

Rectifiers

(Line Commutated Rectifiers)

Line Commutated Rectifiers Roberto Visintini Sincrotrone Trieste

Line-Commutated or Naturally Commutating Rectifers

- ⇒Un-Controlled (diodes)
- Semi- or Full-Controlled (thyristors)

Force-Commutated Rectifiers

Switch mode (PWM)

What are used for

Line Commutated Rectifiers Roberto Visintini Sincrotrone Trieste

High Current loads (or multiple low current ones)

- Conventional Magnets (low time constant)
- ⇒ SC Magnets (very high time constant)

High Voltage Loads

➡ Klystrons for RF plants

Elettra – Storage Ring RF Amplifier klystron in its trolley with the modulating cavities

The principles of Rectification

Line Commutated Rectifiers elettra Roberto Visintini Sincrotrone Trieste

Performance Parameters (some)

Ripp Fact

Assumptions:

- I deal Devices (instantaneous switching, no losses)
- Resistive Load

$$V_{p}(t)$$
 $V_{s}(t)$ $V_{L}(t)$ Load

DC voltage
on load
$$V_{DC} = \frac{1}{T} \int_{0}^{T} v_{L}(t) dt$$

rms voltage
$$V_L = \sqrt{\frac{1}{T} \int_0^T v_L^2(t) dt}$$

Form Factor $FF = \frac{V_L}{V_{DC}}$

ble
for
$$RF = \frac{\sqrt{V_L^2 - V_{DC}^2}}{V_{DC}} = \sqrt{FF^2 - 1}$$

Transformer
$$TUF = \frac{P_{DC}}{Transformer VA rating} = \frac{P_{DC}}{\frac{VA_p + VA_s}{2}}$$

 $\begin{array}{c} \text{Rectification} \\ \text{Ratio} \\ \text{(a.k.a efficiency)} \end{array} \mathbf{h} = \frac{P_{DC}}{P_L + P_D} \Rightarrow \frac{V_{DC}^2}{V_L^2} \frac{1}{1 + \frac{R_D}{P}} \xrightarrow{R_D = 0} \mathbf{h} = \frac{V_{DC}^2}{V_L^2} = \frac{1}{FF^2} \end{array}$

Some Diode/Thyristor Parameters:

Peak Inverse Voltage, Peak Direct Voltage (Thy. Only), Peak Forward Current, Average Current, Rms Current,...

Single-Phase topologies - 1

Line Commutated Rectifiers elettra Roberto Visintini Sincrotrone Trieste

Single-Phase topologies - 2

Applications

- Low power loads as stand-alone rectifiers
- Output stage of PWM rectifiers \rightarrow

Comparison among topologies 1-Ph.

 $V_{\rm L}(t)$

 $V_{\rm s}(t)$

Load

- Secondary voltage is sinusoidal: $v_s(t) = V_s \sin (2\pi f_{mains}t)$
- Resistive Load
- I deal devices (no device losses)

Parameter	Half-Wave	Full - Wave (Center-tapped)	Full - Wave (Bridge)	
Rectified Voltage - V _{DC}	$V_{\rm s}/\pi = 0.318 \cdot V_{\rm s}$	$2 \cdot V_s / \pi = 0.636 \cdot V_s$	$2 \cdot V_{\rm s}/\pi = 0.636 \cdot V_{\rm s}$	
rms Output Voltage - V _L	$V_{s}/2 = 0.318 \cdot V_{s}$	$V_{\rm s}/\sqrt{2} = 0.707 \cdot V_{\rm s}$	$V_{s}/\sqrt{2} = 0.707 \cdot V_{s}$	
Form Factor - FF	1.57	1.11	1.11	
Rectification Ratio - h	0.405	0.81	0.81	
Ripple Factor – RF	1.21	0.482	0.482	
Transformer Utilization Factor - TUF	0.286	0.572	0.81	
Diode Peak I nverse Voltage (PIV) – V _{RRM}	$V_s = \pi \cdot V_{DC}$	$2 \cdot V_s = \pi \cdot V_{DC}$	$V_{s} = \pi/2 \cdot V_{DC}$	
Peak Direct Voltage (PDV – thyristors only) – V _{DRM}	$V_s = \pi \cdot V_{DC}$	$2 \cdot V_s = \pi \cdot V_{DC}$	$V_s = \pi/2 \cdot V_{DC}$	
Diode Peak Forward Current – I _{FRM}	$\pi \cdot I_{DC}$	$\pi/2 \cdot I_{DC}$	$\pi/2 \cdot I_{DC}$	
Diode Average Current – I _{F(AV)}	I _{DC}	0.5 · I _{DC}	.5 · I _{DC} 0.5 · I _{DC}	
Diode Rms Current - I _{F(RMS)}	$\pi/2 \cdot I_{DC}$	$\pi/4 \cdot I_{DC}$	$\pi/4 \cdot I_{DC}$	
Fundamental Ripple Frequency - f _R	f _{mains}	$2 \cdot f_{mains}$	$2 \cdot f_{mains}$	

