## AMS: <u>Accelerator Mass Spectrometry</u>

- detection of rare isotopes with ultralow abundance
- mass spectrometry using an accelerator
- application of nuclear physics into many other fields

• archaeology • quaternary geology • ocean sciences • art • physics • atmospheric sciences cryology
chemistry
hydrology • forensics • biology • environmental sciences religion
 astronomy
 medicine
 nuclear reactors food adulteration
weapons inspection • global carbon cycle • planetary science • sewer inspection • climate



# some <sup>14</sup>C numbers ...



halflife natural abundance detection limit standard activity decay natural production  $T_{1/2} = 5730 \pm 40 \text{ yr}$ <sup>14</sup>C/C = 1.2 \* 10<sup>-12</sup>
<sup>14</sup>C/C = 10<sup>-15</sup>
226 ± 1 Bq/kgC ≡ 13.56 dpm/gC
β<sup>-</sup>, E<sub>max</sub> = 156 keV
2.4 ± 0.4 <sup>14</sup>C/cm<sup>2</sup>s ↑
natural variation







natural radioactivity is extremely low < natural background level</li>
E(β<sup>-</sup>) is very low difficult detection
concentration is extremely low <sup>12</sup>C:<sup>13</sup>C:<sup>14</sup>C = 1:0.01:10<sup>-12(15)</sup> dN/dt =  $-\lambda N$  decay counting vs. atom counting 5% precision =  $4.10^4$  counts  $\Rightarrow \sqrt{N/N} = 0.005$ radiometry: 15 dpm/gC, t<sub>c</sub> = 48 hrs, 1 gC 1 mgC would take 7 yrs counting time AMS:

efficiency  $10^{-2} \Rightarrow 4.10^{6}$  atoms <sup>14</sup>C needed for 5‰ abundance  $10^{-12} \Rightarrow 4.10^{18}$  atoms C = 8.10<sup>-5</sup> g 10% used in source  $\Rightarrow$  typ. 1 mg sample size 1 hour counting time (50-100 Hz <sup>14</sup>C) zepto (10<sup>-21</sup>) to atto (10<sup>-18</sup>) mol (<sup>14</sup>C/mgC)





### **AMS efficiency:**

#### modern sample ca. 40/sec. for 10<sup>-12</sup> abundance

background ca. 10/min. for 10<sup>-15</sup> abundance



# mass spectrometry basics



QuickTime<sup>™</sup> en een Photo - JPEG decompressor zijn vereist om deze afbeelding te bekijken.





# Ion Source & stripperCs sputtering negative ions

• gasstripper optimum 2.5 MV for <sup>14</sup>C<sup>3+</sup>



solve isobar problems:

- negative <sup>14</sup>N not stable !
- stripping destroys mass 14 molecules: <sup>12</sup>CH<sub>2</sub>, <sup>13</sup>CH<sup>-</sup>, ...

measure <sup>12,13,14</sup>C ranging 1-10<sup>-15</sup>

- *a) bouncing: pulse injection magnet* sequential injection - 0.5s <sup>12</sup>C, 0.5s <sup>13</sup>C, 1s <sup>14</sup>C
- If the second second
- b) recombinator:
- simultaneous injection <sup>12</sup>C, <sup>13</sup>C, <sup>14</sup>C
- removes unwanted negative ions from source
- allows <sup>13</sup>δ measurement *fractionation correction*

jectio

- ♦ <sup>12</sup>C chopped ( $\approx$ 1%) <sup>12</sup>C,<sup>13</sup>C beams same intensity
- requires more "cleanup" after accelerator
   <sup>14</sup>C not alone through machine

fractionation / stability ESSENTIAL for <sup>14</sup>C <sup>14</sup>C/<sup>12</sup>C < 5‰ is a MUST

# 1<sup>st</sup> magnet

- ♦ separates <sup>12,13,14</sup> C
  E.S.A.
- removes <sup>12</sup>C<sup>3+</sup>, <sup>13</sup>C<sup>3+</sup> with energies such that they en up on <sup>14</sup>C path
- removes ME/q<sup>2</sup> ambiguities
- ♦ <sup>7</sup>Li<sub>2</sub><sup>+</sup>, <sup>12</sup>CH<sub>2</sub><sup>+</sup>, <sup>13</sup>CH<sup>+</sup>, <sup>12</sup>C<sup>16</sup>O<sub>2</sub><sup>+</sup> have M/q=14
  2<sup>nd</sup> magnet
- removes particles scattered in ESA detector
- ♦ foil separates N and C ions (<sup>14</sup>N<sup>3+</sup> from NH<sup>-</sup>)



