Capacitors: Content (1)

- Distinctive Features
 - Introduction
 - Equivalent Circuit
 - Constraints
 - Limitations
 - Series Inductance
 - Conclusion

- Used Technologies
 - Dielectrics
 - Capacitor Realisation
 - Electrolytic Capacitors
Capacitors: Content (2)

- **Applications and Specifications**
 - Introduction
 - Filter Capacitors for Rectifiers at Industrial Frequencies
 - De-Coupling Capacitors
 - Commutation Capacitors
 - Resonance Capacitors
 - Capacitors for Semiconductor-Commutation Assistance
 - Energy-Storage Capacitors
Distinctive Features

- Capacitors used in *electrotechnics* (increase power factor, start single-phase asynchronous motors, etc.)
 - almost sinusoidal waveforms at industrial frequencies (50 or 60 Hz)
 - absence of a notable constant voltage
- Capacitors used in *power-electronic* circuits
 - currents not sinusoidal
 - harmonics can easily exceed 60 %
 - often pulse-like with \(\frac{di}{dt} \) easily exceeding 10 A/\(\mu \)s
 - often fundamental frequencies of 1 to 50 kHz
 - high permanent constant voltage superimposed to the alternating or pulse-like component
 - parasitic series inductance and resistance must be as small as possible.
Equivalent Circuit

- \(C \): ideal capacitor
- \(L_s \): series inductance
- \(R_s \): series resistance
- \(R_p \): equivalent parallel resistance
 (dielectric losses)
- \(R_{eq} \): equivalent series resistance
 (total capacitor losses)
- \(R_f \): leakage resistance
 \((R_fC \text{ often bigger than } 1000 \text{ s } \Rightarrow \text{influence can be neglected})\)
Constraints (electrical)

- **Dielectric ageing problem**
 - voltage waveform (continuous, alternating, or both superimposed)
 - frequency
 - harmonics
 - temperature
 - over-voltage stress

- **Problems linked to pulse-like currents**
 - high currents \Rightarrow high forces \Rightarrow rupture or breakdown of terminals and internal connections
 - metallised electrodes are sensible
 - maximum values for $\frac{dv}{dt}$ or I^2t
Constraints (thermal)

- **Thermal problem**
 - determines component reliability
 - heating calculations are delicate and require a lot of experience
 - capacitors dielectrics are quite limited in temperature (85°C vs. 150 to 200°C for transformers or motors)
 - life time exponential function of temperature (for example, life time divided by 10 between 70 and 85 C)
Limitations (general)

- **Ohmic losses**
 - connections and the electrodes (R_s)
 - depend on frequency (skin effect)
- **Dielectric losses**
 - dielectric (R_p)
 - product of reactive power ($E^2 \omega$) and tangent of the loss angle ($\tan \delta = C \omega / R_p = f(U, \omega, \theta)$)
- **Electromagnetic losses**
 - induced currents in the metal case
 - often imposes the use of amagnetic metals (such as aluminium)
Limitations (sinusoidal operation)

• **Zone A**
 - limitation by voltage
 - \(Q = U^2 C \omega \)
 - maximum power @ \(f_1 \)

• **Zone B**
 - limitation by losses

• **Zone C**
 - limitation by current
 - maximum current @ \(f_2 \)
 - reduces with frequency due to skin effect
Series Inductance

- Series inductance L_s produces important transient voltage drop ($L_s\frac{di}{dt}$)
- Impedance function of frequency
- Minimum corresponds to series resonance ($L_sC\omega^2 = 1$)
- Difficulties if resonance frequency close to some higher-rank harmonics
 - Occurs particularly in high-frequency resonant converters (above 5 to 10 kHz)
- In practice: do not use capacitor above $1/5^{th}$ of resonance frequency
Conclusion

• Constraints met in power electronics require capacitor technologies adapted to each application

• Big currents of high frequency and temperature limits of actual dielectrics impose components of very low losses and low thermal impedance

• General orders of magnitude:
 – \(R_s \) 0.1 to 10 m\(\Omega\)
 – \(L_s \) 5 to 400 nH
 – \(\tan \delta \) 2e-4 to 100e-4
 – \(Z_{th} \) 0.5 to 20 K/W
Used Technologies

