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EQUATION OF MOTION

The motion of charged particles is governed by the Lorentz force :

( ) ( )BvEFv ext

e.m. ×+== e
dt

md  γ

Where m is the rest mass, γ the relativistic factor and v the particle velocity

Charged particles are accelerated, guided and confined by external 
electromagnetic fields. 

Acceleration is  provided by the electric field of the RF cavity

Magnetic fields are produced in the bending magnets for guiding the 
charges on the reference trajectory (orbit), in the quadrupoles for the 
transverse confinement, in the sextupoles for the chromaticity correction.
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SELF FIELDS AND WAKE FIELDS

There is another important source of e.m. fields :  the beam itself

Direct self fields

Space Charge

Image self fields

Wake  fields  
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These fields depend on the current and on the charges velocity.

They are responsible of many phenomena of beam dynamics: 

• energy loss

• energy spread and emittance degradation

• shift of the synchronous phase and frequency (tune)

• shift of the betatron frequencies (tunes)

• instabilities.

(wake-fields)
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Fields of a point charge with uniform motion 
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vt is the position of the point charge in the lab. frame O.

• In the moving frame O’ the charge is at rest
• The electric field is radial with spherical symmetry
• The magnetic field is zero
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Relativistic transforms of the fields from O’ to O
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rrThe field pattern is moving 
with the charge and it can 
be observed at t=0.

The fields have lost the spherical symmetry but still keep  a 
symmetry with respect to the x-axis.
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B is transverse to the motion direction
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Two charges in the rest frame O’
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Direct Space Charge Forces
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It is the net effect of the Coulomb interactions in a multi-particle 
system.

Space Charge Regime dominated by the self field produced  by the 
particle distribution.

Collective Effects
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What do we mean with “space charge”?



Debye Length λD

  
Φ

r 
r ( )=

C
r

C =
e

4πεo

real uniform

The particle distribution around a test particle will deviate from the 
continuous distribution. 
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The effective potential of a test charge can be defined as the sum of 
the potential of the uniform distribution and a “perturbed” term.

( ) Dr
p e

r
Cr λ/−=Φ

r

λD =
εokBT
e2n

kB= Boltzman constant
T = Temperature
kB T = average kinetic energy of the particles
n = particle density (N/V)
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The effective interaction range of the test charge is limited to the 
Debye length

λλDD
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Smooth functions for the charge and field distributions can be used 
as long as the Debye length remains small compared to the particle 
bunch size



Longitudinal Electric field of a uniform charged cylinder
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particle tracking code

Analytical expression
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Space charge of a relativistic cylindrical distribution

L

RCylindrical finite bunch, uniformly charged,
With circular cross section
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Relativistic Uniform Cylinder
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• has only radial component

• is a linear function of the transverse coordinate

The attractive magnetic force, which becomes significant at high
energy, tends to compensate  the repulsive electric force. 
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Longitudinal Space Charge Forces 

In order do derive the relationship between the longitudinal and
transverse forces inside a beam, let us consider the case of 
cylindrical symmetry and ultra-relativistic bunches.  We know that a 
varying magnetic field produces a rotational electric field:

∫∫ ⋅
∂
∂

−=⋅
S

dS
t

nBdlE

z+∆zz
We choose as path a 
rectangle going through the 
beam pipe and the beam, 
parallel to the axis. 
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Beam motion in a linear channel
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r.m.s.  emittance

γx 2 + 2αx ′ x + β ′ x 2 = εrms

x2 = βεrms   and   ′ x 2 = γεrms α = −
′ β 

2
= −

1
2εrms

d
dz

x2 = −
x ′ x 
εrms

εrms = x2 ′ x 2 − x ′ x 2

x

x’

xrms

x’rms

γβ −α 2 = 1
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Emittance degradation

Longitudinal correlation along 
the bunch induced by e.mnon linear e.m. fields
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RF fields, solenoidal fields, space charge, wake fields
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Equation of motion in a drift space:

γm d2r
dt2 =

eEr

γ 2 =
eI

2πγ 2εoa
2v
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2πmγ 3εoa

2v3 r =
K
a2 r
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2πmγ 3εov
3 =

2I
Ioβ
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4πεomc3
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γ = 1 γ = 5 γ = 10

L(t)
Rs(t) ∆t
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Transport in a Long Solenoid
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Small perturbations around the equilibrium solution
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Emittance Oscillations are driven by space charge differential 
defocusing in core and tails of the beam

x

px

Slice Phase 
Space

Projected Phase Space

CAS, 25 May 2005CAS, 25 May 2005



Envelope oscillations drive Emittance oscillations
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BEAM DYNAMICS MODELING