 $V_{\rm p}(t)$

*Extracted from: M.H. Rashid, "Power Electronics Handbook", Academic Press

Mostly Used Configurations Multi-Ph. Line Commutated Rectifiers Roberto Visintini Sincrotrone Trieste

Some Considerations:

- number of phases ® ¥ Þ FF ® 1 & RF ® 0
- Max Practical Numbers: 12 or 24
- The higher the number of phases the more complicated the transformer is for Star-Connected (single-way) diode rectifiers
- Bridge configurations allow to have 6 or 12 pulses without complex transformer connections
 - Single Bridge (6 pulses)
 - Double Bridge Series/Parallel (12 pulses)

6-p Configuration: Bridge

Line Commutated Rectifiers elettra Roberto Visintini Sincrotrone Trieste

Comments:

- Mostly used configuration
- It is the base for structures with a higher number of pulses
 - Series (same output current, double output voltage)
 - Parallel (double output current, same output voltage)
- This configuration (and those derived) are the best for FF, RF and TUF

12-p Configurations (S & //)

Line Commutated Rectifiers elettra Roberto Visintini Sincrotrone Trieste

Comparison among topologies 3-Ph.

 $V_{\rm L}(t)$

 $V_{\rm s}(t)$

Load

- Secondary voltage is sinusoidal: $v_s(t) = V_s \sin(2\pi ft)$
- Resistive Load
- I deal devices (no device losses)

Parameter	3-Phase Star (Single-Way)	6p Bridge (Double-Way)	12p Bridge (Series)	12p Bridge (Parallel+)
Rectified Voltage - V _{DC}	$0.827 \cdot V_s$	1.654 · V _s	$3.308 \cdot V_s$	1.654 · V _s
rms Output Voltage – V _L	$0.84 \cdot V_s$	1.655 · V _s	$3.310 \cdot V_s$	1.655 · V _s
Form Factor – FF	1.0165	1.0009	1.00005	1.00005
Rectification Ratio - h	0.986	0.998	1.00	1.00
Ripple Factor - RF	0.182	0.042	0.01	0.01
Transformer Utilization Factor - TUF	0.73	0.95	0.97	0.97
Diode Peak Inverse Voltage (PIV) – V _{RRM}	$2.092 \cdot V_{DC}$	1.05 · V _{DC}	$0.524 \cdot V_{DC}$	$1.05 \cdot V_{DC}$
Peak Direct Voltage (PDV – thyristors only) – V_{DRM}	$2.092 \cdot V_{DC}$	1.05 · V _{DC}	$0.524 \cdot V_{DC}$	$1.05 \cdot V_{DC}$
DiodePeak Forward Current – I _{FRM}	1.21 · I _{DC}	1.05 · I _{DC}	1.01 · I _{DC}	0.524 · I _{DC}
Diode Average Current – I _{F(AV)}	0.333 · I _{DC}	0.333 · I _{DC}	0.333 · I _{DC}	0.167 · I _{DC}
Diode Rms Current – I _{F(RMS)}	0.587 · I _{DC}	0.579 · I _{DC}	0.576 · I _{DC}	0.409 · I _{DC}
Fundamental Ripple Frequency - f_R	$3 \cdot f_{mains}$	$6 \cdot f_{mains}$	$12 \cdot f_{mains}$	$12 \cdot f_{mains}$

