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Introduction

Definition of Radiation Processing

The treatment of products and materials with
radiation or ionizing energy to change their
physical, chemical or biological characteristics,
to increase their usefulness and value or to
reduce their impact on the environment.
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Introduction

Ionizing Energy Sources

Electrons from Particle Accelerators.
X-Rays from Accelerated Electrons.
Gamma Rays from Radioactive Nuclides.

In absorbing materials, electrons, X-rays and
gamma rays transfer their energies by ejecting
atomic electrons, which can then ionize other
atoms. These radiations produce similar effects.
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Introduction

Ionizing Energy Sources

Electrons from Particle Accelerators.
X-Rays from Accelerated Electrons.
Gamma Rays from Radioactive Nuclides.

The choice of a radiation source depends on
the practical aspects of the treatment process,
such as absorbed dose, material thickness,
processing rate, capital and operating costs.  
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Introduction

Radiation processing was introduced fifty years ago.
Many practical applications have been discovered. 
The most important commercial applications are:

Modification of plastic and rubber materials.
Sterilization of medical devices and consumer items.
Pasteurization and preservation of foods.
Reduction of environmental pollution.
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Basic Concepts of Radiation Processing

Absorbed Dose Definition

Temperature Rise vs Absorbed Dose

Absorbed Dose Requirements

Absorbed Dose vs MW and G Value
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Basic Concepts of Radiation Processing

Absorbed Dose Definition

Absorbed dose is proportional to the ionizing
energy delivered per unit mass of material.

Dose is the most important specification for
any irradiation process.

The quantitative effects of the process are
related to the absorbed dose.
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Basic Concepts of Radiation Processing

Absorbed Dose Definition

Energy Absorbed Per Unit Mass
International Unit Is The Gray

1 Gy = 1 J/kg
1 Gy = 1 W s/kg
1 kGy = 1 kJ/kg
1 kGy = 1 kW s/kg
1 kGy = (1/3600) kW h/kg
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Basic Concepts of Radiation Processing

Absorbed Dose Definition

Energy Absorbed Per Unit Mass
Obsolete Unit Is The Rad

1 Gy = 100 rad
10 Gy = 1 krad

100 Gy = 10 krad
1 kGy = 100 krad

10 kGy = 1 Mrad
100 kGy = 10 Mrad
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Basic Concepts of Radiation Processing

Temperature Rise vs Absorbed Dose

Temperature rise is proportional to the thermal
energy absorbed per unit mass of heated material.

Also, temperature rise is proportional to the
absorbed dose in irradiated material (in same units).

Calorimetry is the primary method for measuring
absorbed dose and calibrating secondary dosimeters.
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Basic Concepts of Radiation Processing

Temperature Rise vs Absorbed Dose

ΔT = H / c

ΔT = D / c

ΔT = Temperature Rise in °C
H = Heat per Unit Mass in J/g
c = Heat Capacity in J/g °C
D = Absorbed Dose in kGy
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Basic Concepts of Radiation Processing

Examples – Temp. Rise per kGy

Material           Thermal Cap.     Temp. Rise

Water 4.19                   0.24
Polyethylene 2.30                   0.43
Teflon 1.05                   0.95

Aluminum 0.90                   1.11
Iron 0.44 2.27
Copper 0.38                   2.63
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Basic Concepts of Radiation Processing
Temperature Rise for EB Processing

Industrial EB processes need less energy than most
thermal treatment processes.

Absorbed dose requirements for various industrial
processes cover a very wide range from 0.1 kGy to
1000 kGy.

Most of these processes need less than 100 kGy,
many need less than 10 kGy, and some need less
than 1 kGy.   
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Basic Concepts of Radiation Processing

Absorbed Dose Requirements

Sprout Inhibiting 0.1 – 0.2 kGy
Insect Disinfesting   0.3 – 0.5 kGy
Parasite Control 0.3 – 0.5 kGy
Delay of Ripening 0.5 – 1.0 kGy
Fungi Control 1.5 – 3.0 kGy
Bacteria Control 1.5 – 3.0 kGy
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Basic Concepts of Radiation Processing

Absorbed Dose Requirements

Sterilizing 15 - 30 kGy
Polymerizing 25 - 50 kGy
Grafting 25 - 50 kGy
Crosslinking 50 - 150 kGy
Degrading 500 - 1500 kGy
Gemstone Coloring > >    1500 kGy
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Basic Concepts of Radiation Processing

Absorbed Dose vs Molecular Weight MW and G Value

D = NA (100 / G) e / MW joules / gram

D = 9.65 x 106 / (G MW)  kGy

NA = 6.022 x 1023 molecules / mole

e  = 1.602 x 10-19 joules / electron volt

G = number of chemical reactions / 100 eV
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Basic Concepts of Radiation Processing

Absorbed Dose vs MW and G Value

High molecular weight means acceptably low dose.