RF Field + Solenoids

∆t

Space charge
On Axis

Off Axis
∆t

CAS, 25 May 2005CAS, 25 May 2005



Envelope equation (linear fields)On axis

Space charge
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CODES used for simulations of Space Charge Effects

PARMELA, ASTRA

Multi-particle tracking code, includes space charge but not wake fields

HOMDYN

Relies on a multi-envelope model based on the time dependent evolution 
of a uniform bunch

CAS, 25 May 2005CAS, 25 May 2005



CAS, 25 May 2005CAS, 25 May 2005



CAS, 25 May 2005CAS, 25 May 2005



CAS, 25 May 2005CAS, 25 May 2005



CAS, 25 May 2005CAS, 25 May 2005



Slice analysis through the bunchSlice analysis through the bunch
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Space charge with image currents
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Effects of conducting or magnetic screens 

Let us consider a point charge q close to a conducting screen. 

The electrostatic field can be derived through the "image method". 
Since the metallic screen is an equi-potential plane, it can be removed 
provided that a "virtual" charge is introduced such that the potential 
is constant on the screen

q q - q
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A constant current in the free space produces circular magnetic field. 

If µr≈1, the material, even in the case of a good conductor, does not 
affect the field lines.

I
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For  ferromagnetic type, with µr>>1, the very high magnetic 
permeability makes the tangential magnetic field zero at the 
boundary so that the magnetic field is perpendicular to the surface, 
just like the electric field lines close to a conductor. 

I I I

In analogy with the image method we get the magnetic field, in the 
region outside the material, as superposition of the fields due to two 
symmetric equal currents flowing in the same direction. 
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Time-varying fields  

Static electric fields vanish inside a conductor for any finite 
conductivity, while magnetic fields pass through unless of an high 
permeability. 
This is no longer true for time changing fields, which can penetrate 
inside the material only in a region δw called skin depth. Inside the 
conducting material we write the following Maxwell equations:
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Copper σ = 5.8 107 (Ωm)-1

Aluminium σ = 3.5 107 (Ωm)-1

Stainless steel σ = 1.4 106 (Ωm)-1 .
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Consider a plane wave (Hz,Ey) propagating in the material
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( the same equation holds for Hz). Assuming that fields propagate  
in the x-direction with the law:

Hz = ˜ H oeiωt−γx

Ey = ˜ E oeiωt−γx

(γ 2 + εµω 2 − iωµσ ) ˜ E oeiωt−γx = 0

We say that the material behaves like a conductor if  σ>>ωε thus:
∆w

Ey

x
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2
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Fields propagating along “x” are attenuated. 
The attenuation constant measured in meters is called skin depth δw:

δw

ωσµγ
δ 2

)(
1

=
ℜ

≅w

∆w

The skin depth depends on the material properties and the frequency.
Fields pass through the conductor wall if the skin depth is larger than 
the wall thickness ∆w. This happens at relatively low frequency.

At higher frequency, for a good conductor  δw<< ∆w and both 
electric and magnetic fields  vanish inside the wall.  

)(66.6 cm
fw ≅δFor the copper

For a pipe 2mm thick, the fields pass through the wall up to 1 kHz. 
(Skin depth of Aluminium is larger by a factor 1.27)
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• compare the wall thickness and the skin depth (region of 
penetration of the e.m. fields) in the conductor. 

• If the fields penetrate and pass through the material, they can
interact with bodies in the outer region. 

• If the skin depth is very small, fields do not penetrate, the 
electric filed lines are perpendicular to the wall, as in the static 
case, while the magnetic field line are tangent to the surface.

I -II -I
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Circular  Perfectly Conducting  Pipe 

(Beam at Center)
In the case of charge distribution, and 
γ→∞, the electric field lines are 
perpendicular to the direction of motion. 
The transverse fields intensity can be 
computed like in the static case, 
applying the Gauss and Ampere laws.
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• Due to the symmetry, the transverse fields produced by an ultra-
relativistic charge  inside the pipe are the same as in the free space.

• For a distribution with cylindrical symmetry, in the ultra-
relativistic regime, there is a cancellation of the electric and
magnetic forces. 

• The uniform beam produces exactly the same forces as in the 
free space. 

• This result does not depend on the longitudinal distribution of the 
beam. In general one has to consider the local charge density λ(z)
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Parallel Plates (Beam at Center)

2hq

q

q

-q

-q In some cases, the beam pipe cross 
section is such that we can consider 
only the surfaces closer to the beam, 
which behave like two parallel 
plates. In this case, we use the image 
method to a charge distribution of 
radius a between two conducting 
plates 2h apart. By applying the 
superposition principle we get the 
total image field at a position y
inside the beam. 
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Where we have assumed h>>a>y. 