 $V_{\rm p}(t)$

*Extracted from: M.H. Rashid, "Power Electronics Handbook", Academic Press

+ With inter-phase transformer

Goal

- To be able to vary the output voltage on the load according to the needs
- To be able to recover, if needed, energy from the load to the mains or other energy storage device
- To minimize the losses on some devices when the load requirements are low

Possible Solutions

- Use of thyristors in place of diodes
- Use thyristors AND diodes
- Use diodes or thyristors AND transistors

Applications

- High Current loads (magnets)
- High Voltage loads (klystrons)
- Several low current loads supplied from a multi-channel converter (small magnets)
- Supply of current to loads of different characteristics

Three-Phase Fully Controlled Bridge

Line Commutated Rectifiers elettra Roberto Visintini Sincrotrone Trieste

CAS – "Power Converters" – Warrington, UK – 12 to 18 May 2004

- \Rightarrow Delay Angle **a**: the span of period between the instant when the thyristor could start to conduct and the instant when the trigger pulse is applied
- ⇒ Since in stable conditions also the subsequent couple of thyristors are delayed the conduction continues until the next trigger pulse
- \Rightarrow The average value, V_{DC}, is anyway lower and depends on **a**

Conduction vs. **a** (Resistive Load)

$0^{\circ} = a = 60^{\circ}$

- Continuous conduction: the output voltage is always positive
- The current flows continuously in the resistive load

$60^{\circ} < a = 120^{\circ}$

- Discontinuous conduction: the output \rightarrow voltage goes to zero for part of each pulse
- The current flows as "pulses" in the resistive load

3-Ph.Current Regulator & Diode Br.

Line Commutated Rectifiers Roberto Visintini Sincrotrone Trieste

Comments:

- High Voltage Loads (like klystrons) require series connections of switches
- Thyristors in series means a <u>VERY</u> good equalization of their firing pulses, diodes are naturally commutating devices
- Pre-regulation of the AC input of the Bridge

Elettra – Linac Modulator Klystron

3-Ph.Multi-Channel (unregulated)

Comments:

- Good solution when there are several low-power loads.
- The common part (transformer, bridge, filter) and the n channels can be housed in a single cabinet.
- Using two bridges in series it is possible to supply bipolar channels (e.g. for corrector magnets)

3-Ph.Contr. Br. & Linear Output

- Good for load which change their characteristics or for loads which need "fast" output current changes
- Acting on the controlled bridge it is possible to reduce the voltage on the <u>linear</u> transistor output stage and minimize the power dissipation at low current conditions

Elettra – Storage Ring Electromagnetic Elliptical Wiggler (EEW): for a short time in 2001, due to a major fault to its PWM PS, it was powered by a couple of PS of this type.

The "real" world - DC Side

- The load has a strong inductive component (usually it is a \Rightarrow magnet)
- The current doesn't follow the output voltage and it is \Rightarrow smoothed by the inductance
- If the inductance is big enough, the current waveform is \Rightarrow continuous even if the voltage one is not
- The output voltage can go negative (when $\alpha > 60^{\circ}$) but the \Rightarrow current is still flowing in the same direction (keeping the thyristor in conduction)
- The load inductance has a strong influence also on the \Rightarrow waveform of the AC line current: the higher the inductance the less distorted the input current

- \Rightarrow The ripple on the output direct current is normally too high for the applications in accelerators' field
- \Rightarrow There is the need for a Low-Pass Filter
- \Rightarrow Cut-off frequency f_0 should be much lower than ripple's 1st harmonic ($f_{ripple1} = p \times f_{mains}, p = \#$ pulses)
- \Rightarrow Dumped passive L-C filters are used
- \Rightarrow If additional attenuation is needed, additional Active Filters on the DC output are also used

Parenthesis: Inversion

- ⇒ With an inductive load, when a > 60°, the output voltage goes temporarily negative while the current is still flowing in the "positive" direction
- ⇒ For a > 90°, the average output voltage becomes negative but the current is still positive: the power is flowing back from the DC side to the AC, the converter is operating in "inverting mode"
- ⇒ The inverting mode can be used to recover energy from an inductive load (or a more stable source of DC like a battery or a solar cell panel) and send it to the AC mains or store in a capacitor.
- ⇒ The maximum delay angle is **a** » 150° (taking into account the commutation angle **m** and the thyristor turn-off time t_q)
- ⇒ In "pure" rectifiers to avoid inversion and keep a working range up to a = 120°, a free-wheeling diode is put in parallel to the rectifier output.
- ⇒ The free-wheeling diode creates a path for the load current when the output voltage would become negative.
- ⇒ The free-wheeling diode has a positive effect in the ripple reduction and reactive power.

