
C235 poles and valleys

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
Conclusions

• Cyclotron magnet design and calculations should always consider interaction with:
 – RF system
 – vacuum pumping
 – ion source or injection system
 – extraction system
 – diagnostic probes

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
How the technology works

The IBA cyclotron, a 2 meter wide washing-machine like vessel constructed of 15 cm thick iron walls, contains a vacuum chamber. A “target substance” of gas, liquid or solid material is placed inside the vacuum chamber and then is bombarded with high energy (up to 30 million volts) RF waves (Radio frequency). This causes the nuclear particles (neutrons and deuterons) of the target to “accelerate” inside the vacuum chamber. As the highly charged atomic particles spiral their way around the cyclotron, they are separated by very powerful magnet called a “stripper” which in effect “strips away” individual particles to deliver radio-active isotopes.

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005
THE END

Thank you for your attention

Questions welcome

CAS, Zeegse, The Netherlands, 24 May – 2 June 2005