

Daresbury Laboratory

SuperSTEM - Scanning Transmission Electron Microscope

- World's highest resolution transmission electron microscope
- Special aberration correction to produce high resolution
- Super-stable building preserves it

Silicon/Nickel disilicide

First images from SuperSTEM

www.superstem.dl.ac.uk

HPCx – Europe's Fastest Academic Computer

www.hpcx.ac.uk

	• • •	5
Rank	Manufacturer Computer/Procs	Installation Site Country/Year
1	NEC Earth-Simulator/ 5120	Earth Simulator Center Japan/2002
2	Hewlett-Packard ASCI Q - AlphaServer SC ES45/1.25 GHz/ 4096	Los Alamos National Laboratory USA/2002
3	Hewlett-Packard ASCI Q - AlphaServer SC ES45/1.25 GHz/ 4096	Los Alamos National Laboratory USA/2002
4	IBM ASCI White, SP Power3 375 MHz/ 8192	Lawrence Livermore National Laboratory USA/2000
5	Linux NetworX MCR Linux Cluster Xeon 2.4 GHz - Quadrics/ 2304	Lawrence Livermore National Laboratory USA/2002
6	Hewlett-Packard AlphaServer SC ES45/1 GHz/ 3016	Pittsburgh Supercomputing Center USA/2001
7	Hewlett-Packard AlphaServer SC ES45/1 GHz/ 2560	Commissariat a l'Energie Atomique (CEA) France/2001
8	HPTi Aspen Systems, Dual Xeon 2.2 GHz - Myrinet2000/ 1536	Eorecast Systems Laboratory - NOAA USA/2002
9	IBM pSeries 690 Turbo 1.3GHz/ 1280	HPCx UK/2002
10	IBM pSeries 690 Turbo 1.3GHz/ 1216	NCAR (National Center for Atmospheric Research) USA/2002

www.top500.org:

CAS, 12 May 04

CCLRC is a Public Sector Research Council

History of Daresbury Accelerators

- NINA 5 GeV electron synchrotron (1962-1977)
- NSF 20 MV tandem van de Graaf (1980-1993)
- SRS 2 GeV electron synchrotron (1976-)
- 4GLS 4th generation light source proposed (2002)

Synchrotron Radiation Emission

CAS, 12 May 04

Real Synchrotron Radiation

Beam port

CAS, 12 May 04

Synchrotron Radiation in Space

Crab Nebula

Insertion Devices

Different Kinds of SR Sources

CAS, 12 May 04

M W Poole

Daresbury SRS Concept

World's first dedicated x-ray source

SRS Layout

UK National Light Source operated since 1980 - to be replaced by DIAMOND

300 mA

Daily fills

Pioneering magnetic insertion devices

From Source to Detector

- Light from source can be split for more than one experiment
- Light focused using mirrors
- Narrow range of wavelengths selected by monochromator
- Light illuminates crystal sample and is diffracted
- Diffraction pattern observed with detector

Science on the SRS – A Snapshot

CAS, 12 May 04

Protein Crystallography

FMV Virus Structure (1990)

Light Harvesting Complex (photosynthesis)

The Nobel Prize: F1 ATPase structure

- Sir John Walker won a share of the 1997 Nobel Prize for Chemistry for solving the structure of the F1 ATPase enzyme using the SRS
- Developed an important new technique; opens the way for new insights into metabolic and degenerative disease

Chocolate !

- **Crystallisation = chemical purification process**
- Cocoa butter key to chocolate taste etc
- On-line analysis during crystallisation demonstrates conditions for best tasting chocolate (form V) stir quickly and leave to cool at 23.86°C.
- If you don't stir, form V isn't seen.
- Analagous to other chemical processes.

Nanotechnology (LIGA)

Alternative Compact Light Source

Sold by Oxford Instruments to IBM in 1990 Designed at Daresbury

CAS, 12 May 04

CCLRC Accelerator R&D Status

- Major skill bases maintained in RAL and DL Departments but particle physics accelerator expertise (almost) lost
- Accelerator Science and Technology Centre (ASTeC) created in 2001 - initially 20 staff Daresbury based - now 40 staff accelerator specialists only - £3M pa programme in 2003
- Major expansion underway to £6M pa programme mainly from CCLRC + PPARC

Principal ASTeC Sponsored Programmes

- Novel light sources 4GLS, FELs, ...
- Linear colliders generic (pending technology decision)
- Neutron sources MW scale
- Neutrino factories MICE, design concepts, proton driver
- DIAMOND design/procurement role (will reduce but still vital)
- SRS support/development (hands-on role and training)
- 'RC Basic Technology' (laser-plasma project)
- Underpinning technology (eg undulators, NEG pumps, RF systems etc)

