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Brightness is a key figure of merit for SR sources
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High photon brightness needs low electron beam emittance
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Low emittance is important for colliders

Luminosity is a key figure of merit for colliders. The luminosity

depends directly on the horizontal and vertical emittances.

L =
N+N−f

2πΣxΣy

Σx,y =

√
σ∗2x,y+ + σ∗2x,y−

Dynamical effects associated with the collisions mean that it is

sometimes helpful to increase the horizontal emittance; but

generally, reducing the vertical emittance as far as possible

helps to increase the luminosity.
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Low Emittance Rings

1. Beam dynamics with synchrotron radiation

• Effects of synchrotron radiation on particle motion.

• The synchrotron radiation integrals.

• Damping times of the beam emittances.

• Quantum excitation and equilibrium emittances.

2. Equilibrium emittance and storage ring lattice design

• Natural emittance in different lattice styles.

• Achromats and “quasi-achromats”.

3. Vertical emittance and coupling

• Sources of vertical emittance.

• Emittance computation in coupled storage rings.

• Low emittance tuning.
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Lecture 1 objectives: linear dynamics with synchrotron radiation

In this lecture, we shall:

• define action-angle variables for describing symplectic

motion of a particle along a beam line;

• discuss the effect of synchrotron radiation on the (linear)

motion of particles in storage rings;

• derive expressions for the damping times of the vertical,

horizontal, and longitudinal emittances;

• discuss the effects of quantum excitation, and derive

expressions for the equilibrium horizontal and longitudinal

beam emittances in an electron storage ring.

Low Emittance Machines 5 Part 1: Beam Dynamics with SR



Coordinate system

We work in a Cartesian coordinate system, with a reference

trajectory that we define for our own convenience:

In general, the reference trajectory can be curved. At any point

along the reference trajectory, the x and y coordinates are

perpendicular to the reference trajectory.
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Momenta

The transverse momenta are the canonical momenta,

normalised by a reference momentum, P0:

px =
1

P0

(
γm

dx

dt
+ qAx

)
, (1)

and similarly for py.

m and q are the mass and charge of the particle, γ is the

relativistic factor, and Ax is the x component of the vector

potential.

We can choose the reference momentum for our own

convenience; usually, we choose P0 to be equal to the nominal

momentum for a particle moving along the beam line.

The transverse dynamics are described by giving the transverse

coordinates and momenta as functions of s (the distance along

the reference trajectory).
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Longitudinal coordinate

The longitudinal coordinate of

a particle is defined by:

z = β0c(t0 − t), (2)

where β0 is the normalized

velocity of a particle with the

reference momentum P0, t0 is

the time at which the reference

particle is at a location s, and t

is the time at which the particle

of interest arrives at this

location.

z is approximately the distance along the reference trajectory

that a particle is ahead of a reference particle travelling along

the reference trajectory with momentum P0.
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Energy deviation

The final dynamical variable needed to describe the motion of a

particle is the energy of the particle.

Rather than use the absolute energy or momentum, we use the

energy deviation δ.

The energy deviation is a measure of the difference between

the energy of a particle and the energy of a particle with the

reference momentum P0:

δ =
E

P0c
−

1

β0
=

1

β0

(
γ

γ0
− 1

)
, (3)

where E is the energy of the particle, and β0 is the normalized

velocity of a particle with the reference momentum P0.

Note that for a particle whose momentum is equal to the

reference momentum, γ = γ0, and hence δ = 0.
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Canonical variables

Using the definitions on the previous slides, the coordinates and

momenta form canonical conjugate pairs:

(x, px), (y, py), (z, δ). (4)

The change in the values of the variables when a particle moves

along a beam line can be represented by a transfer matrix, M :

x
px
y
py
z
δ


s=s1

= M(s1; s0) ·



x
px
y
py
z
δ


s=s0

(5)

Using canonical variables, neglecting radiation effects, the

matrix M is symplectic.
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Symplectic matrices

Mathematically, a matrix M is symplectic if it satisfies the
relation:

MT · S ·M = S, (6)

where S is the antisymmetric matrix:

S =


0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

 . (7)

Physically, symplectic matrices preserve areas in phase space.
For example, in one degree of freedom:
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Courant–Snyder parameters and the particle action

In an uncoupled periodic beam

line, particles trace out ellipses

in phase space with each pass

through a periodic cell.

The shape of the ellipse defines

the Courant–Snyder parameters

at the observation point.