The "real" world - AC Side

- ⇒ There is a **FINITE** inductance on the mains side (the inductance of the secondary of the transformer and the leakage inductance of the line): L_s
- \Rightarrow The thyristors change their status (on or off) in a **FINITE** time
- ⇒ During commutation from one phase to another there is an "overlapping time" when two thyristors on the same side of the bridge are conducting at the same time shorting the phases through the L_s of each phase it is indicated as the "overlap angle" **m**
- \Rightarrow For a given I_D and \mathbf{a} , the duration of the overlapping depends on V_{f-f} and L_s ($L_D >> 0$)

$$I_{D} = \frac{V_{f-f}}{\sqrt{2} \cdot \mathbf{w} \cdot L_{s}} \cdot \left[\cos(\mathbf{a}) - \cos(\mathbf{a} + \mathbf{m}) \right]$$
 (V_{f-f} = peak value of inter-phase voltage)

*Extracted from: M.H. Rashid, "Power Electronics Handbook", Academic Press

The effects on the mains (current)

Current:

- \Rightarrow The current drawn from AC supply system is not a pure sinusoid
- \Rightarrow Fundamental component with superimposed harmonic component
- \Rightarrow Harmonic frequency: $(n \times p \pm 1) \times f_{mains}$ with n = 1, 2, ..., p = # pulses)
- \Rightarrow A 12 pulse converter has a lower harmonic impact on the mains than two 6 pulse units of a comparable size

12 pulse – mains line current (THD=9.14%)

*Data extracted from: G.J. Wakileh, "Power Systems Harmonics", Springer

The effects on the mains (voltage)

Voltage:

- Notches (due to the commutation between phases)
 Spikes
- Distortion

Notch Width =
$$\frac{2 \cdot \mathbf{w} \cdot L_s \cdot I_{DC}}{V_{f-f} \cdot sin(\mathbf{a})}$$

 V_{f-f} = peak value of interphase voltage

$$THD_{V} = \frac{\sqrt{\sum_{n \ge 2} (I_{n} \cdot n \cdot \mathbf{w} \cdot L_{s})^{2}}}{V_{phase}}$$

V_{phase} = peak value of interphase voltage I_n = n-th harmonic of the AC input current L_s = AC source impedance

*Extracted from: N. Mohan-T.M. Undeland-W.P. Robbins, "Power Electronics", Wiley

The effects on the AC mains (def's) Line Commutated Rectifiers

- First assumption: $L_s = 0$ (instantaneous commutation, $\mu = 0$) \Rightarrow
- Than considering $L_s > 0$ (overlapping, $\mu > 0$) \Rightarrow

Displacement
Power Factor
$$DPF = cos(f_1) = cos(a)$$

Power
Factor
$$PF = \frac{P}{S} = \frac{V_R^{rms} \cdot I_{R1}^{rms} \cdot cos(f_1)}{V_R^{rms} \cdot I_R^{rms}}$$
$$PF = \frac{I_{R1}^{rms}}{I_R^{rms}} \cdot cos(a) = \frac{3}{p} \cdot cos(a)$$

 I_{R1} = peak value of fundamental component of R-Phase line current

Displacement
Power Factor
$$DPF \cong \frac{cos(a) + cos(a + m)}{2}$$

*Extracted from: N. Mohan-T.M. Undeland-W.P. Robbins, "Power Electronics", Wiley

*Extracted from: N. Mohan-T.M. Undeland-W.P. Robbins, "Power Electronics", Wiley

Roberto Visintini Sincrotrone Trieste

Example: existing 12p Magnet PS

Line Commutated Rectifiers elettra Roberto Visintini Sincrotrone Trieste

12-pulses Fully controlled Bridge Rectifier:

- \Rightarrow Two 6-p bridges in parallel
- \Rightarrow Free-wheeling diodes
- \Rightarrow Passive Filter

Elettra – Transfer Line Dipole Power Supplies: 2 PS (200 V / 1080 A, 12p-bridge & 60 V / 1080 A, 6p-bridge) in one cabinet.

