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Trace space of an ideal laminar beam
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Geometric emittance: & o

Ellipse equation:  yx° + 2c0x’ + fBx'° = €,

Twiss parameters: By -a’ =1 B =-2a

Ellipse area.: A = 7e,
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Fig. 17: Filamentation of mismatched beam in non-linear force




Trace space evolution

No space charge => cross over With space charge => no cross over
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rms emittance | €,y

Define rms emittance:

2 / 12
yx° + 2oxx + PxC =€,
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such that:

p

Since:

it follows:



It holds also the relation: vp - a’ =1
L o2 o? (0.
Substituting a, B,y we get LA
rms rms 8rms

We end up with the definition of rms emittance in terms of the
second moments of the distribution:

g, = \/o'iai, — O'ix.= \/(<x2><x’2> _ <xx’>2)




What does rms emittance tell us about phase space distributions
under linear or non-linear forces acting on the beam?
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Assuming a generic X, X correlation of the type: X '=Cx"

Whenn=1 ==> ¢__ =0

Whenn#1 ==> ¢_ %40

rms



Constant under linear transformation only

d
d—z<x2><x’2> — (') = 20 ) (%) + 2(8°) () () — 2(x”) (xx) = 0
For linear transformations, x” = —kfx_._ and the right-hand side of the

equation 1s
2k2 (x%) (xx) — 2(x?) (xx/)k? = 0,
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dz

And without acceleration: X =




Normalized rms emittance: €, .ms

. / !/
Canonical transverse momentum: P, =P, X = m,cfyx p,=p

€, ms = \/aiaix -0,,= mioc (<x2><Pi>_<xPx>2)

Liouville theorem: the density of particles n, or the volume V
occupied by a given number of particles in phase space
(X,Px,¥sPy»Z,P,) Temains invariant under conservative forces.

dn

B—
dt

It hold also in the projected phase spaces (X,p,).(¥,py)(;Z,p,)
provided that there are no couplings
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Envelope

Now take the derivatives:
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And simplify:
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Equation without Acceleration
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We obtain the rms envelope equation in which the rms emittance

enters as defocusing pressure like term.
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Assuming that each particle 1s subject only to a linear focusing

. . " 2
force, without acceleration: X +k,x=0

take the average over the entire particle ensemble (xx") = —k; <x2>

2
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" 2 _ “rms
O.+k,0, = E
GX

We obtain the rms envelope equation with a linear focusing force
in which the rms emittance enters as defocusing pressure like
term.
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Space Charge: what does it mean?

The net effect of the Coulomb interactions in a multi-particle system can be
classified into two regimes:

1) Collisional Regime ==> dominated by binary collisions caused by close
particle encounters ==> Single Particle Effects

2) Space Charge Regime ==> dominated by the self field produced by the
particle distribution, which varies appreciably only over large distances
compare to the average separation of the particles ==> Collective Effects
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Continuous Uniform Cylindrical Beam Model

Gauss’ s law

1
. — E = fi <R
E = I 1 for r>R
2mE v p
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Ampere’ s law ¢
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Bunched Uniform Cylindrical Beam Model
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L.orentz Force

ek
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1s a linear function of the transverse coordinate

F = e(E,, —/J’CBﬁ) = e(l—/a’z)Er =

dp, _F - ek,

dt Tyt _2m/280R2[9’c

elr

g(s.7)

The attractive magnetic force , which becomes significant at high velocities, tends to
compensate for the repulsive electric force. Therefore space charge defocusing is
primarily a non-relativistic effect.
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Envelope Equation with Space Charge

Single particle transverse motion:

dp, =F p.=p x'=Pym cx’
dt
d d
dt(px) ﬁcdz(px) *
,  F elx
X' =— F = S,
pep Y 2my’e, 07 Bc 8(5:7)




Now we can calculate the term (xx")that enters in the envelope equation

2
O'” _ 8rms _ <XX”> x” — ksc X <xx”>= ksc <x2>=k
X O’j Ox O'i Oz sc

Including all the other terms the envelope equation reads:

Space Charge De-focusing Force
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Emittance Pressure