- Three large families for power electronics
 - electrolytic aluminium capacitors
 - filtering of continuous voltages
 - $P > 10 \text{ kW}, U < 1000 \text{ V}$
 - $P > 100 \text{ kW}, U < 3500 \text{ V}$
 - ceramic capacitors
 - high frequencies: $f > 1 \text{ MHz}$
 - high cost
 - film capacitors (papers, plastics, dry or impregnated)
 - winding of metallic electrodes and dielectric (paper or plastic film)
 - general technology
<table>
<thead>
<tr>
<th>Material</th>
<th>rel. perm.</th>
<th>tan δ (10^{-4})</th>
<th>strength (kV/mm)</th>
<th>vol. mass (kg/m³)</th>
<th>temp. coeff. (10^{-6}/K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>paper</td>
<td>6.6</td>
<td>2</td>
<td>600</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>polypropylene</td>
<td>2.2</td>
<td>2</td>
<td>600</td>
<td>900</td>
<td>-200</td>
</tr>
<tr>
<td>polyester</td>
<td>3.2</td>
<td>50</td>
<td>500</td>
<td>1400</td>
<td>+1200</td>
</tr>
<tr>
<td>mineral oil</td>
<td>2.3</td>
<td>10</td>
<td>60</td>
<td>860</td>
<td>-1400</td>
</tr>
<tr>
<td>silicone</td>
<td>2.8</td>
<td>2</td>
<td>60</td>
<td>900</td>
<td>-3300</td>
</tr>
</tbody>
</table>
Capacitor Realisation

(a) condensateur à armatures ; sortie par lamelles

(b) condensateur à armatures débordantes

(c) condensateur métallisé

(d) condensateur à film métallisé segmenté (crénelage)
Electrolytic Capacitors
Applications and Specifications

- Difficult and expensive to manufacture capacitors satisfying all specifications for power-electronic capacitors => Components adapted to each application

- Two large families of capacitors:
 - operating voltage continuous and unipolar
 - filtering
 - de-coupling
 - energy storage
 - operating voltage alternating
 - harmonic filtering
 - commutation
 - resonance
 - commutation aid
 - semiconductor protection
DC Voltage

- Capacitors for continuous voltage
- Capacitors for energy storage with low discharge recurrence (few Hz)
- Low reactive powers
- Dielectric losses not dominant
- Series resistance and rms-current are the essential heating factors
AC Voltage

- Dielectric and ohmic losses important
Current, Reactive and Loss Power Calculation

\[i = \frac{\pi}{2} C \left(\frac{U_1 + U_2}{l} \right) \]
\[I_{\text{rms}} = \frac{\pi}{2} C (U_1 + U_2) \sqrt{\frac{I_1}{l}} \]
\[Q = \frac{\pi}{4} C (U_1 + U_2)^2 f_r \]
\[f = \frac{1}{2t} \]
\[P = Q (2 + kf) 10^{-4} \]

\[\tan \delta = \tan \delta \text{ dielectric} + CR_e \cdot 2\pi f \]
\[\tan \delta \text{ dielectric} = 2 \cdot 10^{-4} \text{ for polypropylene} \]
\[CR_e \cdot 2\pi = k \cdot 10^{-4} \text{ galvanic component} \]
\[\tan \delta = (2 + kf) 10^{-4} \]
Current, Reactive and Loss Power Calculation

\[\hat{I}_1 = \frac{\pi}{2} C \left(\frac{U_1 + U_2}{t_1} \right) \]

\[\hat{I}_2 = \frac{\pi}{2} C \left(\frac{U_1 + U_2}{t_2} \right) \]

\[I_{rms} = \frac{\pi}{2} C (U_1 + U_2) \sqrt{\frac{f_r}{2t_1} + \frac{f_r}{2t_2}} \]

\[Q = \frac{\pi}{4} C (U_1 + U_2)^2 f_r \]

\[f_1 = \frac{1}{2t_1} \]

\[f_2 = \frac{1}{2t_2} \]

\[P = \frac{Q}{2} [(2 + k_f_1) 10^{-4} + (2 + k_f_2) 10^{-4}] \]

\[\hat{I}_1 = \frac{\pi}{2} C \left(\frac{U_1 + U_2}{t_1} \right) \]

\[\hat{I}_2 = C \left(\frac{U_1 + U_2}{t_2} \right) \]

\[I_{rms} = C (U_1 + U_2) \sqrt{\frac{\pi^2 f_r}{8t_1} + \frac{f_r}{t_2}} \]

\[Q = \frac{\pi}{4} C (U_1 + U_2)^2 f_r \]

\[f_1 = \frac{1}{2t_1} \]

\[f_2 = \frac{1}{2t_2} \]

\[P = \frac{Q}{2} [(2 + k_f_1) 10^{-4} + (2 + k_f_2) 10^{-4}] \]
Current, Reactive and Loss Power Calculation