ME/q<sup>2</sup> magnet E/q electrostat

#### particle detector ionisation chamber

 $^{14}C^{3+}$ 10 MeV M/q = 14/3 *unique* 







ME/q<sup>2</sup> ambiguities for 10 MeV <sup>14</sup>C<sup>3+</sup> <sup>12,13</sup>C<sup>3+</sup> which leave stripping canal as 4<sup>+</sup> and pick up electron to become 3<sup>+</sup>  $\Rightarrow$  <sup>12,13</sup>C<sup>3+</sup> 10-12.5 MeV background reduction: electrode <u>inclination</u> in tube

Multiple charge exchange in "vacuum" residual gas <sup>13</sup>C<sup>3+</sup> × <sup>13</sup>C<sup>2+</sup> generation 1: large (5-15 MV) development AMS (1978) Tandem / VandeGraaff all cosmogenic isotopes

generation 2: small (2-3 MV) dedicated <sup>14</sup>C (<sup>10</sup>Be) "tandetron" 2a - bouncer (1980's) 2b - recombinator (1990's) *automation: mass spectrometry practice* 

generation3 : baby (≤ 0.5 MV) ... since 2002 "tandy"



# **1** Rehovot, IL

# Zürich, CH $\Rightarrow$



# Groningen, NL ↑













#### sample nr. in wheel











GrA





# Latest development: "baby-AMS"

single-stage AMS
250 kV HV deck AMS without the "A"
molecular dissociation <sup>14</sup>C<sup>1+</sup> background problems 2 turbopumps 250 l/s





#### cosmogenic isotopes by AMS

|                         | <sup>10</sup> Be                          | <sup>14</sup> C                  | <sup>26</sup> Al                              | <sup>36</sup> Cl                         | <sup>41</sup> Ca                                      | <sup>129</sup> I                   |
|-------------------------|-------------------------------------------|----------------------------------|-----------------------------------------------|------------------------------------------|-------------------------------------------------------|------------------------------------|
| halflife (yr)<br>origin | 1.6x10 <sup>6</sup><br>spallatio n<br>N.O | 5730<br><sup>14</sup> N(n,p)     | 7.0x10 <sup>5</sup><br><sup>28</sup> Si(µ,2n) | 3.0x10 <sup>5</sup><br>spallatio n<br>Ar | 10 <sup>5</sup><br><sup>40</sup> Ca(n,γ)<br>spall, Fe | 16.10 <sup>6</sup><br>spall.<br>Xe |
| abundance               | 10 <sup>-9</sup>                          | <b>10</b> <sup>-12</sup>         | <b>10</b> <sup>-14</sup>                      | <b>10</b> <sup>-12</sup>                 | 10 <sup>-14</sup>                                     | <b>10</b> <sup>-12</sup>           |
| stable                  |                                           |                                  |                                               |                                          |                                                       | 105                                |
| isotope                 | <sup>9</sup> Be                           | <sup>12</sup> C, <sup>13</sup> C | <sup>27</sup> Al                              | <sup>35</sup> Cl, <sup>37</sup> Cl       | "Ca                                                   | <sup>127</sup> <b>I</b>            |
| stable<br>isobar        | <sup>10</sup> <b>B</b>                    | <sup>14</sup> N                  | <sup>26</sup> Mg                              | <sup>36</sup> Ar, <sup>36</sup> S        | <sup>41</sup> Ar                                      | <sup>129</sup> Xe                  |
| terminal                |                                           |                                  |                                               |                                          |                                                       |                                    |
| (MV)                    | 3                                         | 2.5                              | 7.5                                           | 8                                        | (linac)                                               | 5                                  |
| charge state<br>energy  | 3                                         | 3                                | 7                                             | 7                                        | 10                                                    | 5                                  |
| (MeV)                   | 12                                        | 10                               | 60                                            | 4                                        | 200                                                   | 30                                 |
| chem.form               | BeO                                       | С                                | Al <sub>2</sub> O <sub>3</sub>                | AgCl                                     | CaH <sub>3</sub>                                      | AgI                                |

the mother of all natural isotopes

#### <sup>14</sup>C clock problems

- **1.** halflife  $T_{1/2}$  has been changed
- $T_{1/2} = 5730 \pm 40$  yr; originally 5568 yr has been used
- 2. the <sup>14</sup>C content in de nature is not constant
- 1. <sup>14</sup>C production depends on cosmic ray flux, which depends on solar activity and earth magnetic field strength
- 2. changes in equilibrium between the C reservoirs *atmosphere, biosphere, ocean, soil*
- 3. isotope effects change the <sup>14</sup>C content
- example: photosynthesis is mass dependent plant is depleted
- in <sup>14</sup>C (and therefore seems older)
- 4. reservoir effects

water (sea, river) contains dissolved fossil C and is thus depleted in <sup>14</sup>C - organisms living in water are therefore older consequence:

 the <sup>14</sup>C clock ticks at a different pace than the calendar (because of halflife)

this pace changes continuously
 (because of changing natural <sup>14</sup>C content)
 the <sup>14</sup>C clock starts at different moments for different materials