Cockcroft Institute

- Centre funded by PPARC: £7M over next 8 years
 - Oxford/Holloway Centre also gets £2M from 2007-2012
- Lancaster/Liverpool/ Manchester: 40-50 posts
- Strong ASTeC integration
- Proposed shared premises

CCLRC will work with both Centres

Future Electron Linear Collider

CAS, 12 May 04

Linear Collider Schemes

M W Poole

LC-ABD National Collaboration

- Linear Collider studies now organised in UK largely through LC-ABD Collaboration with HEIs
- Strategic decision to concentrate on Beam Delivery System
- Major funding initiatives (ca £10M next 3 years)
- ASTeC takes lead in Beam Dynamics and in Magnet and RF Technology
- Further major ASTeC role in Beam Diagnostics

TESLA Beam Delivery System

Collimation Example

- System of spoilers and absorbers used to remove particles in the beam halo
- Typical gaps of the order 1mm
- Technical challenges:
 - » wakefield reduction
 - » collimator protection
 - » secondary production

NLC collimator designs based on rotating wheels and renewable surfaces

LC Technology Work at ASTeC

- Polarised positron source
- Crab cavities
- **Diagnostics**

Undulator Based Polarised Positron Source

- ~250 GeV electron beam passes through 100 m undulator
- ~20 MeV photons produced
- Electron-positron pairs produced in target
- Positrons captured

Prototype Magnet Solutions

- Dipole Field Created by Rings of Permanent Magnet Blocks
- Many Rings are rotated to create Helical Field
 - Two halves to allow access to vacuum vessel

Superconducting bifilar helix

New Generation Light Source

- Strong UK communities exploiting existing advanced storage ring and 'table top' laser facilities (SRS, ESRF, CLF)
- **DIAMOND** will serve the x-ray community from 2007
- Low energy (< 100 eV) requires a separately optimised source
- Users have identified the need to supplement transverse brightness by compression longitudinally - **fs** pulses
- Many scientific applications need multiple sources

 eg pump-probe

DIAMOND - A 3rd Generation Light Source (3GLS)

DIAMOND Lattice Cell

Storage Ring Problems

- •Equilibrium beam dimensions set by radiation emission
- •Beam lifetime limits bunch density (10¹¹ turns)
- •Demanding UHV environment
- •Undulator sources restricted
- •Most issues worse at low energies (eg < 1 GeV)

FUNDAMENTAL 3GLS LIMITATIONS

Linac Based Light Source

- •Linacs can deliver very high quality electron beams
- •Transient (< 1µs) electrons pass through all components
- •Temporal pulse pattern flexibility
- •High average flux requires Energy Recovery Linac (ERL)
- •Superconducting RF technology can be exploited
- •High average brightness gun is essential development

ERL Principle

Courtesy G Neil

The 4GLS Proposal

•A combined light source and FEL suite

- •A superconducting 600 MeV linac
- •Two photo-cathode guns: average and peak current

Emittance	<1 nm-rad
Bunch length	50 fs - 5 ps
Bunch separation	1 - 1000 ns
Target current	100 mA

Schematic 4GLS Layout

CAS, 12 May 04

MW Poole

4GLS Spectral Output

Peak Brightness

Average Brightness Comparison

Daresbury Laboratory - 2002

New 4GLS Building - Phase 1

Project Status

- Outline feasibility studies completed
- Science Case accepted (May 2002)
- Business Case accepted (Nov 2002)
- **R&D phase approved** (Apr 2003)

April 2003: Prototype ERL funded

ERL Prototype (ERLP) Project

Partnership:

DL(ASTeC + SRS)RAL(CLF)HEIs(Manchester/Liverpool/Strathclde)Jefferson LabRossenJorf

Principal challenges:

- High brightness guns
- High current superconducting linac
- Beam transport optics (bunch compression, CSR, wakes)
- Diagnostics

ERL Prototype Scheme

ERLP Planned Layout

CAS, 12 May 04

Possible 4GLS Programme

Preliminaries	2002/3	
ERL Prototype	2003/7	
(Gun - Jan 2005 Booster - Oct 2005	Linac - Jan 2006	ERL - Apr 2006)
Design studies	2003/7	
(CDR - early 2006)		
Funding decision	2006	
ERL operational	2009	
FELs commissioned	2009	
Full specification	201	0