If MW = 100,000 and G = 1, then D = 100 kGy.

Low molecular weight means excessively high dose.

If MW = 100 and G = 3, then D = 32,000 kGy.
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Basic Concepts of Radiation Processing

Absorbed Dose vs MW and G Value

Polymeric materials with high molecular weights
are good candidates for radiation processing. 

Inorganic compounds with low molecular weights
are poor candidates for radiation processing.

Dilute solutions are exceptions. Ionizing a small
fraction of the solvent will affect most of the solute.
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Applications of Radiation Processing

Modifying Polymeric Materials
Curing Monomers and Oligomers
Grafting Monomers onto Polymers
Crosslinking Polymers
Degrading Polymers

Biological Applications
Sterilizing Medical Products
Disinfecting Consumer Products
Pasteurizing and Preserving Foods
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Applications of Radiation Processing

Environmental Applications
Reducing Acid Rain
Treating Waste Materials

Solid State Applications
Modifying Semiconductors
Coloring Gemstones
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Applications of Radiation Processing

Modifying polymeric materials

Curing

Grafting

Crosslinking

Degrading
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Applications of Radiation Processing

Curing Solvent-Free Coatings, Inks and Adhesives

Oligomers
Acrylated epoxies
Acrylated polyethers
Acrylated urethane polyesters

Multifunctional monomers
Trimethylolpropane triacrylate

Dose = 10 to 30 kGy
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Low-Energy EB Curing of Colored Coatings

Salt Spray Resistance

Laboratory  Test  Panels
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Applications of Radiation Processing

Curing Composite Materials for Spacecraft and Missiles

Oligomers
Modified epoxies with 
special properties

Carbon fiber reinforcement

Dose = 150 to 250 kGy
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EB Curing of Carbon Fiber Composite Tank
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EB Curing of Composite Missile Component
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Applications of Radiation Processing

Materials Suitable for Grafting

A variety polymeric materials
Polyethylene, Polypropylene 
Polyvinyl Chloride, Fluoropolymers
Cellulose, Wool

A variety of hydrophilic monomers

Dose = 10 kGy
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Applications of Radiation Processing

Property Improvements by Grafting

Addition of hydrophilic surfaces on hydrophobic
polymers to make permselective membranes.

Fuel cell and battery separator films.

Improvement of surface adhesion properties.

Biocompatible materials for medical applications.     



30

Applications of Radiation Processing

Typical Materials for Crosslinking

Polyethylene 
Polyvinylchloride
Polyvinylidene fluoride
Ethylene-propylene rubber
Ethylene vinylacetate
Polyacrylates

Dose = 50 to 200 kGy
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Applications of Radiation Processing

G value: yield in number of molecules per 100 G value: yield in number of molecules per 100 eVeV
GGxx = cross= cross--linking, Glinking, Gss = chain scission= chain scission
G values at room temperature in the absence of OG values at room temperature in the absence of O22

Polymer Gx Gs          Polymer Gx Gs

Nat. Rubber      1.3-1.5     0.1-0.2   PTFE             0.1-0.3     3.0-5.0

Polyethylene     0.3-1.3    0.4-0.5   Butyl Rubber  <0.5        2.9-3.7

Polypropylene 0.3-1.1    0.3-1.8   PMMA           <0.5        1.1-1.7
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Applications of Radiation Processing

Products Improved by Crosslinking

Plastic Products in Finished Form
Heat Shrinkable Tubing and Film
Electrical Wire and Cable Jackets
Tires for Automobiles and Trucks
Plastic Foam Padding for Automobiles
Bulk Plastic Materials
Hydrogel Materials
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Crosslinking Formed Plastic Products
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Crosslinking Heat-Shrinkable Tubing
Plastic Memory Effect
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Irradiating Heat-Shrinkable Plastic Film
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Crosslinking Electrical Wire Insulation
Improved Flame Retardancy
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Crosslinking Jackets on Multi-conductor Cables
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Wire and Tubing Irradiation Method
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Precuring Automobile Tire Components
Improved Dimensional Stability
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Irradiating Plastic Foam Cushions for Cars
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Applications of Radiation Processing

