Beam Formation

Peter Spädtke GSI Darmstadt

Beam Formation

particle generation
 electrons
 What stands beam formation for ?
 extraction

• post acceleration

USEFUL EQUATIONS

$$\lambda_{\rm D} = \sqrt{(\epsilon_0 \, k T_e \, / \, e^2 \, n_e)}$$

Debye length

 $\lambda_{\rm D} \,[{\rm m}] = 7.43 \, \sqrt{({\rm T_e} \,[{\rm eV}] \,/ \, {\rm n_e} \,[{\rm cm}^{-3}])}$

practical units

 $\omega_{\rm p} = {\rm e}^2 \, {\rm n}_{\rm e} \, / \, {\rm \epsilon}_0 \, {\rm m}_{\rm e}$ plasma frequency

 $\omega_{pe} [Hz] = 8980 n_e [cm^{-3}]$

practical units for electrons

 ω_{pi} [Hz] = 210 n_i [cm⁻³] q / A[amu]

practical units for ions

USEFUL EQUATIONS

$$j=4\epsilon_0/9\sqrt{(2q\ /\ m_i)} \quad \Phi^{1.5}/d^2$$

Child's law

 $P = I / \Phi^{1.5}$

perveance

Beam Formation: Electrons

How to create electrons
How to create an electron beam

saturation current density j_{es} for different materials

$$j_{es} = AT^2 \exp(-e\Phi/kT)$$

Φ workfunction [V]T temperature [K]

material	Φ[V]	А
molybdenum	4.15	55
nickel	4.61	30
tantalum	4.12	60
tungsten	4.54	60
barium	2.11	60
cesium	1.81	160
iridium	5.40	170

Simple cathode

resistive heating

Pointed cathode

resistive heating

Alternative cathode materials

dispenser cathodes

	Т (К)	tungsten	tantalum	BaO	LaB ₆	
• LaB ₆	cathod	es		_		
Ŭ	1000		dæ	Beissang(s t
	1500		ela	ontainen	titterfiet	of the
	2000		0. 0110	iditimg tea	ate e atte	ueofa
	2500	0.3	(143	edfai)		

18.06.2005

transverse energy as function of longitudinal position for a 50 keV, 10 A electron beam, guided by a solenoid field with a symmetry error of 10⁻² over a length of 30 cm.

$$1.0 - 1.0$$

because of the magnetic field the transverse emittance is not constant!

transverse energy as function of beam energy and applied magnetic field for two different post acceleration geometries:

- single gap acceleration gap
- multi gap acceleration gap

Collector to dump the electron beam at lowest possible cathode-collector voltage, but with highest possible efficiency.

A similar setup of electron gun and collector is used in most of rf-power tubes, such as klystrons and gyrotrons.

lon generators

MUCIS
Mevva ion source
PIG ion source

GENERAL

High current ion sources at GSI:

- MUCIS MUlti Charge Ion Source
- MEVVA MEtal Vapor Vacuum Arc

medium current ion source at GSI

• PIG ion source Penning Ionization Gauge

low current source

• ECR Electron Cyclotron Resonance

Multi Cusp Ion Source MUCIS

REFLECTOR ELECTRODE

Multi Cusp Ion Source MUCIS

60 CoSm-magnets (2 Tesla) cathode: 6 filaments. W/Ta arc power: 30 kW typical duty cycle: 5 Hz / 1 ms

Multi Cusp Ion Source MUCIS

achieved ion currents from MUCIS at the entrance of the RFQ with 2.2 keV/u

ion	RFQ sc limit	injector
² H ₃ +	1,5 mA	2.5 mA
¹⁴ N ⁺	3,5 mA	4 mA
$^{14}N_{2}^{+}$	7 mA	3 mA
$^{18}O_{2}^{-+}$	9 mA	5 mA
²⁰ Ne ⁺	5 mA	5.5 mA
⁴⁰ Ar+	10 mA	20 mA

Metal Vapor Vacuum Arc Ion Source MEVVA

MEVVA IV

17 cathodes 2 solenoids (0.1 and 0.2 Tesla) arc power: 50 kW (13,3 MW/cm²) arc current: ~1 kA duty cycle: typical 1 Hz, 1 ms service interval: 1 week (Uran)

charge state distribution

27

MEVVA IV

achieved currents

ion	design	injector	testbench
12 C +	3 mA	7 mA	
²⁴ Mg+	6 mA		20 mA
²⁴ Mg ²⁺	3 mA		70 mA
⁴⁸ Ti ⁺	12 mA	3 mA	
⁴⁸ Ti ²⁺	6 mA	20 mA	35 mA
⁴⁸ Ti ³⁺	4 mA	20 mA	35 mA
⁵² Cr+	13 mA	6 mA	
⁵⁸ Ni+	14,5 mA	10 mA	
⁵⁸ Ni ²⁺	7,25 mA	5 mA	35 mA
⁹² Mo ²⁺	11,5 mA	6 mA	
238U4+	15 mA	20 mA	30 mA

