

Supercapacitors: Summary

- Generalities on Supercapacitors
 - Principle
 - Model of a supercapacitor
 - Series connection of supercapacitors
- Sizing of a supercapacitive tank
 - Sizing method
 - Energy efficiency and power availability
- Applications and converters
 - Voltage drop compensation for weak distribution networks
 - Energy buffers for elevators
 - Uninterruptible power supplies
- Conclusion

Generalities on Supercapacitors

Principle

- Supercapacitors: electrochemical double layer capacitor
- High energy density, together with a high power density
- Energy stored by charge transfer at the boundary between electrodes and electrolyte
- Amount of stored energy is a function of :
 - Electrode surface,
 - size of ions,
 - level of electrolyte decomposition voltage

Generalities on Supercapacitors

- Principle : technology
 - Electrodes: activated carbon
 - High surface area part
 - Define the energy density
 - Current collectors
 - High conducting part
 - Membrane
 - Avoids electronic contacts between the electrodes
 - Allows the mobility of the charged ions
 - Electrolyte
 - Supplies and conducts ions
 - Dissociation voltage of organic electrolytes less than 3V
 - Organic electrolytes have a lower ionic conductivity (reduced power capability)

Generalities on Supercapacitors

• Model of supercapacitors

- Voltage dependant capacitance
 - Series resistor
 - Leakage resistor
- rc sub-circuits (relaxation phenomena)

Generalities on Supercapacitors

- Series connection of supercapacitors
 - Voltage sharing solution, using power electronics solutions to offer a high efficiency.

Sizing of a supercapacitive tank

- Sizing method
 - Energy stored in a supercapacitor

$$W_{\rm M} = \frac{1}{2} C U_{\rm M}^2$$

Voltage discharge ratio: the minimum voltage during the discharge has to be limited for efficiency reasons

$$d = \frac{U_m}{U_M} 100$$

- The usable energy is then only part of the maximum stored energy

$$\mathbf{W}_{\mathrm{u}} = \mathbf{W}_{\mathrm{M}} \left(1 - \left(\frac{\mathrm{d}}{100} \right)^2 \right)$$

- Number of supercapacitors for a given usable energy

$$N_{s} = \frac{2W_{u}}{CU_{M}^{2} \left[1 - \left(\frac{d}{100}\right)^{2}\right]}$$

Sizing of a supercapacitive tank

• Sizing method

– Example

The needed energy is E_u=20.55MJ(5.7kWh)

	W _u =0.55MJ (5.7kW.h)				
	C=1800F, U _M =2.5V, I _M =200A				
_	N _s	d (%)	Volume (m ³)	Weight (kg)	E (kw.h)
-	4872	50	1.46	1948	7.6
_	5709	60	1.71	2283	8.92
	7164	70	2.15	2865	11.2

Sizing of a supercapacitive tank

- Energy efficiency and power availability
 - Due to the series resistor, energy efficiency of supercapacitors has to be taken into account during the sizing of the supercapacitive tank
 - Energy efficiency has also an influence on the power availability
 - Two cases have to be investigated:
 - Energy efficiency for a constant current charge/discharge
 - Energy efficiency for a constant power charge/discharge

Sizing of a supercapacitive tank

Energy efficiency and power availability : Example of a $2600F/2.5V/0.7m\Omega$ Scap

- Time for loading energy has to be kept up to 10s for a 90% energy efficiency (Ic<320A or P<700W)
- Time for unloading energy has to be kept up to 10s for a 90% energy efficiency (Ic<320A or P<400W)
- Taking into account the necessity of 90% of energy efficiency, the current or the power for charging/discharging have to be limited: the power density is only 806W/kg (instead of 4300W/kg)

- Voltage drop compensation for weak distribution networks
 - Using supercapacitors to provide/absorb the energy needed to maintain at a constant level the end-of-line voltage.

Applications and converters

- Voltage drop compensation for weak distribution networks
 - Typical waveforms on the line N°7 (Lausanne, CH)

Power Profile At the "Bellefontaine" station

Voltage at the end of line "Val-Vert" Station

- Voltage drop compensation for weak distribution networks
 - It is necessary to use a double stage power converter to interface the supercapacitive tank to the end of the line.

- Voltage drop compensation for weak distribution networks
 - Special control algorithm have to be implemented

- Voltage drop compensation for weak distribution networks
 - Simulation results

- Application in transportation : reduction of emissions and energy savings
 - Diesel-electric trains: reduction of emissions and energy savings
 - Partner : Stadler Rail/ ABB

Applications and converters

• Application in transportation : reduction of emissions and energy savings

The track

Altitude

Instantanous value of power

- Application in transportation : reduction of emissions and energy savings
 - Reduction of the maximal delivered power of diesel motors in dependency of the amount of stored energy

Applications and converters

• Energy buffers for elevators

Applications and converters

- Energy buffers for elevators :
 - simulations regarding a real system
 - \Rightarrow car weight : 720kg, counter weight : 1440kg, load : 1400kg

Speed, Position for a 10-floors up/down run

Power and Energy for a 10-floors up/down run

The needed energy is 220kJ (61Wh)

Applications and converters

- Energy buffers for elevators
 - Simulations regarding a real system
 - The power provided by the network has only to compensate the losses of the lift drive

Scaps voltage/current (10-floors up/down run)

Powers for a 10-floors up/down run

Conclusion

- Supercapacitors are new components for energy storage
 - High energy density (even if lower than batteries)
 - High power density
- Model of supercapacitors have to take into account
 - The voltage dependence of the capacitance
 - The series/leakage resistors
 - Relaxation phenomenon
- Energy efficiency
 - Power availability of supercapacitors is affected by their energy efficiency
- Applications
 - Main applications use supercapacitors as energy buffers
 - In applications where supercapacitors are used as main energy source (UPS), the reduced energy density is compensate by their high power density, combined with an increased lifetime compared to batteries.