Degrading polymeric materials

Polytetrafluoroethylene – for powders

Polypropylene – to improve formability 

Cellulose – to produce viscose for rayon
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Degrading Scrap Polytetrafluoroethylene
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Cellulose Degradation for Viscose and Rayon
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Applications of Radiation Processing

Biological Applications

Sterilizing Medical Products

Disinfecting Consumer Products

Pasteurizing and Preserving Foods
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Sterilizing Disposable Medical Products
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Disinfecting Cosmetic Products



47

Disinfesting Fresh Fruits and Vegetables
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Pasteurizing Uncooked Meats
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Pasteurizing Natural Spices
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Applications of Radiation Processing

Environmental Applications

Reducing Acid Rain – by extracting
sulfur and nitrogen oxides from smoke 

Treating Waste Materials – by decomposing
toxic substances from wastewater
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Pomorzany Flue Gas EB Process Flow Diagram
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Pomorzany Flue Gas EB Irradiation Vessel
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NHV DC Electron Accelerator  700 keV – 260 kW
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Wastewater Treatment Plant
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Miami Dade County EB Wastewater Treatment
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Miami Dade County EB Wastewater Treatment
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Applications of Radiation Processing

Solid State Applications

Modifying Semiconductors

Coloring Gemstones
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Modifying Semiconductors
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Modifying Semiconductors
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Coloring Gemstones
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Physical Aspects of Radiation Processing

Material Penetration vs Electron Energy

Mass Throughput Rate vs Electron Beam Power

Area Throughput Rate vs Electron Beam Current

X-Ray Processing Characteristics
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Physical Aspects of Radiation Processing
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Physical Aspects of Radiation Processing
Penetration vs Electron Energy

Polymer Comparisons

Hydrogen has more atomic electrons per unit mass
than any other element.

Polymers with more hydrogen have higher energy
depositions per incident electron.

Polymers with more hydrogen have lower electron
ranges for the same incident electron energy.
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Physical Aspects of Radiation Processing
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Physical Aspects of Radiation Processing
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Physical Aspects of Radiation Processing
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Physical Aspects of Radiation Processing

Penetration vs Electron Energy
Electrostatic Charge Deposition

Electrostatic charges are deposited by incident
electrons which come to rest in thick materials.

The charge depositions are concentrated near the
Ends of the electron ranges.

The charge density decreases and the total energy
deposition increases as the incident electron energy
increases.
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Physical Aspects of Radiation Processing

Electron Range DefinitionsElectron Range Definitions
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Physical Aspects of Radiation Processing

Electron Range DefinitionsElectron Range Definitions

R(opt) ─ Exit Dose Equals Entrance Dose 

R(50) ─ Exit Dose Equals Half Maximum Dose

R(50e) ─ Exit Dose Equals Half Entrance Dose

R(p) ─ Tangent Line Extends to Zero Dose
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Physical Aspects of Radiation Processing
Electron Range Values

MeV R(opt)      R(50) R(50e) R(p)
0.4 0.000 0.054 0.054 0.083
0.6 0.075 0.126 0.129 0.169
0.8 0.161 0.202 0.214 0.262
1.0 0.243 0.282 0.302 0.358
1.5 0.449 0.486 0.529 0.610
2.0 0.652 0.699 0.754 0.861
3.0 1.054 1.128 1.209 1.373
5.0 1.859 2.000 2.131 2.405
7.5 2.854 3.134 3.284 3.682

10.0 3.884 4.204 4.429 4.955
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Physical Aspects of Radiation Processing

Electron Penetration in Polyethylene
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Physical Aspects of Radiation Processing

Linear Range vs Energy Equations

R(opt) = 0.404 E – 0.161

R(50) = 0.435 E – 0.152

R(50e) = 0.458 E – 0.152

R(p) = 0.510 E – 0.145
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Physical Aspects of Radiation Processing

Electron ranges in other materials can be estimated by 
multiplying the polyethylene range with the ratio of 
their CSDA ranges.

R(material) = R(polyethylene) x CSDA(m) / CSDA(pe)

CSDA ranges for many materials with a wide range of
electron energies can be obtained from ICRU Report 37.