UL4DT3: 10 mA / div (~ 55 mA)

UL5DT5: 10 mA / div (> 40 mA)

UL5DT8: 10 mA /div (~ 25 mA)

long time stability

Simulation of the ion beam along the beam line

- The ion beam has been simulated from assume how an ion will feel. extraction from the ion source to the front of the dipole magnet by trajectory tracking.
- electric field is more important than gravity to Within the extraction system and in the post acceleration.
- goFatheragel alectropolic description of the section of the sec

External magnetic fields are present in the quadrupole section.

Simulation along the beam line

KOBRA3-INP

y emittance at 0.004 m

KOBRA3-INP

y emittance at 0.006 m

KOBRA3-INP

y emittance at 0.008 m

KOBRA3-INP

y emittance at 0.010 m

Fasten seat belt: extraction !!!

KOBRA3-INP

y emittance at 0.012 m

Fasten seat belt: extraction !!!

KOBRA3-INP

y emittance at 0.014 m

Fasten seat belt: extraction !!!

KOBRA3-INP

y emittance at 0.016 m

KOBRA3-INP

y emittance at 0.170 m

KOBRA3-INP

y emittance at 0.270 m

KOBRA3-INP

y emittance at 0.530 m

KOBRA3-INP

y emittance at 0.540 m

KOBRA3-INP

y emittance at

0.550 m

KOBRA3-INP

y emittance at

0.560 m

KOBRA3-INP

y emittance at 0.570 m

KOBRA3-INP

y emittance at 0.590 m

KOBRA3-INP

y emittance at 0.610 m

KOBRA3-INP

y emittance at 0.620 m

KOBRA3-INP

y emittance at 0.630 m

KOBRA3-INP

y emittance at 0.640 m

KOBRA3-INP

y emittance at 0.650 m

KOBRA3-INP

y emittance at 0.660 m

KOBRA3-INP

y emittance at 0.710 m

KOBRA3-INP

y emittance at 0.760 m

KOBRA3-INP

y emittance at 0.810 m

KOBRA3-INP

y emittance at 0.860 m

KOBRA3-INP

y emittance at 0.910 m
KOBRA3-INP

y emittance at 0.960 m

KOBRA3-INP

y emittance at 1.010 m

KOBRA3-INP

y emittance at

1.060 m

KOBRA3-INP

y emittance at 1.110 m

KOBRA3-INP

y emittance at

1.210 m

KOBRA3-INP

y emittance at

1.260 m

KOBRA3-INP

y emittance at

1.310 m

KOBRA3-INP

y emittance at

1.410 m

18.06.2005

KOBRA3-INP

KOBRA3-INP

KOBRA3-INP

18.06.2005

- Simulation confirms the experimental data:
- Strong influence of space charge within the extraction system and strong influence of space charge in the acceleration column.
- No influence of space charge has been observed in the drift sections and within the magnetic lenses.

FRAME 1 APRIL 4, 2002 09.44.37

с О

eyma

18.06.2005

y [mm]

BEAM FORMATION

BEAM FORMATION

achieved ion currents from the PIG IS at the entrance of the RFQ with 2.2 keV/u

¹² C ⁺	500 680	μA	⁵⁸ Ni ³⁺	400	450 µA
¹⁶ O+	700 890	μA	¹²¹ Sb ⁷⁺	10	12 µA
¹⁸ O ³⁺	10001100	μA	¹⁶² Dy ⁷⁺	3	5 µA
²⁰ Ne ⁺	10004000	μA	¹⁸⁷ Re ⁸⁺	100	165 µA
⁴⁰ Ar ²⁺	700 820	μA	¹⁹⁷ Au ⁸⁺	300	410 µA
⁴⁰ Ca ³⁺	400 570	μA	²⁰⁷ Pb ⁹⁺	100	150 µA
⁵⁰ Ti ²⁺	50 81	μA	²⁰⁹ Bi ⁹⁺	200	240 µA
⁵² Cr ³⁺	30 42	μA	238U10+	350	400 µA
⁵⁶ Fe ⁴⁺	60 72	μA			

lon generators to come

- general
- mucis ion source
- mevva ion source

- Electron Cyclotron Resonance Ion Source ECRIS
- Laser Ion Source LIS
- Liquid Metal Ion Source LMIS
- Electron Beam Ion Source EBIS
- H⁻ source