For d.c. or slowly varying currents, the boundary condition imposed 
by the conducting plates does not affect the magnetic field. 
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From the divergence equation we derive also the other transverse
component:
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Including also the direct space charge force, we get:
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There is no cancellation of the electric and magnetic forces due to 
the "image" charges.
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Parallel Plates (Beam at Center) a.c. currents

Usually, the frequency beam spectrum is quite rich of harmonics,
especially for bunched beams. 

It is convenient to decompose the current into a d.c. component, I, 
for which δw>>∆w, and an a.c. component, Î, for which δw<< ∆w.

While the d.c. component of the magnetic does not perceives the 
presence of the material, its a.c. component is obliged to be 
tangent at the wall. For a charge density λ we have I=λv. 

We can see that this current produces a magnetic field able to 
cancel the effect of the electrostatic force.
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There is cancellation of the electric and magnetic forces !!
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Parallel Plates - General expression of the force 

Taking into account all the boundary conditions for d.c. and a.c. 
currents, we can write the expression of the force as:

yxu

u
ghha

eF
o

u

,

122424
11

 2 2

2

2

2
2

2

2

22

=

















+








= λππβλπ

γεπ
mm

where λ is the total current, and λ its d.c. part. We take the sign (+) if 
u=y, and the sign (–) if u=x.
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Space charge effects in storage rings
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Self Fields and betatron motion

Consider a perfectly circular accelerator with radius ρx. The beam 
circulates inside the beam pipe. The transverse single particle 
motion in the linear regime, is derived from the equation of 
motion. Including the self field forces in the motion equation, we 
have 

    
d mγ v( )

dt
= F ext r 

r ( )+ F self r 
r ( )

O
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dv
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For the single particle "transverse dynamics" we write:
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We assume small transverse displacements x with respect to the 
closed orbit, and only dipoles for bending and quadrupole to keep 
the beam around the closed orbit:
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where Eo is the particle energy. This equation expressed as function of 
“s” reads:
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•In the analysis of the motion of the particles in presence of the 
self field,  we will adopt a simplified model where particles 
execute simple harmonic oscillations around the reference orbit.

•This is the case where the focussing term is constant. Although 
this condition in never fulfilled in a real accelerator, it provides a 
reliable model  for the description of the beam instabilities
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Transverse Incoherent  Effects

We take the linear term of the transverse force in the betatron
equation:

x
x

F
E

xQx

x
x

FzxF

x

cs
x

ox

x

x

cs
xcs

x

0

..

2

2
0

..
..

1

),(

=

=











=








+′′











≅

∂
∂

βρ

∂
∂

( ) 









−=∆⇒∆+≅∆+

x
F

QE
QQQQQQ

cs
x

xo

x
xxxxxx ∂

∂
β

ρ ..

2

2
22  

2
2

The betatron shift is negative since the space charge forces are 
defocusing on both planes. Notice that the tune shift is in general 
function of “z”, therefore there is a tune spread inside the beam.
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Consequences of the space charge  tune shifts

In circular accelerators the values of the betatron tunes should not be 
close to rational numbers in order to avoid the crossing of linear and 
non-linear resonances where the beam becomes unstable.

The tune spread induced by the space charge force can make hard to 
satisfy this basic requirement. Typically, in order to avoid major 
resonances the stability requires 

3.0<∆ uQ
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Example: Incoherent betatron tune shift for an uniform 
electron beam of radius a, length lo, inside circular  perfectly 
conducting  Pipe
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For a real  bunched beams the space charge forces, and the tune shift 
depend on the longitudinal and radial position of the charge. 
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PS Booster, accelerate proton bunches
From 50 to 800 MeV in about 0.6 s. 
The tunes occupied by the particle are 
indicated in the diagram by the shaded 
area. As time goes on, the energy 
increase and the space charge tune 
spread gets smaller covering at t=100 
ms the tune area shown by the darker 
area. The point of highest tune 
correspond to the particles which are 
least affected by the space charge. This 
point moves in the Q diagram since the 
external focusing is adjusted such that 
the reduced tune spread lies in a region 
free of harmful resonances.

Finally, the small dark area shows the situation at t=600 ms when the beam has
Reached the energy of 800 MeV. The tune spread reduction is lower than 
expected with the energy increase (1/γ3) dependence since the bunch dimensions 
also decrease during the acceleration.
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END

CAS, 25 May 2005CAS, 25 May 2005


