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Trace space of a laminar beam 
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Trace space of non laminar beam 



Twiss parameters:
 12 =−αβγ

Ellipse equation:

Geometric emittance:


€ 

εg

€ 

γx2 + 2αx $ x + β $ x 2 = εg

Ellipse area:
 A = πεg

!β = −2α





Trace space evolution

With space charge => no cross over





No space charge => cross over
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rms emittance 
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rms beam envelope: 
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Define rms emittance: 

such that: 
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It holds also the relation: 

Substituting             we get 
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α,β ,γ

εrms = σ x
2σ x '

2 −σ xx '
2 = x2 "x 2 − x "x 2( )

We end up with the definition of rms emittance in terms  of the 
second moments of the distribution: 

σ x = x2 = βεrms

σ x ' = x '2 = γεrms

σ xx ' = x !x = −αεrms
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2 = x2 # x 2 − x # x 2

!x =Cxn
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2 =C2 x2 x2n − xn+1
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When n = 1   ==>   εrms = 0

When n = 1    ==>   εrms = 0
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What does rms emittance tell us about phase space distributions 
under linear or non-linear forces acting on the beam? 

Assuming a generic            correlation of the type: 
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x, " x 



Constant under linear transformation only


And without acceleration:
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" x =
px

pz



εn,rms = σ x
2σ px

2 −σ xpx
2 =

1
moc

x2 px
2 − xpx

2( ) ≈ βγ εrms

Normalized rms emittance:


px = pz !x =mocβγ !xCanonical transverse momentum: 

Liouville theorem: the density of particles n, or the volume V 
occupied by a given number of particles in phase space 
(x,px,y,py,z,pz) remains invariant under conservative forces. 

It hold also in the projected phase spaces (x,px),(y,py)(,z,pz) 
provided that there are no couplings  
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pz ≈ p
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εn,rms
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Envelope Equation without Acceleration


Now take the derivatives: 
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And simplify: 
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We obtain the rms envelope equation in which the rms emittance 
enters as defocusing pressure like term. 



Assuming that each particle is subject only to a linear focusing  

force, without acceleration: 
 
take the average over the entire particle ensemble  

!!x + kx
2x = 0
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" " σ x + kx
2σ x =

εrms
2

σ x
3

x !!x = −kx
2 x2

We obtain the rms envelope equation with a linear focusing force 
in which the rms emittance enters as defocusing pressure like 
term. 
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Space	
  Charge: what does it mean?

The net effect of the Coulomb interactions in a multi-particle system can be 

classified  into two regimes:

1)   Collisional Regime ==> dominated by binary collisions caused by close 
particle encounters ==> Single Particle Effects

2) Space Charge Regime ==> dominated by the self field produced by the 
particle distribution, which varies appreciably only over large distances 
compare to the average separation of the particles ==> Collective Effects



Continuous Uniform Cylindrical Beam Model


J = I
πR2

ρ =
I

πR2v
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εoE ⋅ dS = ρdV∫∫
Gauss’s law
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β
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Ampere’s law
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γ= 1 γ = 5 γ = 10

L(t)
Rs(t) Δt
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Bunched Uniform Cylindrical Beam Model




Fr = e Er −βcBϑ( ) = e 1−β 2( )Er =
eEr

γ 2

The attractive magnetic force , which becomes significant at high velocities, tends to 
compensate for the repulsive electric force. Therefore space charge defocusing is 
primarily a non-relativistic effect.

is a linear function of the transverse coordinate
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Lorentz Force




Envelope Equation with Space Charge
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2 x

Single particle transverse motion: 
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External Focusing Forces

Space Charge De-focusing Force

Emittance Pressure

Now we can calculate the term        that enters in the envelope equation
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Including all the other terms the envelope equation reads:
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Laminar Beam

Thermal Beam

The beam undergoes two regimes  along the accelerator 
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Surface charge density Surface electric field

Restoring force

Plasma frequency

Plasma oscillations



Neutral Plasma


Magnetic focusing


Magnetic focusing


Single Component       
Cold Relativistic Plasma


• Oscillations


• Instabilities


• EM Wave propagation




Single Component 
Relativistic Plasma
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σ
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qB

2mcβγ
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δ # # σ s( ) + 2ks
2δσ s( ) = 0
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ks

Equilibrium solution:
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σ ζ( ) =σ eq s( ) +δσ s( )

Small perturbation:
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σ s( ) =σ eq s( ) +δσ o s( )cos 2ksz( )

Perturbed trajectories oscillate around the equilibrium with the same frequency 
but with different amplitudes:
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δσ s( ) = δσ o s( )cos 2ksz( )



Emittance Oscillations are driven by space charge differential 
defocusing in core and tails of the beam 
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Projected Phase Space Slice Phase 
Spaces



σ(z)

ε(z)

Envelope oscillations drive Emittance oscillations
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Perturbed trajectories oscillate around the 
equilibrium with the  

same frequency but with different amplitudes 
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Direct self fields

Image self fields

 Wake  fields  

Space Charge



Static Fields: conducting or magnetic screens 

Let us consider a point charge q close to a conducting screen. 
The  electrostatic  field  can  be  derived  through  the  "image  method".  Since  the 
metallic  screen  is  an  equi-potential  plane,  it  can  be  removed  provided  that  a 
"virtual" charge is introduced such that the potential is constant at the position of 
the screen

q q - q



I

A constant current in the free space produces circular magnetic field 

If µr≈1, the material, even in the case of a good conductor, does not 
affect the field lines.