(because of isotope - en reservoir- effects)



solution: ◆ define the <sup>14</sup>C clock speed w.r.t. standard activity = 1950 use  $T_{1/2} = 5568$  jr (original) correct for isotope effects using stable isotope  ${}^{13}C: {}^{14}\delta = 2{}^{13}\delta$ express in unit "BP" calibrate the <sup>14</sup>C clock measure <sup>14</sup>C in absolutely dated materials (BP - AD/BC)

#### Dendrochronology







long term trend: geomagnetism medium- & short term effects: solar activity & exchange ocean/atmosphere

#### intcal04

constructed curve, "decadal" (10 yr) resolution statistic model, taking into account uncertainties in both <sup>14</sup>C and "calendric" parameters

#### 3 multi-author papers Radiocarbon 46, 3, 2004

Reimer *et al.* Hughen *et al.* v.d.Plicht *et al.* 

intcal04 marine04 notcal04 0-26 ka calBP terrestrial curve0-26 ka calBP marine curve26-50 ka calBP comparison

#### www.radiocarbon.org

- calibration datasets
- computer programs
- articles
- (subscription needed)





 $\bigcup \Delta^{14} C \text{ vs. cal BP}$ *natural* <sup>14</sup>C *content* 

Wellington N.Z. 2003 <sup>14</sup>C conference intcal04 Radiocarbon 46, 3, 2004



<sup>14</sup>C calibration 26-50 ka?

#### <u>0-26 ka</u>

- dendrochronology
   absolute; only this is "APPROVED by
- Coral & marine Inversed sediments
   In TC AL working group
   In the second sediments
   In the sediments
   In the second sediments
   In the second sedime
- <u>26-50 ka</u>
- layered sediments, speleothems, corals each dataset has pros and cons

older  $\Rightarrow$  larger measurement errors and uncertainties; data are not consistent calibration  $\Rightarrow$  "comparison"





Lake Suigetsu, Japan 29.100 yr varved sediment >330 AMS terrestrial samples H.Kitagawa and J.van der Plicht Science 279 (1998) 1187 Radiocarbon 42 ( 2000) 369

50



Speleothem, Bahamas U/Th & <sup>14</sup>C dated ca. 300 AMS carbonate samples W.E.Beck et al. Science 292 (2001) 2453





AMS-9 conference Nagoya, Japan september 2002 proceedings p. 353-358

4<sup>th</sup> symposium on <sup>14</sup>C & Archaeology Oxford, UK april 2002 *proceedings p. 1-8* 



#### do <u>YOU</u>



#### believe in varves or in speleothems ?

#### each record has its plusses en minuses ...

| Suigetsu | <b>BP</b> : | terrestrial/atmospherih                  | plus |
|----------|-------------|------------------------------------------|------|
|          | calBP :     | leyers (varves) counting                 | min  |
|          |             | hiatuses, counting errors                |      |
| Bahamas  | <b>BP</b> : | reservoir correction <sup>14</sup> C     | min  |
|          |             | 1470 ± 235 <sup>14</sup> C jr; constant? |      |
|          | calBP :     | <b>U-series geochemistry</b>             | min  |
|          |             | absolute ? hiatus at 27 ka               |      |

calibration means "absolute" en "terrestrial / atmospheric"
at least one of both records must be wrong needed: independent confirmation (or rebuttal)



570 TWLPLO7-031

560

550



*Cariaco Basin* coastal Venezuela

- layered section (Late Glacial) used for Intcal04
- older part is *not* layered *K.A.Hughen et al., Science 303 (2004) 202-207*



Cariaco

**BP**:

calBP :

foraminiferaplusreservoir effect; constant ?varve counting $\delta^{18}O$  correlation ofclimatic events with icecores









#### **YOUR ATTENTION PLEASE !!!**

- errors horizontal (calBP) NOT indicated
- ◆ extremes "envelope" ≈ 7 millennia "absolute"
- extreme <sup>14</sup>C variationss Bahamas *not* confirmed by Arabian speleothem
- marine records use GISP2 icecore timescale

#### NOTCAL04

## calibration 26-50 ka impossible

- 1. example: 31000 BP calibrates to 32000 BC using Suigetsu 39000 BC using Bahamas, 36000 BC using Cariaco
- 2. Cariaco marine data damps wiggles
- 3. Nobody has yet the correct record

## calibration >26 ka calBP can be

subjective (select your favorite dataset)
 misleading (using some averaged curve)
 useless (using envelope extremes)



Chauvet ↑ 31000 BP



## Neandertal compare <sup>14</sup>C dating with archeology (strata, material, ...) or other dating method (TL)