Ranges in Other Materials
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Physical Aspects of Radiation Processing

Absorbed Dose vs Electron Beam Power

1 kGy = 1 kJ/kg

D(ave) = F(p) P T / M

D(ave) = F(p) P / (M / T)

D(ave) = average dose in kGy
P = emitted power in kW
T = treatment time in s

M = mass in kg
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Physical Aspects of Radiation Processing

Mass Throughput Rate vs Electron Beam Power

M / T = F(p) P / D(ave)

F(p) = F(e) F(i)

F(p) = fraction of emitted power absorbed
F(e) = fraction of incident power absorbed
F(i) = fraction of emitted current intercepted
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Physical Aspects of Radiation Processing

Mass Throughput Rate vs Electron Beam Power

M / T = f(p) P / D(o)

f(p) = f(e) F(i)

D(o) = surface dose in kGy
f(p) = surface dose value of F(p)
f(e) = surface dose value of F(e)
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Physical Aspects of Radiation Processing
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Physical Aspects of Radiation Processing
Processing Parameters vs Incident Energy

MeV D(e) K(o) f(e) F(e)
0.4 4.963 0.496 0.000 0.000
0.6 3.795 0.380 0.474    0.496
0.8 2.982 0.298 0.599 0.695
1.0 2.550 0.255 0.619 0.777
1.5 2.118 0.212 0.634 0.850
2.0 1.966 0.197 0.641 0.862
3.0 1.887 0.189 0.663 0.867
5.0 1.860 0.186 0.692 0.875
7.5 1.860 0.186 0.708 0.873

10.0 1.878 0.188 0.730 0.867
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Physical Aspects of Radiation Processing

Example – Mass Throughput Rate

E = 1.0 MeV
P = 100 kW

F(i) = 0.80
f(e) = 0.619

D(o) = 100 kGy

M / T = 0.619 x 0.80 x 100 / 100

M / T = 0.495 kg/s or 1783 kg/h   
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Physical Aspects of Radiation Processing

Absorbed Dose vs Electron Beam Current

D (kGy) = P (kW) T (s) / M (kg)

P (kW) = E (MeV) I (mA)

E (MeV) = D(e) (MeV cm2/g) Z (g/cm2)

D(e) = energy deposition per electron
Z = thickness x density (g/cm2)
Z = mass / area (g/cm2)
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Physical Aspects of Radiation Processing

Absorbed Dose vs Electron Beam Current

D (kGy) = E (MeV) I (mA) T (s) / M (kg)

D (kGy) = D(e) Z I (mA) T (s) / M (kg)

D (kGy) = D(e) Z I (mA) T (s) / Z A (cm2) 10-3

D (kGy) = D(e) I (mA) T (s) / 10 A (m2)
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Physical Aspects of Radiation Processing

Absorbed Dose vs Electron Beam Current

D(z) = K(z) F(i) I T / A

D(z) = dose at the depth z in kGy
K(z) = D(e, z) / 10 in kGy m2/mA s
K(z) = Area Processing Coefficient ─ evaluated 

at the depth where the dose is specified
F(i) = fraction of emitted beam current intercepted

I = emitted beam current in mA
T = treatment time in s

A = product area in m2
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Physical Aspects of Radiation Processing

Area Throughput Rate vs Electron Beam Current

A / T = K(z) F(i) I / D(z)

A / T = area throughput rate in m2/s
K = D(e) / 10 in kGy m2/mA s
K = Area Processing Coefficient

F(i) = fraction of beam current intercepted
F(i) = product area / irradiated area

I = emitted beam current in mA
D(z) = dose in kGy where K(z) is evaluated
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Physical Aspects of Radiation Processing
Processing Parameters vs Incident Energy

MeV D(e) K(o) f(e) F(e)
0.4 4.963 0.496 0.000 0.000
0.6 3.795 0.380 0.474    0.496
0.8 2.982 0.298 0.599 0.695
1.0 2.550 0.255 0.619 0.777
1.5 2.118 0.212 0.634 0.850
2.0 1.966 0.197 0.641 0.862
3.0 1.887 0.189 0.663 0.867
5.0 1.860 0.186 0.692 0.875
7.5 1.860 0.186 0.708 0.873

10.0 1.878 0.188 0.730 0.867
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Physical Aspects of Radiation Processing