 Circular  Perfectly Conducting  Pipe (Beam at Center)

there is a cancellation of the electric and magnetic forces



In some cases, the beam pipe cross section is such that we can consider only the 
surfaces closer to the beam, which behave like two parallel plates. In this case, we 
use the image method to a charge distribution of radius a between two conducting 
plates 2h apart. By applying the superposition principle we get the total image field 
at a position y inside the beam. 
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∞
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Where we have assumed:   h>>a>y. 

For  d.c.  or  slowly  varying  currents,  the  boundary  condition  imposed  by  the 
conducting  plates  does  not  affect  the  magnetic  field.  We do  not  need  “image 
currents “As a consequence there is no cancellation effect for the fields produced 
by the "image" charges. 

2h q

Parallel Plates (beam at center)

-q

-q 2h

q

q 4h

y



From the divergence equation we derive also the other transverse component, 
notice the opposite sign:
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Including also the direct space charge force, we get:
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Therefore, for γ>>1, and for d.c. or slowly varying currents the cancellation effect 
applies only for the direct space charge forces. There is no cancellation of the 
electric and magnetic forces due to the "image" charges.



It is necessary to compare the wall thickness and the skin depth (region of 
penetration of the e.m. fields) in the conductor. 

If the fields penetrate and pass through the material, we are practically in 
the static boundary conditions case. Conversely, if the skin depth is very 
small, fields do not penetrate, the electric filed lines are perpendicular to 
the wall, as in the static case, while the magnetic field line are tangent to 
the surface. 

I -II -I

Δw

δw

Time-varying fields  
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δw ≅
2

ωσµ



Usually, the frequency beam spectrum is quite rich of harmonics, 
especially for bunched beams. 

It is convenient to decompose the current into a d.c. component, I, 
for which δw>>Δw, and an a.c. component, Î, for which δw<< Δw.

While the d.c. component of the magnetic field does not perceives 
the  presence  of  the  material,  its  a.c.  component  is  obliged to  be 
tangent at the wall. For a charge density λ we have I=λv. 

We can see that this current produces a magnetic field able to cancel 
the effect of the electrostatic force.

Parallel Plates (Beam at Center) a.c. currents
Δw

δw
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There is cancellation of the electric and magnetic forces !!
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Parallel Plates - General expression of the force 

Taking into account all the boundary conditions for d.c. and a.c. 
currents, we can write the expression of the force as:
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where λ is the total current, and λ its d.c. part. We take the sign (+) if u=y, and the 
sign (–) if u=x.

-L. J. Laslett, LBL Document PUB-6161, 1987, vol III
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(δw<< Δw)
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When the beam is located at the centre of symmetry of the pipe, the e.m. forces due 
to  space  charge  and  images  cannot  affect  the  motion  of  the  centre  of  mass 
(coherent),  but  change  the  trajectory  of  individual  charges  in  the  beam 
(incoherent). 

These force may have a complicate dependence on the charge position. A simple 
analysis  is  done  considering  only  the  linear  expansion  of  the  self-fields  forces 
around the equilibrium trajectory.

Incoherent and Coherent Transverse Effects



Consider a perfectly circular accelerator with radius ρx. The beam 
circulates  inside  the  beam pipe.  The  transverse  single  particle 
motion  in  the  linear  regime,  is  derived  from  the  equation  of 
motion. Including the self field forces in the motion equation, we 
have 
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dv
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Self Fields and betatron  motion



In the analysis of the motion of the particles in presence of the self 
field,   we  will  adopt  a  simplified  model  where  particles  execute 
simple harmonic oscillations around the reference orbit. 
This is the case where the focussing term is constant. Although this 
condition in never fulfilled in a real accelerator, it provides a reliable 
model  for the description of the beam instabilities
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Qx , Betatron tune is the  n. of 
betatron oscillations per turn:



Transverse Incoherent  Effects
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Example:  Incoherent  betatron  tune  shift  for  an  uniform 
electron beam of radius a, length lo, inside circular  perfectly 
conducting  pipe 
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For a real  bunched beams the space charge forces, and the tune shift 
depend on the longitudinal and radial position of the charge. 
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ΔQ as function of beam emittance



Consequences of the space charge  tune shifts

       In circular accelerators the values of the betatron tunes should 
not be close to rational numbers in order to avoid the crossing of 
linear and non-linear resonances where the beam becomes unstable.

 

The tune spread induced by the space charge force can make hard to 
satisfy  this  basic  requirement.  Typically,  in  order  to  avoid  major 
resonances the stability requires 
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ΔQu < 0.3



Transverse Coherent  Effects

If the beam experiences a transverse deflection kick, it starts to 
perform betatron oscillations as a whole. The beam, source of the 
space  charge  fields  moves  transversely  inside  the  pipe,  while 
individual particles still continue their incoherent motion around 
the common coherent trajectory.
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The image charge is at a distance “d” such that
the pipe surface is at constant voltage, and pulls
 the beam away from the center of the pipe.

 Circular  Perfectly Conducting  Pipe (Beam off Center)



The effect is defocusing: the horizontal electric image
 field E and the horizontal force F are: 

  

€ 

Exc (x) =
λ(z)
2πε0

1
d − x

≈  λ(z)
2πε0

1
d

= λ(z)
2πε0

x
b2    

Fxc (r) ≈
eλ(z)
2πε0

x
b2

€ 

ΔQxc = −
ρx

2

2β 2EoQx 0

∂ Fxc
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −

ρx
2

2β 2EoQx 0

eλ(z)
2π εob

2

€ 

re,p =
e2

4πε0m0c
2   00

22

2

 lb
N

Q
rQ

x

xe
xc γβ

ρ
−=Δ





Warsaw	
  –	
  30	
  	
  September	
  2015	
  