The area of the ellipse defines

the action Jx of the particle.
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Cartesian variables and action-angle variables

Applying simple geometry to the phase space ellipse, we find

that the action (for uncoupled motion) is related to the

Cartesian variables for the particle by:

2Jx = γxx
2 + 2αxxpx + βxp

2
x. (8)

We also define the angle variable φx as follows:

tanφx = −βx
px

x
− αx. (9)

The action-angle variables form a canonical conjugate pair, and

provide an alternative to the Cartesian variables for describing

the dynamics.

The advantage of action-angle variables is that, under

symplectic transport, the action of a particle is constant.
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Action and emittance

The action Jx is a variable that is used to describe the

amplitude of the motion of a single particle.

In terms of the action-angle variables, the Cartesian coordinate

and momentum can be written:

x =
√

2βxJx cosφx, px = −
√

2Jx
βx

(sinφx + αx cosφx) . (10)

The emittance εx is the average action of all particles in a

bunch:

εx = 〈Jx〉. (11)

For uncoupled motion, it follows that the second-order

moments of the particle distribution are related to the

Courant–Snyder parameters and the emittance:

〈x2〉 = βxεx, 〈xpx〉 = −αxεx, 〈p2
x〉 = γxεx. (12)
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Action and radiation

So far, we have considered only symplectic transport, i.e.

motion of a particle in the electromagnetic fields of drifts,

dipoles, quadrupoles, etc. without any radiation.

However, we know that a charged particle moving through an

electromagnetic field will (in general) undergo acceleration, and

a charged particle undergoing acceleration will radiate

electromagnetic waves.

What impact will the radiation have on the motion of a

particle?

In answering this question, we wil consider first the case of

uncoupled vertical motion: for a particle in a storage ring, this

turns out to be the simplest case.
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Radiation damping of vertical emittance

The radiation emitted by a relativistic particle has an opening

angle of 1/γ, where γ is the relativistic factor for the particle.

For an ultra-relativistic particle, γ � 1, and we can assume that

the radiation is emitted directly along the instantaneous

direction of motion of the particle.
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Radiation damping of vertical emittance

The momentum of the particle after emitting radiation is:

p′ = p− dp ≈ p
(

1−
dp

P0

)
, (13)

where dp is the momentum carried by the radiation, and we

assume that:

p ≈ P0. (14)

Since there is no change in direction of the particle, we must

have:

p′y ≈ py
(

1−
dp

P0

)
. (15)
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Radiation damping of vertical emittance

After emission of radiation, the vertical momentum of the
particle is:

p′y ≈ py
(

1−
dp

P0

)
. (16)

Now we substitute this into the expression for the vertical
betatron action (valid for uncoupled motion):

2Jy = γyy
2 + 2αyypy + βyp

2
y , (17)

to find the change in the action resulting from the emission of
radiation:

dJy = −
(
αyypy + βyp

2
y

) dp
P0
. (18)

Then, we average over all particles in the beam, to find:

〈dJy〉 = dεy = −εy
dp

P0
, (19)

where we have used:

〈ypy〉 = −αyεy, 〈p2
y〉 = γyεy, and βyγy − α2

y = 1. (20)
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Radiation damping of vertical emittance

The emittance is conserved under symplectic transport, so if
the effects of radiation are “slow”, for a particle in a storage
ring we can average the momentum loss around the ring.

Then, from (19):

dεy

dt
= −

εy

T0

∮
dp

P0
≈ −

U0

E0T0
εy = −

2

τy
εy, (21)

where T0 is the revolution period, and U0 is the energy loss in
one turn. The approximation is valid for an ultra-relativistic
particle, which has E ≈ pc.

We define the damping time τy:

τy = 2
E0

U0
T0. (22)

The evolution of the emittance is given by:

εy(t) = εy(0) exp

(
−2

t

τy

)
. (23)
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Radiation damping of vertical emittance

Typically, in an electron storage ring, the damping time is of

order several tens of milliseconds, while the revolution period is

of order of a microsecond.

Therefore, radiation effects are indeed “slow” compared to the

revolution frequency.

But note that we made the assumption that the momentum of

the particle was close to the reference momentum, i.e. p ≈ P0.

If the particle continues to radiate without any restoration of

energy, we will reach a point where this assumption is no longer

valid.

However, electron storage rings contain RF cavities to restore

the energy lost through synchrotron radiation. But then, we

should consider the change in momentum of a particle as it

moves through an RF cavity.
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Radiation damping of vertical emittance

Fortunately, RF cavities are usually designed to provide a

longitudinal electric field.

This means that particles experience a change in longitudinal

momentum as they pass through a cavity, without any change

in transverse momentum.