Example – Area Throughput Rate

E = 1.0 MeV
I = 100 mA

F(i) = 0.80
K(o) = 0.255
D(o) = 100 kGy

A / T = 0.255 x 0.80 x 100 / 100

A / T = 0.204 m2/s or 734 m2/h   
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Physical Aspects of Radiation Processing

Example – Mass Throughput from Area Throughput

E = 1.0 MeV
I = 100 mA

F(i) = 0.80
R(opt) = 0.243 g/cm2 or 2.43 kg/m2

A / T = 734 m2/h

M / T = (A / T) x R(opt) 

M / T = 734 x 2.43 = 1785 kg/h   
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Physical Aspects of Radiation Processing

X-Ray Processing Characteristics

X-Ray Energy and Angular Distributions

X-Ray Broad Beam Penetration in Water

X-Ray Utilization vs Product Thickness

X-Ray Emission Efficiency vs Electron Energy

PalletronTM Rotational X-Ray Processing
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X-Ray Photon Energy Spectrum
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X-Ray Photon Angular Distribution
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Broad Beam X-Ray Penetration in Water
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Two-Sided X-Ray Process in Water

Optimum Thickness
Energy 2/λ
(MeV) (cm)
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Two-Sided X-Rays vs Gamma Rays

Electron         X-Ray        Tenth Value Layer    Optimum Thickness
Energy           Efficiency   Calculation               Double Sided
(MeV)            (%)             (cm water)                (cm) Max/Min

10.0 16.2                 49.0                       43   1.54

7.5 13.3                 44.3                       38   1.54

5.0 8.2                 39.0                       34  1.54

Co-60 31.0                       28 1.75
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Two-Sided X-Ray Irradiation
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Sterigenics Dual-Beam X-ray Facility
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IBA PalletronTM Rotational Method

Accelerator X-ray Target Collimator Pallet Turntable

Control System
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IBA PalletronTM Rotational Method
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IBA Palletron® Dose Distribution Measurement 
Verification of Monte Carlo Simulation
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ALLETRON ROTATIONAL METHOD

A/D << 1

A/D = 1

⇒ Optimal A/D = 0.55
DUR versus A/D

D= 80 cm / ρ= 0.8

IBA PalletronTM Rotational Method

Cylinder Irradiation with X-Rays
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r £ 0.4:
– constant rotation speed
– collimators widely open

r > 0.4:
– variable rotation speed
– aperture tuned to product

density
Significant gain at 7.5 MeV:

– Better conversion efficiency
– More energetic X-Rays
– X-rays peaked forward

IBA PalletronTM Performance Figures
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IBA PalletronTM Processing Capacities

Throughputs calculated with the
following assumptions:

Beam = 5 MeV/300 kW or 7.5 
MeV/300 kW

Minimal dose = 2 kGy
Transfer time between pallets

= 20 seconds
Operating time = 8000 

hours/year

110 kTons/year at 5 MeV for 
product density of 0.5 g/cm3
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Industrial Electron Accelerators

Direct Current Accelerators
Single Gap – Extended Beam
Multiple Gap – Scanned Beam

Microwave Linear Accelerators
S-Band Systems
L-Band Systems

Radio Frequency Accelerators
Single Cavity – Single Pass
Single Cavity – Multiple Pass
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Industrial Electron Accelerators

Direct Current Accelerators

Single Gap – Extended Beam

Electron Energy – 80 keV to 300 keV
Electron Beam Power – up to 300 kW
Electron Beam Width – up to 3 m
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RPC BroadBeam® Electron Beam Processor
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AEB Modular EB Emitter  120 keV - 40 mA
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AEB Modular Two-Emitter Assembly
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Industrial Electron Accelerators

Direct Current Accelerators

Multiple Gap – Scanned Beam

Electron Energy – 300 keV to 5 MeV
Electron Beam Power – up to 300 kW
Electron Beam Width – up to 3 m
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Industrial Electron Accelerators

Multiple Gap – Scanned Beam DC Accelerator
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Industrial Electron Accelerators

Parallel-Coupled Capacitive Cascade Circuit
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Industrial Electron Accelerators

Parallel-Coupled Capacitive Cascade Circuit



RDI Dynamitron® Assembly Drawing

Scan Horn

Beam 
Window

Heat Exchanger

Electron Gun

Rectifier Modules Acceleration Tube

RF Transformer

Vacuum Pump

RF Electrodes
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RDI Dynamitron® Assembly  5 MeV – 300 kW
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RDI Dynamitron® Rectifier Column  5 MeV
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RDI Dynamitron® EB Processing Facility
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Industrial Electron Accelerators

