CERN ACCELERATOR SCHOOL
Power Converters

Passive components

Prof. Alfred Rufer

Laboratoire d'électronique industrielle
Overview

- **Part 1:** Inductors (to be designed)
- **Part 2:** Capacitors (to be selected)
- **Part 3:** A new component: The Supercapacitor, component and applications
Inductors

Overview, typical applications

- AC-applications
- DC applications
- Filtering
- Smoothing (limiting di/dt)
- Components of resonance circuit

References:
Inductors

- 2 main types:
 - Air inductors
 - Inductors with magnetic core

Solenoid (air)

\[L = N^2 \mu_0 A / l \]

- A: area of coil
- L: length of coil
- N: number of turns

Toroid (core)

\[L = N^2 \mu A / \pi d_m \]

- A: section of core
- \(d_m \): mean diameter of tore
- N: number of turns
Toroidal inductor

Permeance of a magnetic circuit is defined as the reciprocal of its reluctance:

$$\mathcal{P} = \frac{1}{\mathcal{R}}$$

$$l = \pi \ast d_m$$

Mean path length l

Cross-sectional area A

Permeability μ

$$\mathcal{R} = \frac{l}{\mu A} \quad \phi = \frac{Ni}{\mathcal{R}}$$

Figure 3-14 Magnetic reluctance.
Inductors

- Main parameters of inductors
 - Inductance
 - Quality factor
 - Capacity
 - Rated current

- Equivalent scheme

\[\begin{align*}
L & : \text{Inductance} \\
R_a & : \text{Losses related to AC current component} \\
R_c & : \text{Resistance of winding} \\
C & : \text{Capacity of winding}
\end{align*} \]
Inductors

Relations

For: \(\omega^2 LC \ll 1 \)

\[Z \approx R' + j\omega L' \]

with

\[R' = R_c + R_a / (1 + Q_a^2) \]

\[Q_a = R_a / \omega L \]

if \(Q_a^2 \gg 1 \)

\[L' \approx L \]

\[R' \approx R_c + \omega^2 L^2 / R_a \]
Inductors

Factor of losses and quality factor

for \(Q_a^2 \gg 1 \)

\[
\tan \delta = R' / \omega L' \cong R_c / \omega L + \omega L / R_a
\]

\[
\tan \delta = \tan \delta_c + \tan \delta_a
\]

\[
Q = 1 / \tan \delta = \omega L' / R'
\]

Important factor for resonant circuits
Inductors

• Magnetic materials and cores

 – 2 main classes of materials
 1) Iron based
 • Alloys of iron with chrome and silicon (small amounts)
 ⇒ Electrical conductivity
 ⇒ Large value of saturation limit
 • Powdered iron cores (small iron particles isolated from each other)
 ⇒ Greater resistivity, smaller eddy current losses
 ⇒ Suited for higher frequencies
 • Amorphous alloys of iron with other transition metals (METGLAS)
Inductors

- Magnetic materials and cores

2) Ferrites

Oxide mixtures of iron and other magnetic elements

⇒ Large electrical resistivity
⇒ Low saturation flux density (0.3T)
⇒ Have only hysteresis losses
⇒ No significant eddy current losses
Inductors

- Hysteresis losses

\[
P_{m,sp} = kf^a (B_{ac})^d
\]

(specific loss)

k, a, d, constants depending from the material

Loss increase with f and with B\textsubscript{ac}

\[
B_{ac} = \hat{B}
\]

If no time average

\[
B_{ac} = \hat{B} - B_{avg}
\]

If time average
Figure 30-1 Magnetic flux density waveforms having (a) no time average and (b) with a time average.
Inductors

Example of ferrite material (3F3)

\[
P_{m,sp} = 1.5 \times 10^{-6} f^{1.3} (B_{ac})^{2.5}
\]

\[P_{m,sp}\] in mW/cm\(^3\) when \(f\) in kHz and \(B_{ac}\) in mT

For METGLAS:

\[
P_{m,sp} = 3.2 \times 10^{-6} f^{1.8} (B_{ac})^{2}
\]

For 100 kHz and 100 mT:
\[P_{m,sp} = 127\text{mW/cm}^3\]
Inductors

- **Empirical performance factor** \(\text{PF} = f \cdot B_{ac} \)

Figure 30-3 Empirical performance factor \(\text{PF} = fB_{ac} \) versus frequency for various ferrite core materials. Measurements are made at a power density \(P_{\text{core}} = 100 \text{ mW/cm}^3 \).
Inductors

- $P_{m,sp}$ depends finally on how efficiently the heat dissipated is removed.

- $P_{m,sp}$ is even smaller because of presence of eddy current loss.
Inductors

- **Skin effect limitations (in core)**
 - If conducting material is used: circulation of currents when the magnetic field is time-varying (eddy currents)
 - The magnetic field in the core decays exponentially with distance into the core

\[
B(y) = B_0 e^{-y/\delta}
\]

Skin depth: \(\delta\)
\[
\delta = \sqrt{2/\omega \mu \sigma}
\]

\(\omega = 2\pi f\)
\(\mu : \text{permeability}\)
\(\sigma : \text{conductivity}\)
Inductors

Typical value of skin depth

(Material with large permeability)

1 mm at 60 Hz!

