<u>A. Denker</u>, W. Bohne, J. Rauschenberg, J. Röhrich, E. Strub

Ionenstrahllabor Hahn-Meitner-Institut Berlin

Materials Analysis Using Fast Ions

Introduction: Energy Loss PIXE – Proton Induced X-ray Emission RBS – Rutherford Back Scattering ERDA – Elastic Recoil Detection Analysis

Introduction: Ion - Target Interaction

elastic atomic collisions:

very low energies typically below a few keV Ion Scattering Spectrometry (ISS) surface composition and structure

- inelastic atomic collisions: ionisation of target atoms characteristic x-ray emission Particle Induced X-ray Emission, detection of elements with Z > 11
- elastic nuclear collisions:
 Rutherford-Back-Scattering Z > Z_{ion}
 Elastic Recoil Detection Analysis Z < Z_{ion}
- inelastic nuclear collisions:
 Nuclear Reaction Analysis

Introduction: Energy Loss

- interaction ion target atoms:
 ⇒ slowing down of the projectile
- depends on
 - ion mass
 - ion energy
 - irradiated material

Experimental data, computer software, e.g. SRIM 2003

ion and energy	Sn (keV/µm)	Se (keV/µm)	range (µm)	lateral straggling (µm)
p, 3 MeV	0.01	20	92	4.1
p, 68 MeV	0.001	1.8	21000	860
He, 3 MeV	0.17	190	12	0.49
197Au, 350 MeV	90	19000	30	0.91

Introduction: Energy Loss

I.

PIXE - Introduction: History

- PIXE = Particle Induced X-ray Emission
- first observation by Chadwick (Phil. Mag. 24 (1912) 54: x-ray emission induced by charged particles from a radioactive source
- Mosely 1913: the energy of the x-rays scales with Z^2
- first application as today:
 T.B. Johansson et al, Nucl. Instr. Meth. B 84 (1970) 141
- 2005: widely used technique in archaeology, biology, geology, environmental sciences.....
 Louvre Museum: dedicated accelerator for ion beam analysis

PIXE - Intro: Excitation Possibilities

- x-rays from x-ray tube or synchrotron
 - <u>X</u>-ray <u>f</u>luorescence <u>a</u>nalysis XRF
- electrons
 - electron microprobe, e.g. in scanning electron microscopes

PIXE - Intro: Advantages

x-ray tube:

larger background due to photon scattering
 ⇒ lower sensitivity

radioactive source, 1 Curie:

- 3×10^7 particles per 1 mm² per second
- range in Cu ~ 11 μm
- radio-safety, larger background

accelerator:

- 10¹³ particles per 1 mm² per second
- range in Cu for 3 MeV protons: ~ 34 μm
- beam can be focussed

PIXE - Basics: Fluorescence Coefficient

- hole in K- or L- shell
 E_{kin} > E_B

 recombination via X-ray or Auger electron: fluorescence yield

PIXE - Basics: Moseley Law

- frequency $v = c(Z-1)^2$ $c = 2.48 \times 10^{15} \text{ Hz}$
- ambiguities possible, e.g. K α As L α Pb, both at 10.5 keV

Ionenstrahllabor, Hahn-Meitner-Institut Berlin

PIXE - Basics: Fine Structure

- selection rules:
- ∆l= ±1
- ∆j= 0,±1

vacancies in L-shell: possibility of nonradiative transition <u>before</u> x-ray emission (Coster-Kroning effect)

PIXE - Basics: Spectrum

Ionenstrahllabor, Hahn-Meitner-Institut Berlin

PIXE - Basics: Cross Sections

- theoretical calculations:
- PWBA (Plane Wave Born Approximation)
- application of perturbation theory on the transition between initial and final state
 - initial state:
 plane wave projectile and bound atomic electron
 - final state:
 plane wave projectile and electron in continuum
- enhanced: ECPSSR
 - E = energy loss
 - C= deviation/deceleration of projectile in Coulomb field
 - PSS = perturbation of stationary states of the atom by projectile
 - R = relativistic effects

PIXE - Basics: Cross Sections

Ionenstrahllabor, Hahn-Meitner-Institut Berlin

PIXE - Basics: Cross Sections

$$\sigma_{I} = \frac{Y(Z)}{N_{p} M_{a}(Z) \omega_{Z} b_{Z} \varepsilon_{abs} a_{\mu}}$$

Y(Z): x-ray yield (counts), peak area of K line N_p : number of projectiles

 $M_a(Z)$: target areal density (atoms/cm²)

- ω_Z : fluorescence-yield
- bz: part of x-rays in the line of interest

 ϵ_{abs} : absolute detector efficiency

 a_{μ} : absorption of x-rays in the material between place of x-ray production and detector crystal

PIXE - Practice: Quantitative Analysis

number of atoms/cm²:

$$N_{t} = Y/(N_{p} \omega_{z} b_{z} \varepsilon_{z} \int_{0}^{xmax} \sigma_{z}(x) exp(-a_{\mu}x/sin\theta)dx)$$

$$Y \quad \text{measured x-ray yield}$$

$$N_{p} \quad \text{number of projectiles}$$

$$\varepsilon_{z}, \theta \quad \text{angle and detection efficiency} \quad experiment$$

$$\sigma_{z} \quad \text{ionisation cross section}$$

$$\omega_{z} \quad \text{fluorescence yield}$$

$$b_{z} \quad x-rays \quad \text{in line of interest}$$

$$a_{\mu} \quad \text{absorption coefficient}$$

$$x \quad \text{range of protons}$$

de-convolution software, e.g. GUPIX, AXIL....