External Focusing Forces

Laminarity Parameter: |0 =




The beam undergoes two regimes along the accelerator

Fig. 10: Particle trajectories in laminar beam

Fig. 11: Particle trajectories in non-zero emittance bea
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Surface charge density

o =endx

Surface electric field

E, = —0/eyg = —endx/ey

Restoring force

Plasma oscillations

Ox = (0x)o cos (wy t)




Neutral Plasma, Single Component
Cold Relativistic Plasma,

e Ogcillations
e Instabilities

e EM Wave propagation




ko (s,7) Single Component
o' +kioc =220 e s
s o Relativistic Plasma

Equilibrium solution:

Small perturbation:

o(8)=o0,,(s)+d0(s)

(3()'”(S) + Zkf(SO( ) =0 60(s) =60 ,,(s) cos(\/gksz)

Perturbed trajectories oscillate around the equilibrium with the same frequency
but with different amplitudes:

G(s) =0 (s) + (SGO(S) COS(’\/E]CSZ)

=0y,




Emittance Oscillations are driven by space charge differential
defocusing in core and tails of the beam
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Envelope oscillations drive Emittance oscillations
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IMAGE SELF FIELDS

Direct self fields

2l Space Charge

Image self fields

Wake fields




Static Fields: conducting or magnetic screens

Let us consider a point charge q close to a conducting screen.

The electrostatic field can be derived through the "image method". Since the
metallic screen is an equi-potential plane, it can be removed provided that a
"virtual" charge is introduced such that the potential is constant at the position of
the screen




A constant current in the free space produces circular magnetic field

If u =1, the material, even in the case of a good conductor, does not
affect the field lines.

®




Circular Perfectly Conducting Pipe (Beam at Center)

In the case of cylindrical charge distribution,

and y—o, the electric field lines are
perpendicular to the direction of motion. The
l transverse fields intensity can be computed like

in the static case, applying the Gauss and

Ampere laws.
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there 1s a cancellation of the electric and magnetic forces




Parallel Plates (beam at center)

In some cases, the beam pipe cross section is such that we can consider only the
surfaces closer to the beam, which behave like two parallel plates. In this case, we
use the image method to a charge distribution of radius a between two conducting
plates 2h apart. By applying the superposition principle we get the total image field
at a position y inside the beam.

q Q t4h

1 1 |
2nh+y 2nh - y] q ‘ 2h

EP(z2.y)= E( Iy

lm < - A < JU
B )E( P S N :
2nh —y 4meh” 12

Where we have assumed: h>>a>v. =
Y 7 @

For d.c. or slowly varying currents, the boundary condition imposed by the
conducting plates does not affect the magnetic field. We do not need “image
currents “As a consequence there is no cancellation effect for the fields produced
by the "image" charges.



From the divergence equation we derive also the other transverse component,
notice the opposite sign:
J J ~Nz) 7’

—E"=-—E" = E"(z,x)= ———X
ox Ay dmwe h’ 12

Including also the direct space charge force, we get:

r eA(Z)x 1 )
Fx(Zax)= (Z) 2 2 2
7w e, \2ay 48h7 )
3
A 1 2 )
Fy(z,x)=€ (2)y — + dd .
7w e, \2a°y" 48h” )

Therefore, for y>>1, and for d.c. or slowly varying currents the cancellation effect
applies only for the direct space charge forces. There 1s no cancellation of the
electric and magnetic forces due to the "image" charges.



Time-varying fields

It is necessary to compare the wall thickness and the skin depth (region of

penetration of the e.m. fields) in the conductor. aw -
2
o, =.—
wou | LA

If the fields penetrate and pass through the material, we are practically in
the static boundary conditions case. Conversely, if the skin depth is very
small, fields do not penetrate, the electric filed lines are perpendicular to
the wall, as in the static case, while the magnetic field line are tangent to
the surface.
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Parallel Plates (Beam at Center) a.c. currents

Usually, the frequency beam spectrum is quite rich of harmonics,
especially for bunched beams.

It i1s convenient to decompose the current into a d.c. component, I,
for which 0,>>A,, and an a.c. component, I, for which 0,<< A,,.