> Thin laminations with each isolated from the other

> Stacking factor (0.9…0.95)

Materials with increased resistivity: increase of skin depth but reduces the magnetic properties

Reasonable compromise for transformers (50/60 Hz): Iron alloy, 97% iron, 3% silicon) and a lamination thickness of 0.3 mm
Inductors

- Example of stacking steel laminations

Figure 30-5 Magnetic core for a transformer or inductor made from a stack of magnetic steel laminations separated by insulators.
Inductors

- Eddy current loss in laminated cores

Specific eddy current loss (estimated optimistic minimum)

\[P_{ec,sp} = \frac{d^2 \omega^2 B^2}{24 \rho_{core}} \]

- \(d \): thickness of the lamination
- \(d < \delta \) (skin depth)
- \(B(t) = B \sin(\omega t) \)
Inductors

- Core shapes and optimum dimensions

Cross-sectional area of the bobbin: \[A_w = h_w \cdot b_w \]

Widely used core: Double-E core
\[b_a = a, \quad d = 1.5a, \quad h_a = 2.5a, \quad b_w = 0.7a, \quad h_w = 2a \]

Figure 30-6 Dimensioned diagram of (a) a double-E core (b) bobbin, and (c) assembled core with winding.
Inductors

- Geometric characteristics of a near optimum core for inductors / transformer

Table 30-1 Geometric Characteristics of a Near Optimum Core for Inductor/Transformer Design

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Relative Size</th>
<th>Absolute Size for (a = 1 \text{ cm})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core area (A_{\text{core}})</td>
<td>(1.5a^2)</td>
<td>1.5 \text{ cm}^2</td>
</tr>
<tr>
<td>Winding area (A_w)</td>
<td>(1.4a^2)</td>
<td>1.4 \text{ cm}^2</td>
</tr>
<tr>
<td>Area product (AP = A_w A_c)</td>
<td>(2.1a^4)</td>
<td>2.1 \text{ cm}^4</td>
</tr>
<tr>
<td>Core volume (V_{\text{core}})</td>
<td>(13.5a^3)</td>
<td>13.5 \text{ cm}^3</td>
</tr>
<tr>
<td>Winding volume (V_w)</td>
<td>(12.3a^3)</td>
<td>12.3 \text{ cm}^3</td>
</tr>
<tr>
<td>Total surface area of assembled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inductor/transformer (^b)</td>
<td>(59.6a^2)</td>
<td>59.6 \text{ cm}^2</td>
</tr>
</tbody>
</table>
Inductors

- **Copper windings**

 Advantages of copper: high conductivity, easy to bend
 - single round wire
 - Litz-wire diameter of each strand: a few hundred of microns
 (skin effect in copper)

 Copper fill factor

 \[k_{cu} = \frac{NA_{Cu}}{A_w} \]

 from 0.3 (Litz) to 0.5..0.6 for round conductors
Inductors

- Power dissipated in the winding (specific)

\[P_{Cu,sp} = \rho_{Cu} (J_{rms})^2 \]

or

\[P_{w,sp} = \kappa_{Cu} \rho_{Cu} (J_{rms})^2 \]

\[J_{rms} = \frac{I_{rms}}{A_{Cu}} \]
Inductors

- **Skin effect in copper windings**

 Circulating winding current > magnetic field > eddy currents
 ➢ The eddy currents « shield » the interior of the conductor from the applied current

Figure 30-8 Isolated copper conductor carrying (a) a current $i(t)$, (b) eddy currents generated by the resulting magnetic field, and (c) the consequences of the skin effect on the current distribution.
Inductors

- Skin depth: δ

<table>
<thead>
<tr>
<th>Frequency</th>
<th>50Hz</th>
<th>5kHz</th>
<th>20kHz</th>
<th>500kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>10.6 mm</td>
<td>1.06 mm</td>
<td>0.53 mm</td>
<td>0.106 mm</td>
</tr>
</tbody>
</table>

Skin depth in Copper at 100°C for several different frequencies
Inductors

- **Thermal considerations**

 Temperature increase of core and winding:
 - degrades the performance of the materials
 - The resistivity of the copper winding increases and so the loss increases
 - The value of the saturation flux density decreases

 It is important to keep the core and winding temperature under a maximum value

 In practice 100-125°C
Inductors

- **Design of the thermal parameters**

\[
R_{\theta sa}, \, R_{\theta rad}, \, R_{\theta conv} \quad \quad R_{\theta sa} = \frac{k_1}{a^2} \quad k_1: \text{constant}
\]

\[
\Delta T = R_{\theta sa}(P_{\text{core}} + P_w)
\]

\[
P_{\text{core}} = P_{c,sp}V_c \quad \quad P_w = P_{w,sp}V_w
\]

\[
P_{c,sp} \approx P_{w,sp} = P_{sp} \quad \text{for an optimal design}
\]

\[
V \ (\text{volume}) \sim a^3 \quad \text{so with} \quad P_{\text{core}} + P_w = k_2a^2 \quad : \quad P_{sp} = \frac{k_3}{a}
\]
Inductors

Maximum current density J and specific power dissipation P_{sp} as functions of the double-E core scaling parameter a

$$P_{sp} = \frac{k_3}{a}$$

$$J_{rms} = \frac{k_5}{\sqrt{k_{Cu}} a}$$

![Graph showing J and P_{sp} as functions of core scaling parameter a.]