Microwave Linear Accelerators

S-Band Systems

Microwave Frequency – 3 GHz
Electron Energy – 2 MeV to 20 MeV
Electron Beam Power – up to 20 kW
Electron Beam Width – up to 1 m
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SureBeam Dual S-Band Linac EB Facility
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Industrial Electron Accelerators

Microwave Linear Accelerators

L-Band Systems

Microwave Frequency – 1.3 GHz
Electron Energy – 5 MeV to 10 MeV
Electron Beam Power – up to 80 kW
Electron Beam Width – up to 1.5 m
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SureBeam L-Band Linac 5 MeV – 80 kW



118

SureBeam Dual L-Band Linac X-Ray Facility
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AECL Impela® L-Band Linac 10 MeV – 60 kW
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Iotron Impela® L-Band Linac EB Facility
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Industrial Electron Accelerators

Radio Frequency Accelerators

Single Cavity – Single Pass Systems 

Radio Frequency – 100 to 200 MHz
Electron Energy – 0.5 MeV to 4 MeV
Electron Beam Power – up to 50 kW
Electron Beam Width – up to 1 m
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Industrial Electron Accelerators

Radio Frequency Accelerators

Single Cavity – Multiple Pass Systems 

Radio Frequency – 107 to 215 MHz
Electron Energy – 5 MeV to 10 MeV
Electron Beam Power – up to 700 kW
Electron Beam Width – up to 2 m



Operating Principle (1)
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IBA Rhodotron® RF Electron Accelerator

Inward Acceleration



Operating Principle (2)
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IBA Rhodotron® RF Electron Accelerator

RF Field Reversal



Operating Principle (3)

G

DD

E

E

IBA Rhodotron® RF Electron Accelerator

Outward Acceleration



Operating Principle (4)
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IBA Rhodotron® RF Electron Accelerator

Beam Deflection

RF Field Reversal



Operating Principle (5)
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IBA Rhodotron® RF Electron Accelerator

External Beam Transport



E B

Electric (E) and magnetic (B) fields in 
a Rhodotron coaxial cavity

IBA Rhodotron® RF Electron Accelerator
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IBA Rhodotron® RF Electron Accelerator
Copper Plated Steel Cavity
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IBA Rhodotron® RF Electron Accelerator
Assembly of Beam Reversing Magnets
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IBA Rhodotron® RF Electron Accelerator
Model TT1000  7 MeV – 100 mA – 700 kW



TT100          TT200          TT300          TT1000
Energy (MeV)                              3-10             3-1               3-10             5 – 7.5
Power range at 10 MeV (kW)      1-3               1-8               1-150           NA 

at  5 MeV (kW)       1-18             1-80             1-135           1 - 500
at  7 MeV (kW)       1-25             1-80             1-150           1 - 700

Design Value (kW)                      45 100 > 200           > 800 

Full (cavity) diameter (m)            1.60 (1.05)   3.00 (2.00) 3.00 (2.00)   3.00 (2.00) 
Full (cavity) height (m)                1.75 (0.75)   2.40 (1.80)   2.40 (1.80)   3.40 (1.80)
Weight (T)                                   2.5 11 11 11

MeV/pass                                    0.83            1.0 1.0 0.83 – 1.5
Number of passes                      12 10 10 6

Stand-by kW used                   < 15 < 15 < 15               <25
Full beam kW used                  < 21            < 260 < 370     <1000 @500 kW

<1400 @750 kW

IBA Rhodotron® Specifications
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IBA Rhodotron EB Processing Facility
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Industrial Applications of Electron Accelerators

Conclusion

Ideas about how to accelerate atomic particles to high
energies originated about 75 years ago. The motivation 
then was to investigate the structure of atomic nuclei.

Those early concepts have evolved into very complex
accelerator technologies, which have many practical
applications outside the field of nuclear physics.
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Industrial Applications of Electron Accelerators

Conclusion

Radiation processing of materials and commercial
products is one of those offshoots. It is a diverse field
that has justified constructing over 1000 industrial
electron beam irradiation facilities.

Some of the emerging applications, such as food
irradiation and reduction of environmental pollution,
offer the prospects of significant benefits to human
health and wellfare. 
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