Forme n° 4

\[\hat{i}_1 = \frac{\pi}{2} C \frac{\Delta U_1}{i_1} \]
\[\hat{i}_2 = \frac{\pi}{2} C \frac{\Delta U_2}{i_2} \]
\[i_{\text{rms}} = \frac{\pi}{2} C \sqrt{\left(\frac{\Delta U_1^2}{t_1} + \frac{\Delta U_2^2}{t_2} \right) f_r} \]
\[Q = \frac{\pi}{4} C (\Delta U_1 + \Delta U_2)^2 f_r \]
\[f_1 = \frac{1}{2t_1} \]
\[f_2 = \frac{1}{2t_2} \]
\[P = \frac{\pi}{4} C f_r \left[\Delta U_1^2 \left(2 + k f_1 \right) 10^{-4} + \Delta U_2^2 \left(2 + k f_2 \right) 10^{-4} + 2\Delta U_1 \Delta U_2 \left(2 \right) 10^{-4} \right] \]

Forme n° 5

\[i = C \frac{2U}{t} \]
\[i_{\text{rms}} = CU \sqrt{\frac{6f_r}{t}} \]
\[Q = \frac{3\pi}{4} CU^2 f_r \]
\[f = \frac{1}{2t} \]
\[P = Q \left(2 + k f \right) 10^{-4} \]
Filter Capacitors for Rectifiers at Industrial Frequencies

- Low-pass filters
- Unipolar voltages
- Main constraint:
 - continuous voltage (average rectified voltage)
 - peak value of oscillating voltage
 - sum of both defines nominal operating voltage U_n
- Second constraint:
 - rms-value of current
 - proportional to f and $U_~$
 - for given current, $fU_~$ not constant, $U_~$ decreases slower than f increases (skin effect, dissipating power, etc.)
- Series inductance negligible at power supply with $f_s \leq 400$ Hz
De-Coupling Capacitors

- Resembling the preceding ones
- Constitute links of theoretically zero impedance in circuits with superimposed continuous and alternating components
- Peak value of alternating component can be bigger than continuous voltage => terminal voltage susceptible to inversion
- Principle use:
 - input and output filters of de-coupled power supplies
 - input filters of voltage-source converters
 - de-coupling of parasitic supply-cable inductances and batteries (autonomous supplies)
Examples

Filter capacitor for the TGV Atlantique (2000 µF, 1800 V). Evolution from metallised wax-impregnated paper (125×340×787 mm³, 49 kg) to segmented metallised rape-oil-impregnated polypropylene film, 4th generation (125×340×430 mm³, 21 kg).

Filter capacitor for an IGBT traction converter (tramway). Segmented metallised rape-oil-impregnated polypropylene technology. The 3 elements with flat terminals give this capacitor a series inductance < 30 nH (3150 µF, 1000 V, 690×140×185 mm³).
Commutation Capacitors

- Deliver current pulses necessary to block thyristors
- Severe constraints, complex applied waveforms
- Classical thyristors disappear gradually: replaced by GTO/IGCT and IGBT
 - these active components do not need turn-off commutation capacitors
- The constraints applied to commutation capacitors remain a general type of constraints met in power electronics
 - dielectric constraints
 - voltage continuous, rms and peak value (must remain smaller than U_n)
 - voltage variation rate (dielectric losses increase with high dv/dt)
 - constraints due to ohmic losses and frequency
 - current rms and peak value
 - reactive power (estimation of loss power using tan δ)
Resonance Capacitors

- Used to tune series or parallel resonant circuits used in industrial medium-frequency systems (resonant converters)
- Frequencies between several hundred Hz and several hundred kHz
- Relatively tight tolerances: often $\Delta C/C \leq 2 \%$ => exclusion of certain dielectrics
- Operate under pure alternating voltage without a superimposed continuous component
- Only constraints to take into account:
 - voltage peak value (must remain smaller than U_n)
 - current rms-value (dielectric losses, ohmic losses)
Capacitors for Semiconductor-Commutation Assistance

- Semiconductor RCD-networks
- Minimise commutation losses
- Limit $\frac{dv}{dt}$
- Capacitor absorbs load current at switch opening: big pulsed currents \Rightarrow series inductance L_s must be minimum
- GTO: parasitic inductance of RCD-circuit very critical (< 100 nH) \Rightarrow development of capacitors with very low specific inductance (< 10 nH)
Energy-Storage Capacitors

- Accumulate maximum energy in minimum volume
- Discharge this energy in very short times (very big currents)
- Typical applications:
 - lasers
 - lightning wave simulators
 - nuclear electromagnetic pulse simulators
- Dielectrics used at maximum strength
 => reduced life times
 - telemetric lasers: 500’000 charge-discharge cycles

50 kJ, 10 kV, peak current 60 kA,
volumetric energy 600 J/l