While the d.c. component of the magnetic field does not perceives
the presence of the material, its a.c. component 1s obliged to be
tangent at the wall. For a charge density A we have I=Av.

We can see that this current produces a magnetic field able to cancel
the effect of the electrostatic force.
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There is cancellation of the electric and magnetic forces !!



Parallel Plates - General expression of the force

Taking into account all the boundary conditions for d.c. and a.c.
currents, we can write the expression of the force as:

F - e
2w €,

u

1( 1 T’ T Tl =
e AT B + A
y2(a2+24h2) +ﬁ(24h2 12g2)

where A is the total current, and;x its d.c. part. We take the sign (+) if u=y, and the
sign (—) if u=x.

-L. J. Laslett, LBL Document PUB-6161, 1987, vol III
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Incoherent and Coherent Transverse Effects

When the beam is located at the centre of symmetry of the pipe, the e.m. forces due
to space charge and images cannot affect the motion of the centre of mass

(coherent), but change the trajectory of individual charges in the beam
(incoherent).

These force may have a complicate dependence on the charge position. A simple

analysis is done considering only the linear expansion of the self-fields forces
around the equilibrium trajectory.



Self Fields and betatron motion

Consider a perfectly circular accelerator with radius p,. The beam
circulates inside the beam pipe. The transverse single particle
motion 1n the linear regime, is derived from the equation of
motion. Including the self field forces in the motion equation, we
have




In the analysis of the motion of the particles in presence of the self
field, we will adopt a simplified model where particles execute
simple harmonic oscillations around the reference orbit.

This 1s the case where the focussing term 1s constant. Although this
condition 1n never fulfilled in a real accelerator, it provides a reliable
model for the description of the beam instabilities

1

x"(s)+ K x(s)= Ecself(x)
BE,
Q, Betatron tune is the n. of _27p, _ 270 /K _, \/Ki
betatron oscillations per turn: R 7 VA
2 1
X"(S)+(Qx) x(s)= ——F"(x,s)
P P°E,




Transverse Incoherent Effects

We take the linear term of the transverse force in the betatron

equation:
e o';F S.C.
F.7(x,20)=|— X
dx x=0

-~

xn+(on) X = ,,1
px ﬁ-EO x=0

,02 o')Fsc
R — T

The shift of betatron wave numbers (tune shift) is negative since the space charge
forces are defocusing on both planes. Notice that the tune shift i1s, in general,
function of “z”, therefore we have also a tune spread inside the beam. Furthermore,
by including hlgher order terms in the transverse force, we don’t have the harmonic
oscillator equation any more.

anS.C .
ox




Example: Incoherent betatron tune shift for an uniform
electron beam of radius a, length 1, inside circular perfectly
conducting pipe

dF ) 9 elox el AO. = — p, Ne’
d x d x 2meoy’a®  2mey’a’ Y Amea’ByCE Q. L
82
r,, = -~ (electrons :2.82 107" m, protons :1.53 10™"* m)
T 4meomoc
2
Nr
AQX - _ szz 3€,p
a /3 4 onlo

For a real bunched beams the space charge forces, and the tune shift
depend on the longitudinal and radial position of the charge.




AQ as function of beam emittance




Consequences of the space charge tune shifts

In circular accelerators the values of the betatron tunes should
not be close to rational numbers in order to avoid the crossing of
linear and non-linear resonances where the beam becomes unstable.

The tune spread induced by the space charge force can make hard to
satisfy this basic requirement. Typically, in order to avoid major
resonances the stability requires

[40,|<0.3



Transverse Coherent Effects

If the beam experiences a transverse deflection Kick, it starts to
perform betatron oscillations as a whole. The beam, source of the
space charge fields moves transversely inside the pipe, while
individual particles still continue their incoherent motion around
the common coherent trajectory.
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Circular Perfectly Condgcting Pipe (Beam off Center)

h? The image charge is at a distance *‘d” such that
d=— the pipe surface is at constant voltage, and pulls
X the beam away from the center of the pipe.



The effect is defocusing: the horizontal electric image
field E and the horizontal force F are:

E (x)= Mz) 1T /1(Z)1:/1(Z)x2
2ne, d—x  2me, d  2me b
eAMz2) x
F ~
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