Therefore, we do not have to consider explicitly the effects of

RF cavities on the emittance of the beam.
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Synchrotron radiation energy loss

To complete our calculation of the the vertical damping time,

we need to find the energy lost by a particle through

synchrotron radiation on each turn through the storage ring.

The radiation power from a relativistic particle following a

circular trajectory of radius ρ is given by Liénard’s formula:

Pγ =
e2c

6πε0

β4γ4

ρ2
≈
Cγc

2π

E4

ρ2
, (24)

where the particle has charge e, velocity βc ≈ c, and energy

E = γmc2.

Cγ is a physical constant given by:

Cγ =
e2

3ε0(mc2)4
≈ 8.846× 10−5 m/GeV3. (25)
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Synchrotron radiation energy loss

For a particle with the reference energy, travelling at (close to)

the speed of light along the reference trajectory, we can find the

energy loss by integrating the radiation power around the ring:

U0 =
∮
Pγ dt =

∮
Pγ

ds

c
. (26)

Using the expression (24) for Pγ, we find:

U0 =
Cγ

2π
E4

0

∮ 1

ρ2
ds, (27)

where ρ is the radius of curvature of the particle trajectory, and

we assume that the particle energy is equal to the reference

energy E0.

For convenience, we define the reference trajectory to be the

closed orbit for a particle with the reference momentum.
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The second synchrotron radiation integral

Following convention, we define the second synchrotron

radiation integral, I2:

I2 =
∮ 1

ρ2
ds. (28)

In terms of I2, the energy loss per turn U0 is written:

U0 =
Cγ

2π
E4

0I2. (29)

Note that I2 is a property of the lattice (actually, a property of

the reference trajectory), and does not depend on the

properties of the beam.

Conventionally, there are five synchrotron radiation integrals

used to express the effects of synchrotron radiation on the

dynamics of ultra-relativistic particles in an accelerator.
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The first synchrotron radiation integral

The first synchrotron radiation integral is not, however, directly

related to the radiation effects.

It is defined as:

I1 =
∮
ηx

ρ
ds, (30)

where ηx is the horizontal dispersion.

I1 is related to the momentum compaction factor αp, which

plays an important role in the longitudinal dynamics.

The momentum compaction factor describes the change in the

length of the closed orbit with respect to particle energy:

∆C

C0
= αpδ +O(δ2). (31)
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The first synchrotron radiation integral

The length of the closed orbit

changes with energy because of

dispersion in regions where the

reference trajectory has some

curvature.

dC = (ρ+ x) dθ =

(
1 +

x

ρ

)
ds.

(32)

If x = ηxδ, then:

dC =

(
1 +

ηxδ

ρ

)
ds. (33)

The momentum compaction factor can be written:

αp =
1

C0

dC

dδ

∣∣∣∣∣
δ=0

=
1

C0

∮
ηx

ρ
ds =

I1
C0
. (34)
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Damping of horizontal emittance

Analysis of radiation effects on the vertical emittance was
relatively straightforward. When we consider the horizontal
emittance, there are three complications that we need to
address:

• The horizontal motion of a particle is often strongly
coupled to the longitudinal motion (through the dispersion).

• Where the reference trajectory is curved (usually, in
dipoles), the path length taken by a particle depends on the
horizontal coordinate with respect to the reference
trajectory.

• Dipole magnets are sometimes built with a gradient, so
that the vertical field seen by a particle in a dipole depends
on the horizontal coordinate of the particle.
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Horizontal-longitudinal coupling

Coupling between transverse and longitudinal planes in a beam

line is usually represented by the dispersion, ηx. So, in terms of

the horizontal dispersion and betatron action, the horizontal

coordinate and momentum of a particle are given by:

x =
√

2βxJx cosφx + ηxδ (35)

px = −
√

2Jx
βx

(sinφx + αx cosφx) + ηpxδ. (36)
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Horizontal-longitudinal coupling

When a particle emits radiation, we have to take into account:

• the change in momentum of the particle;

• the change in coordinate x and momentum px, resulting

from the change in the energy deviation δ.

When we analysed the vertical motion, we ignored the second

effect, because we assumed that the vertical dispersion was

zero.
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Damping of horizontal emittance

Taking all the above effects into account, we can proceed
along the same lines as for the analysis of the vertical
emittance. That is:

• Write down the changes in coordinate x and momentum px resulting
from an emission of radiation with momentum dp (taking into account
the additional effects of dispersion).

• Substitute expressions for the new coordinate and momentum into the
expression for the horizontal betatron action, to find the change in
action resulting from the radiation emission.

• Average over all particles in the beam, to find the change in the
emittance resulting from radiation emission from each particle.

• Integrate around the ring (taking account of changes in path length
and field strength with x in the bends) to find the change in emittance
over one turn.

The algebra gets somewhat cumbersome, and is not especially

enlightening. See Appendix A for more details. Here, we just

quote the result...
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Damping of horizontal emittance

The horizontal emittance decays exponentially:

dεx

dt
= −

2

τx
εx, (37)

where the horizontal damping time is given by:

τx =
2

jx

E0

U0
T0. (38)

The horizontal damping partition number jx is:

jx = 1−
I4
I2
, (39)

where the fourth synchrotron radiation integral is given by:

I4 =
∮
ηx

ρ

(
1

ρ2
+ 2k1

)
ds, k1 =

e

P0

∂By

∂x
. (40)
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Damping of synchrotron oscillations

So far we have considered only the effects of synchrotron

radiation on the transverse motion. There are also effects on

the longitudinal motion.

Generally, synchrotron oscillations are treated differently from

betatron oscillations, because the synchrotron tune in a storage

ring is typically much less than 1, while the betatron tunes are

typically much greater than 1.
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Damping of synchrotron oscillations

To find the effects of radiation on synchrotron motion, we

proceed as follows:

• We write down the equations of motion (for the variables z

and δ) for a particle performing synchrotron motion,

including the radiation energy loss.

• We express the energy loss per turn as a function of the

energy deviation of the particle. This introduces a

“damping term” into the equations of motion.

• Solving the equations of motion gives synchrotron

oscillations (as expected) with amplitude that decays

exponentially.

Low Emittance Machines 33 Part 1: Beam Dynamics with SR



Damping of synchrotron oscillations

The change in energy deviation δ and longitudinal coordinate z

for a particle in one turn around a storage ring are given by:

∆δ =
eVRF
E0

sin
(
φs −

ωRF z

c

)
−
U

E0
, (41)

∆z = −αpC0δ, (42)

where VRF is the RF voltage, and ωRF the RF frequency, E0 is

the reference energy of the beam, φs is the nominal RF phase,

and U (which may be different from U0) is the energy lost by

the particle through synchrotron radiation.

If the revolution period is T0, then we can write the longitudinal

equations of motion for the particle:

dδ

dt
=

eVRF
E0T0

sin
(
φs −

ωRF z

c

)
−

U

E0T0
, (43)

dz

dt
= −αpcδ. (44)
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Damping of synchrotron oscillations

To solve the longitudinal equations of motion, we have to make

some assumptions.

First, we assume that z is small compared to the RF

wavelength:

ωRF |z|
c

� 1. (45)

Particles with higher energy radiate higher synchrotron radiation

power. We assume |δ| � 1, so we can work to first order in δ:

U = U0 + ∆E
dU

dE

∣∣∣∣
E=E0

= U0 + E0δ
dU

dE

∣∣∣∣
E=E0

. (46)

Finally, we assume that the RF phase φs is set so that for

z = δ = 0, the RF cavity restores exactly the amount of energy

lost by synchrotron radiation.
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Damping of synchrotron oscillations

With the above assumptions, the equations of motion become:

dδ

dt
= −

eVRF
E0T0

cos(φs)
ωRF
c
z −

1

T0
δ
dU

dE

∣∣∣∣
E=E0

, (47)

dz

dt
= −αpcδ. (48)

Combining these equations gives:

d2δ

dt2
+ 2αE

dδ

dt
+ ω2

s δ = 0. (49)

This is the equation for a damped harmonic oscillator, with

frequency ωs and damping constant αE given by:

ω2
s = −

eVRF
E0

cos(φs)
ωRF
T0

αp, (50)

αE =
1

2T0

dU

dE

∣∣∣∣
E=E0

. (51)
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Damping of synchrotron oscillations

If αE � ωs, the energy deviation and longitudinal coordinate

damp as:

δ(t) = δ̂ exp(−αEt) sin(ωst− θ0), (52)

z(t) =
αpc

ωs
δ̂ exp(−αEt) cos(ωst− θ0). (53)

where δ̂ is a constant (the amplitude of the oscillation at t = 0).

To find the damping constant αE, we need to know how the

energy loss per turn U depends on the energy deviation δ...
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Damping of synchrotron oscillations

We can find the total energy lost by integrating over one
revolution period:

U =
∮
Pγ dt. (54)

To convert this to an integral over the circumference, we
should recall that the path length depends on the energy
deviation; so a particle with a higher energy takes longer to
travel around the lattice.

dt =
dC

c
(55)

dC =

(
1 +

x

ρ

)
ds =

(
1 +

ηxδ

ρ

)
ds

(56)

U =
1

c

∮
Pγ

(
1 +

ηxδ

ρ

)
ds. (57)
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Damping of synchrotron oscillations

With the energy loss per turn given by:

U =
1

c

∮
Pγ

(
1 +

ηx

ρ
δ

)
ds, (58)

and the synchrotron radiation power given by:

Pγ ≈
Cγ

2π
c
E4

ρ2
, (59)

we find, after some algebra:

dU

dE

∣∣∣∣
E=E0

= jE
U0

E0
, (60)

where:

U0 =
Cγ

2π
E4

0I2, jE = 2 +
I4
I2
. (61)

I2 and I4 are the same synchrotron radiation integrals that we

saw before, in Eqs. (28) and (40).
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Damping of synchrotron oscillations

Finally, we can write the longitudinal damping time:

τz =
1

αE
=

2

jz

E0

U0
T0. (62)

U0 is the energy loss per turn for a particle with the reference

energy E0, following the reference trajectory. It is given by:

U0 =
Cγ

2π
E4

0I2. (63)

jz is the longitudinal damping partition number, given by:

jz = 2 +
I4
I2
. (64)
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Damping of synchrotron oscillations

The longitudinal emittance can be given by a similar expression

to the horizontal and vertical emittance:

εz =
√
〈z2〉〈δ2〉 − 〈zδ〉2. (65)

Since the amplitudes of the synchrotron oscillations decay with

time constant τz, the damping of the longitudinal emittance

can be written:

εz(t) = εz(0) exp
(
−2

t

τz

)
. (66)
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Summary: synchrotron radiation damping

The energy loss per turn is given by:

U0 =
Cγ

2π
E4

0I2, Cγ ≈ 8.846× 10−5m/GeV3. (67)

The radiation damping times are given by:

τx =
2

jx

E0

U0
T0, τy =

2

jy

E0

U0
T0, τz =

2

jz

E0

U0
T0. (68)

The damping partition numbers are:

jx = 1−
I4
I2
, jy = 1, jz = 2 +

I4
I2
. (69)

The second and fourth synchrotron radiation integrals are:

I2 =
∮ 1

ρ2
ds, I4 =

∮
ηx

ρ

(
1

ρ2
+ 2k1

)
ds. (70)
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Quantum excitation

If radiation were a purely classical process, the emittances

would damp to nearly zero.

However radiation is emitted in discrete units (photons), which

induces some “noise” on the beam. The effect of the noise is

to increase the emittance.

The beam eventually reaches an equilibrium distribution

determined by a balance between the radiation damping and

the quantum excitation.
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Quantum excitation of horizontal emittance

By considering the change in the phase-space variables when a

particle emits radiation carrying momentum dp, we find that

the betatron action changes as:

dJx

dt
= −

w1

P0

dp

dt
+
w2

P2
0

dp2

dt
. (71)

where w1 and w2 are functions of the Courant–Snyder

parameters, the dispersion, and the phase-space variables (see

Appendix A).

In the classical approximation, we can take dp→ 0 in the limit

of small time interval, dt→ 0.

In this approximation, the second term on the right hand side in

the above equation vanishes, and we are left only with damping.

But since radiation is quantized, we cannot take dp→ 0.
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Quantum excitation of horizontal emittance

To take account of the quantization of synchrotron radiation,

we write:
dp

dt
=

1

c

∫ ∞
0

Ṅ(u)u du, (72)

and:

dp2

dt
=

1

c2

∫ ∞
0

Ṅ(u)u2 du. (73)

Here, Ṅ(u) du is the number of photons emitted per unit time

with energy between u and u+ du.

In Appendix B, we show that with (71), these relations lead to

the equation for the evolution of the emittance:

dεx

dt
= −

2

τx
εx +

2

jxτx
Cqγ

2I5
I2
, (74)
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Quantum excitation of horizontal emittance

The fifth synchrotron radiation integral I5 is given by:

I5 =
∮ H
|ρ3|

ds, (75)

where the “curly-H” function H is defined:

H = γxη
2
x + 2αxηxηpx + βxη

2
px. (76)

The “quantum constant” Cq is given by:

Cq =
55

32
√

3

~
mc
≈ 3.832× 10−13m. (77)
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Equilibrium horizontal emittance

Using Eq. (74) we see that there is an equilibrium horizontal

emittance ε0, for which the damping and excitation rates are

equal:

dεx

dt

∣∣∣∣
εx=ε0

= 0, ∴
2

τx
ε0 =

2

jxτx
Cqγ

2I5
I2
. (78)

The equilibrium horizontal emittance is given by:

ε0 = Cq
γ2

jx

I5
I2
. (79)

Note that ε0 is determined by the beam energy, the lattice

functions (Courant–Snyder parameters and dispersion) in the

dipoles, and the bending radius in the dipoles.
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Natural emittance

ε0 is sometimes called the “natural emittance” of the lattice,

since it includes only the most fundamental effects that

contribute to the emittance: radiation damping and quantum

excitation.

Typically, third generation synchrotron light sources have

natural emittances of order a few nanometres. With beta

functions of a few metres, this implies horizontal beam sizes of

tens of microns (in the absence of dispersion).

As the current is increased, interactions between particles in a

bunch can increase the emittance above the natural emittance.
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Quantum excitation of vertical emittance

In many storage rings, the vertical dispersion in the absence of alignment,
steering and coupling errors is zero, so Hy = 0.

However, the equilibrium vertical emittance is larger than zero, because the
vertical opening angle of the radiation excites some vertical betatron
oscillations.

The fundamental lower limit on the vertical emittance, from the opening
angle of the synchrotron radiation, is given by∗:

εy =
13

55

Cq

jyI2

∮
βy

|ρ3|
ds. (80)

In most storage rings, this is an extremely small value, typically four orders
of magnitude smaller than the natural (horizontal) emittance.

In practice, the vertical emittance is dominated by magnet alignment errors.
Storage rings typically operate with a vertical emittance that is of order 1%
of the horizontal emittance, but many can achieve emittance ratios
somewhat smaller than this.

∗T. Raubenheimer, SLAC Report 387, p.19 (1991).
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Quantum excitation of longitudinal oscillations

Quantum effects excite longitudinal emittance as well as
transverse emittance. Consider a particle with longitudinal
coordinate z and energy deviation δ, which emits a photon of
energy u.

δ′ = δ̂′ sin θ′ = δ̂ sin θ −
u

E0
. (81)

z′ =
αpc

ωs
δ̂′ cos θ′ =

αpc

ωs
δ̂ cos θ.

(82)

∴ δ̂′2 = δ̂2 − 2δ̂
u

E0
sin θ +

u2

E2
0
. (83)

Averaging over the bunch gives:

∆σ2
δ =

〈u2〉
2E2

0
where σ2

δ = 〈δ2〉 =
1

2
〈δ̂2〉. (84)
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Quantum excitation of longitudinal oscillations

Including radiation damping, the energy spread evolves as:

dσ2
δ

dt
=

1

2E2
0

〈∫ ∞
0

Ṅ(u)u2 du

〉
C
−

2

τz
σ2
δ , (85)

where the brackets 〈 〉C represent an average around the ring.

Using Eq. (130) from Appendix B for
∫
Ṅ(u)u2 du, we find:

dσ2
δ

dt
= Cqγ

2 2

jzτz

I3
I2
−

2

τz
σ2
δ . (86)

The equilibrium energy spread is found from dσ2
δ /dt = 0:

σ2
δ0 = Cqγ

2 I3
jzI2

. (87)

The third synchrotron radiation integral I3 is defined:

I3 =
∮ 1

|ρ3|
ds. (88)
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Natural energy spread

The equilibrium energy spread determined by radiation effects

is:

σ2
δ0 = Cqγ

2 I3
jzI2

. (89)

This is often referred to as the “natural” energy spread, since

collective effects can often lead to an increase in the energy

spread with increasing bunch charge.

The natural energy spread is determined essentially by the

beam energy and by the bending radii of the dipoles.

Note that the natural energy spread does not depend on the

RF parameters (either voltage or frequency).
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Natural bunch length

The bunch length σz in a matched distribution with energy

spread σδ is:

σz =
αpc

ωs
σδ. (90)

We can increase the synchrotron frequency ωs, and hence

reduce the bunch length, by increasing the RF voltage, or by

increasing the RF frequency.

Note: in a matched distribution, the shape of the distribution in phase space
is the same as the path mapped out by a particle in phase space when
observed on successive turns. Neglecting radiation effects, a matched
distribution stays the same on successive turns of the bunch around the ring.
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Summary: radiation damping

Including the effects of radiation damping and quantum

excitation, the emittances vary as:

ε(t) = ε(0) exp
(
−2

t

τ

)
+ ε(∞)

[
1− exp

(
−2

t

τ

)]
. (91)

The damping times are given by:

jxτx = jyτy = jzτz = 2
E0

U0
T0. (92)

The damping partition numbers are given by:

jx = 1−
I4
I2
, jy = 1, jz = 2 +

I4
I2
. (93)

The energy loss per turn is given by:

U0 =
Cγ

2π
E4

0I2, Cγ = 9.846× 10−5 m/GeV3. (94)

Low Emittance Machines 54 Part 1: Beam Dynamics with SR



Summary: equilibrium beam sizes

The natural emittance is:

ε0 = Cqγ
2 I5
jxI2

, Cq = 3.832× 10−13 m. (95)

The natural energy spread and bunch length are given by:

σ2
δ = Cqγ

2 I3
jzI2

, σz =
αpc

ωs
σδ. (96)

The momentum compaction factor is:

αp =
I1
C0
. (97)

The synchrotron frequency and synchronous phase are given by:

ω2
s = −

eVRF
E0

ωRF
T0

αp cosφs, sinφs =
U0

eVRF
. (98)

Low Emittance Machines 55 Part 1: Beam Dynamics with SR



Summary: synchrotron radiation integrals

The synchrotron radiation integrals are:

I1 =
∮
ηx

ρ
ds, (99)

I2 =
∮ 1

ρ2
ds, (100)

I3 =
∮ 1

|ρ|3
ds, (101)

I4 =
∮
ηx

ρ

(
1

ρ2
+ 2k1

)
ds, k1 =

e

P0

∂By

∂x
, (102)

I5 =
∮ Hx
|ρ|3

ds, Hx = γxη
2
x + 2αxηxηpx + βxη

2
px. (103)
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Appendix A: Damping of horizontal emittance

In this Appendix, we derive the expression for radiation damping of the
horizontal emittance:

dεx

dt
= −

2

τx
εx, (104)

where:

τx =
2

jx

E0

U0
T0, jx = 1−

I4

I2
. (105)

To derive these formulae, we proceed as follows:

1. We find an expression for the change of horizontal action of a single
particle when emitting radiation with momentum dp.

2. We integrate around the ring to find the change in action per revolution
period.

3. We average the action over all the particles in the bunch, to find the
change in emittance per revolution period.
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Appendix A: Damping of horizontal emittance

To begin, we note that, in the presence of dispersion, the action Jx is
written:

2Jx = γxx̃
2 + 2αxx̃p̃x + βxp̃

2
x, (106)

where:

x̃ = x− ηxδ, and p̃x = px − ηpxδ. (107)

After emission of radiation carrying momentum dp, the variables change by:

δ 7→ δ −
dp

P0
, x̃ 7→ x̃+ ηx

dp

P0
, p̃x 7→ p̃x

(
1−

dp

P0

)
+ ηpx(1− δ)

dp

P0
. (108)

We write the resulting change in the action as:

Jx 7→ Jx + dJx. (109)
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Appendix A: Damping of horizontal emittance

The change in the horizontal action is:

dJx = −
w1

P0
dp+

w2

P 2
0

dp2 ∴
dJx

dt
= −

w1

P0

dp

dt
+
w2

P 2
0

dp2

dt
, (110)

where, in the limit δ → 0:

w1 = αxxpx + βxp
2
x − ηx(γxx+ αxpx)− ηpx(αxx+ βxpx), (111)

and:

w2 =
1

2

(
γxη

2
x + 2αxηxηpx + βxη

2
px

)
− (αxηx + βxηpx) px +

1

2
βxp

2
x. (112)

Treating radiation as a classical phenomenon, we can take the limit dp→ 0
in the limit of small time interval, dt→ 0.

In this approximation:

dJx

dt
≈ −w1

1

P0

dp

dt
≈ −w1

Pγ

P0c
, (113)

where Pγ is the rate of energy loss of the particle through synchrotron
radiation.
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Appendix A: Damping of horizontal emittance

To find the average rate of change of horizontal action, we integrate over
one revolution period:

dJx

dt
= −

1

T0

∮
w1

Pγ

P0c
dt. (114)

We have to be careful changing the variable
of integration where the reference trajectory
is curved:

dt =
dC

c
=

(
1 +

x

ρ

)
ds

c
. (115)

So:

dJx

dt
= −

1

T0P0c2

∮
w1Pγ

(
1 +

x

ρ

)
ds, (116)

where the rate of energy loss is:

Pγ =
Cγ

2π
c3e2B2E2. (117)
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Appendix A: Damping of horizontal emittance

We have to take into account the fact that the field strength in a dipole can
vary with position. To first order in x we can write:

B = B0 + x
∂By

∂x
. (118)

Substituting Eq. (118) into (117), and with the use of (111), we find (after
some algebra!) that, averaging over all particles in the beam:∮ 〈

w1Pγ

(
1 +

x

ρ

)〉
ds = cU0

(
1−

I4

I2

)
εx, (119)

where:

U0 =
Cγ

2π
cE4

0I2, I2 =

∮
1

ρ2
ds, I4 =

∮
ηx

ρ

(
1

ρ2
+ 2k1

)
ds, (120)

and k1 is the normalised quadrupole gradient in the dipole field:

k1 =
e

P0

∂By

∂x
. (121)
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Appendix A: Damping of horizontal emittance

Combining Eqs. (116) and (119) we have:

dεx

dt
= −

1

T0

U0

E0

(
1−

I4

I2

)
εx. (122)

Defining the horizontal damping time τx:

τx =
2

jx

E0

U0
T0, jx = 1−

I4

I2
, (123)

the evolution of the horizontal emittance can be written:

dεx

dt
= −

2

τx
εx. (124)

The quantity jx is called the horizontal damping partition number.

For most synchrotron storage ring lattices, if there is no gradient in the
dipoles then jx is very close to 1.
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Appendix B: Quantum excitation of horizontal emittance

In deriving the equation of motion (116) for the action of a particle emitting
synchrotron radiation, we made the classical approximation that in a time
interval dt, the momentum dp of the radiation emitted goes to zero as dt
goes to zero.

In reality, emission of radiation is quantized, so writing “dp→ 0” actually
makes no sense.

Taking into account the quantization of radiation, the equation of motion
for the action (110) should be written:

dJx

dt
= −

w1

P0c

∫ ∞
0

Ṅ(u)u du+
w2

P 2
0 c

2

∫ ∞
0

Ṅ(u)u2 du, (125)

where Ṅ(u) is the number of photons emitted per unit time in the energy
range from u to u+ du.

The first term on the right hand side of Eq. (125) just gives the same
radiation damping as in the classical approximation.

The second term on the right hand side of Eq. (125) is an excitation term
that we previously neglected.
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Appendix B: Quantum excitation of horizontal emittance

To proceed, we find expressions for the integrals
∫
Ṅ(u)u du and∫

Ṅ(u)u2 du.

The required expressions can be found from the spectral distribution of
synchrotron radiation from a dipole magnet. This is given by:

dP
dϑ

=
9
√

3

8π
Pγϑ

∫ ∞
ϑ

K5/3(x) dx, (126)

where dP/dϑ is the energy radiated per unit time per unit frequency range,
and ϑ = ω/ωc is the radiation frequency ω divided by the critical frequency ωc:

ωc =
3

2

γ3c

ρ
. (127)

Pγ is the total energy radiated per unit time, and K5/3(x) is a modified
Bessel function.
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Appendix B: Quantum excitation of horizontal emittance

Since the energy of a photon of frequency ω is u = ~ω, it follows that:

Ṅ(u) du =
1

~ω
dP
dϑ

dϑ. (128)

Using (126) and (128), we find:∫ ∞
0

Ṅ(u)u du = Pγ, (129)

and: ∫ ∞
0

Ṅ(u)u2 du = 2Cqγ
2E0

ρ
Pγ. (130)

Cq is a constant given by:

Cq =
55

32
√

3

~
mc
≈ 3.832× 10−13 m. (131)
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Appendix B: Quantum excitation of horizontal emittance

The final step is to substitute for the integrals in (125) from (129) and
(130), substitute for w1 and w2 from (111) and (112), average over the
circumference of the ring, and average also over all particles in the beam.

Then, since εx = 〈Jx〉, we find (for x� ηx and px � ηpx):

dεx

dt
= −

2

τx
εx +

2

jxτx
Cqγ

2I5

I2
(132)

where the fifth synchrotron radiation integral I5 is given by:

I5 =

∮
Hx

|ρ3|
ds, (133)

The “curly-H” function Hx is given by:

Hx = γxη
2
x + 2αxηxηpx + βxη

2
px. (134)

The damping time and horizontal damping partition number are given by:

jxτx = 2
E0

U0
T0, U0 =

Cγ

2π
cE4

0I2, (135)

(U0 is the energy loss per turn) and:

jx = 1−
I4

I2
. (136)
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Appendix B: Quantum excitation of horizontal emittance

Note that the excitation term is independent of the emittance.

The quantum excitation does not simply modify the damping time, but
leads to a non-zero equilibrium emittance.

The equilibrium emittance ε0 is determined by the condition:

dεx

dt

∣∣∣∣
εx=ε0

= 0. (137)

From (132), we see that the equilibrium emittance is given by:

ε0 = Cqγ
2 I5

jxI2
. (138)
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