Elettra – Transfer Line Dipole Power Supply PSB T2.2: 200 V / 1080 A, 12p fully controlled bridge - General Scheme.

Elettra - Transfer Line Dipoles: 2 out of 7 dipole magnets. The first one (arrow) is powered separately from the others.

"Real" 3-Ph.12p Contr. Br. Output

 \Rightarrow Output voltages of both bridges and PS output voltage (V_{f-n} = 166 V; I_{out} = 1000 A)

- \Rightarrow Delay angle is **a** \approx 22.5°
- \Rightarrow Overlapping angle is **m** \approx 3.4° (overlapping time ~190 µs)
- \Rightarrow L_s = 23 µH (as calculated from the formula shown before)

Elettra – Transfer Line Dipole Power Supply PSB_T2.2: 200 V / 1080 A, 12p fully controlled bridge (without inter-phase reactor) – Output Voltage waveforms.

Line Commutated Rectifiers elettra

Roberto Visintini Sincrotrone Trieste

Sometimes a diode is placed in parallel to R1 to charge C1 more efficiently

Protection of Thyristors (Diodes):

- **Overcurrent (preventing the junction** temperature to exceed the limit)
 - Fuses
 - Proper choice of components (ratings 30 to 50%) higher than specified)
 - Anode current monitoring acting on the trigger delay angle

Overvoltage (avoid the reverse break down and the unwanted turn-on)

• Proper choice of components (ratings 30 to 50%) higher than specified) both V_{RRM} and V_{DRM}

Voltage Transients or Surges

Golden Rule: store quickly the surge energy (in C) and dissipate it slowly (in R)

- AC I nput side surges (e.g. due to opening of the main contactor) **Þ** "Bucket Circuit"
- Reverse Recovery charge of Thyristor (at turnoff) **P** "Snubber Circuit"

Protection & Interlock – Converter

Main I tems:

- Circuit Breaker & Contactor (with "Soft Start")
- Transformer (overcurrent, over-temperature)
- Thyristor Bridge (over-temperature)
- Passive Filter (excessive ripple, over-temperature)
- Load (overvoltage, over-temperature)
- Personnel (interlock on doors, emergency off button, ...)

Example: Elettra's SR Dipoles' PS

1. Circuit Breaker

Example: Elettra's SR quads' PS

Line Commutated Rectifiers elettra Roberto Visintini Sincrotrone Trieste

Elettra - Storage Ring QD and S1Power Supplies Cabinet.

➡ 6-p and 12-p **Converters** Single and Multiple

converters in each cabinet

Elettra – Storage Ring QF Power Supply Cabinet.

Elettra – Storage Ring Quadrupoles.

Example: Elettra's SR Steerers' PS

Line Commutated Rectifiers elettra Roberto Visintini Sincrotrone Trieste

Elettra - Storage Ring Correctors Power Supplies Cabinet.

Elettra - Storage Ring Corrector Power Supply.

Linear Multichannel:

- **Thyristor Pre-**Regulator
- 12-p Diode Bridge (in series, "zero" is common point)
- 14 Channels + 2 spares

Elettra – Storage Ring Combined H+V corrector.

Line Comm. Rectifiers - Pros & Cons

rs **elettra** e

Pros

- Very well known and established technology with simple structures
- The effect of "parasitic" parameters (inductance and capacitance) is low
- High Efficiency
- High Voltage and High Power Capability
- Used as "building blocks" inside Switched Mode converters with "Unity Power Factor"

Cons

- Bandwidth limited (not really important for DC applications)
- Power factor depending on firing angle, in any case below 0.75
- Strong Harmonic content on input current
- Thyristors notches in mains and noise spikes
- Large and heavy magnetic elements (transformers, chokes)
- Residual ripple at low frequency (300 Hz up) which require large passive filters and, often, active filters to meet specifications

Emerging Topologies...

Goals:

- Reduce alternating current harmonic content
- Improve Power Factor
- Better filtering of output current ripple
- Higher dynamic response
- More flexible control...

⇒ PWM Techniques

On the other hand:

- High Switching Frequency parasitic elements ARE important
- Sometimes quite complicated structures
- EM noise