PIXE - Practice : Absorption and Ranges

 attenuation of x-rays in matter
 I = I₀exp(-µd)

d _{1/2}	Ca K α	Pb Lα	Pb Kα ₁
(<i>µ</i> m)	3.6 keV	10.5 keV	75 keV
in C	78	2000	24000
in Cu	1.5	4.5	800

ranges

	3 MeV	68 MeV	
in air	140 mm	33 m	
in C	0.75 mm	20 mm	
in Cu	33 <i>µ</i> m	7 mm	

maximum analytical depth depends on:

- matrix
- element (x-ray energy) looked for
- proton energy

PIXE - Practice: Cross Sections

Ionenstrahllabor, Hahn-Meitner-Institut Berlin

PIXE - Practice: Experimental Set-up

PIXE - Practice: Experimental Set-up

PIXE Practice: ISL- Accelerators and target areas

PIXE - Practice: Detector

Semiconductors

- Si(Li) = Li doted Si, up to E_X ~ 25keV, resolution 160eV at 5.9 keV price
- HPGe = high purity Ge, above E_x ~ 3 keV resolution 180 eV 10.0 at 5.9 keV Ge Absorption Edge 10 cm^{*} x 15 mm Efficiency (%) 1.0 0.5 mm thick Be Window 2cm^{*} x 10 mm 0.1 0.015 10 20 50 100200500 1000 2000 Energy (keV)

PIXE - Practice: Spectrum

PIXE - Practice: Spectrum Background

• AB:

Atomic Bremsstrahlung = deceleration of bound target electrons in the Coulomb field of the projectile

• SEB:

Secondary-Electron-Bremsstrahlung = Bremsstrahlung of electrons from ionisation processes

$$E_{max} = 4m_e/M_p \times E_p$$

• QFEB:

Quasi-free electron-Bremsstrahlung

$$E_{max} = m_e / M_p \times E_p$$

• Compton:

inelastic scattering of γ -rays from nuclear reactions with the electrons in the detector crystal

PIXE - Example: Chinese Bowl

report 1 (Japan): 500 years old 1 Mio.€

report 2 (Berlin): 100 years old max. 25 000€

both reports based on art historical expertise

 indirect dating: identification of pigments (Cr in green: after 1850)

PIXE - Example: Chinese Bowl

- porcelain extremely sensitive
- high-energy protons: small risk of damage due to low proton intensity and small dE/dx

PIXE - Example: Chinese Bowl

- green colour no information
- yellow colour measured: Zn and Fe, <u>no</u> Sb
- absence of Sb is indication for age: after ~1850
- ⇒ report 2 could be confirmed

PIXE - Example: Prussian Medal

- Prussian Medal, about 1790
 Deutsches Historisches Museum, Berlin
- massive object? gilded?
- † = 200s, I_p ~0.1 pA
- result:
 - medal: Lα/Kα = 1.09
 - 1 μ m Au-foil: L α /K α ~ 40,
 - ~ 75% Au ~ 15% Ag ~ 10% Cu

Rutherford Back Scattering - RBS: Principle

- conservation of energy and momentum
 univocal identification of target atom (thin samples)
- energy loss ∆E in target: thickness determination
- detectable elements:
 Z > Z_{ion}

 ΔE_{e}

energy

Ionenstrahllabor, Hahn-Meitner-Institut Berlin

RBS - example: Light Ions contra Heavy Ions

$$E_{ion} = k_p E_0$$

$$k_p = \left(\frac{M_p / M_r \cos \theta + \sqrt{1 - (M_p / M_r)^2 \sin^2 \theta}}{1 + M_p / M_r}\right)^2$$

Ionenstrahllabor, Hahn-Meitner-Institut Berlin

Elastic Recoil Detection Analysis - ERDA: Principle

- detection of recoiled atoms
- identification by simultaneous measurement of energy and, e.g. time-of-flight
- comparable sensitivities for all elements (hydrogen enhanced by a factor of 4)

ERDA: Experimental Set-Up

- only absolute, standard free method for the concentration of all elements in thin layers
- irradiation of the sample with heavy high energetic ions
 e.g. ¹⁹⁷Au 350MeV
- coincident measurement of energy + time-of-flight for the outscattered atoms of the sample (large dynamic range in energy (depth) due to TOF method)
- using cyclotrons: time structure of ion beam small emittance

ERDA: example

Ionenstrahllabor, Hahn-Meitner-Institut Berlin

Conclusion I

	ERDA	RBS	PIXE	NRA			
sensitivity depends on matrix and element looked for	 ppm for H 10 ppm for others 	 ppm for heavy elements 0.1% for light elements 	ppm - 0.1%	100 ppm			
depth resolution	10 nm close to surface	10 nm close to the surface	1 – 10 <i>µ</i> m	5 nm close to surface			
max. analytical depth	a few <i>µ</i> m	a few <i>µ</i> m	up to a few mm	a few <i>µ</i> m			
elements	<u>all</u>	Z > Z _{ion}	Z > 11	¹⁵ N(H,α) ¹² C 			

Conclusion II

- various ion target interactions
 vast choice of different techniques
- each technique: specific advantages and drawbacks
- best answers to analytical problems: careful choice of analytical technique or combination of techniques, e.g. RBS + PIXE
- today: estimated 1000 accelerators world-wide used for ion beam analysis
- samples:

