Power Converter Controls

Lecture for the CERN Accelerator School on Power Converters

Warrington May 16 2004

1.1 Global Controls Environment

Detectors:

- Halls A, B, and C Slow Controls (JLab/NMSU)
- Advanced Light Source Beamlines (partial) (LBNL)
- Gammasphere (LBNL/ANL/ORNL)
- Advanced Photon Source Beamlines (ANL)
- The PHENIX detector system for RHIC Slow Controls (BNL/LANL/NMSU)
- The STAR detector system for RHIC Slow Controls (Creighton/U. Wash/Kent State/UCLA/LBNL)
- The Intense Pulsed Neutron Source Instruments (ANL)
- The Biotechnology Beamline (SSRL)
- The BaBar detector for PEP-II Slow Controls (SLAC/LBNL)
- Structural Biology Research Group (Riken)
- Wind Tunnels (NASA/Langley)
- PRISMA and GARFIELD demonstrations (INFN/Legnaro)
- D0 (FNAL)
- High Acceptance DiElectron Spectrometer (GSI/Darmstadt)

Telescopes:

- The Gemini 8-M Telescope (AURA)
- Kitt Peak Observatory (NOAO)
- The United Kingdom Infrared Telescope upgrade (JAC)
- The William Herschel Telescope/WFFOS instrument (RGO)
- The William Herschel Telescope/ELECTRA instrument (U Durham)
- The Keck II Telescope (CARA)
- Canada-France-Hawaii Telescope Upgrade
- LIGO (CalTech)
- INTEGRAL instrument/Instituto de Astrofisica de Canarias (IAC)
- Potsdam Multiaperture Spectrophotometer (Astrophysical Inst)
- Sloan Digital Sky Survey/Telescope Performance Monitor (SDSS)
- Commercial:
 - The High Power Laser Experiment (Boeing)
 - Wafer Fabrication Plant (AMD)
 - Liquefied Nature Gas Plant (Baltimore G&E)
 - Tunnel Fire Ventilation Test Program (DOT/Bechtel-Parsons-Brinkerhoff)
 - Flexible Manufacturing Facility (Allied Signal)
 - Wastewater Treatment (Western Lake Superior Sanitary District)
 - Potable Water Distribution (St. Louis County)
 - Compressor Control (Baltimore G&E)
 - GM Fuel Cell Program (LANL)
 - Plant Simulation (Knolls)
 - Flight Simulation (JPL)
 - Fuel Depots (US Navy)
 - Product Storage/Movement Facility (Citgo)
 - Ground Tracking Station (NASA Canberra)
 - Well Head/Extraction (Saphania Oil Field)
 - Superconducting Magnet Test Facility for KSTAR (Samsung Adv. Inst. of Tech.)

Accelerators:

- The Advanced Photon Source (ANL)
- The Tesla Test Facility (DESY)
- The Continuous Electron Beam Accelerator Facility and IRFEL (TJNAF)
- The Bates Linear Accelerator (MIT)
- Next Linear Collider R&D (SLAC)
- RF and feedback for PEP-II "B-factory" (SLAC)
- The HERA cryogenic plant (DESY)
- The Intense Pulsed Neutron Source (ANL)
- Free Electron Laser (Budker INP)
- The Tesla Test Facility Injector (SACLAY)
- Racetrack Microtron (U Alabama)
- The Free Electron Laser Program (Duke)
- The Advanced Free Electron Laser (LANL)
- The Average Power Laser Experiment (LANL)
- LAMPF/LANSCE PSR (LANL)
- LEDA (for APT) (LANL)
- The Heavy Ion Fusion Test Stand (LBNL)
- Advanced Light Source (partial) (LBNL)
- National Laboratory for High Energy Physics B-factory (KEK)
- Berlin Electron Synchrotron Light Source (BESSY II)
- Microtron (U Athens)
- RF (PSI)
- Swiss Light Source (PSI)
- Neutron Therapy Cyclotron (U Washington)
- ISAA Radioactive Beam Facility (TRIUMF)
- Magnet test facility and Accelerator R&D (Sync Lab Barcelona/IFAE)
- SSRF synchrotron and BTCF e+/e- collider (IHEP)
- NSRL (U Science/Tech, Hefei, China)
- IPHI (SACLAY)
- Spallation Neutron Source (ANL/BNL/LANL/LBNL/ORNL)
- The National Spherical Torus Experiment (PPPL)
- Linac Test Bed for APT (SRS)
- Holifield Radioactive Ion Beam Facility (ORNL)
- Cyclotron(s) Controls Upgrade (MSU)
- DELTA Controls Upgrade (Dortmund)
- Pohang Light Source: Longitudinal Feedback System (PAL/POSTECH)
- Steady State Tokamak-1 (Inst. for Plasma Research, India)
- Longitudinal Feedback for DAFNE (INFN/Frascati)

1.2 Global Controls Environment

- Normally imposed by project
- EPICS
 - Many major projects worldwide
 - Excellent for new projects
 - All or nothing so difficult with existing projects
- Other SCADA systems not really suitable

2.1 Homemade verse COTS

Work out your requirements

- Identify your priorities
- Consider constraints
- Consider options:
 - PLCs
 - Mixed system based on COTS bus
 - Dedicated home made system

Make your decision and good luck!

3.1 Power Converter State Management

Voltage Source State

Operational State

3.2 Power Converter State Management Power Converter State F S RT CK XXtoFS FSIOFO CKIOAR FLT DIRECT_RT CHECKING 71) T1 T2 T3 STOPPING A T1 T3 ILORA ILLOCK FO AR FLT_OFF SPIOFS CKtoll ARMED Phone Phone ARIOIL T1 T2 T3 SP SB 11. XXtoSP S8tolL FOtoOF-OFtoFO IDI E STOPPING ON_STANDBY ARIORN-(12) SPIDOF RNIOIL T1 T2 T3 🚣 T1 T2 OF RN OFF ABtolL +STtoSP + TStoSB RUNNING T1 T2 T3 OFIOST RNIOAB ST TS. AB XXtoTS STICTS TO STANDBY STARTING ---- (T3 ABORTING T1 T2 T3 T1 T2

3.3 Power Converter State Management

- Design your state machine(s)
- Identify status and command signals required for each transition
- Choose you signal types
 - < 500mV CM direct connection</p>
 - < 10V CM differential connection</p>
 - < 1500V CM Opto or capacitive couplers or relays</p>
 - > 1500V CM Fibre
 - Ensure safe behavior if the cable is removed

4.1 Function Generation

Parametric functions

Linear Trim and Cubic Trim

4.2 Function Generation

Parametric functions: PP, PLP, PEP, PELP, PLEP

4.3 Function Generation

Real-time control: NONE, SUM, GAIN, RT ONLY

$$ref = R(t) + R_{rt}$$

4.4 Function Generation

Identify your requirements
Use linear interpolation
Use parametric function
Support real-time control

Use engineering units (Amps or Volts)

5.1 Network

- Define your overall architecture (2 or 3 layers?)
- Choose your media: Ethernet, Profibus, WorldFIP, etc...

Considering:

- Chipset cost/complexity
- Software overhead IP or private protocol
- Cabling and connector costs
- Performance: max length, number of nodes, repeaters, through put
- Radiation tolerance if required
- Real time support (control, publishing, synchronisation)

6.1 Synchronisation

Identify your requirements
 Review your timing environment
 Use data network for timing if possible
 Use a digital PLL to generate RT clock in embedded systems

7.1 Regulation

Use digital current regulation unless the requirements are very undemanding
 Software can control the loop parameters
 Have an independent measurement of the current
 Two DCCTs, two ADCs

8.1 Analogue Acquisition

- Precision analogue electronics is hard
- Don't try it unless you have the right competence and lots of patience
- COTS can be crap believe nothing test everything
- The whole design matters: Vrefs, ADCs, layout
- Filter appropriately know your noise environment

9.1 Mechanical Issues

- Very important to reliability don't underestimate the problem
- Casings should be robust, provide EMC protection
- Check thermal behaviour avoid fans if possible
- Choose connectors very carefully
- Avoid ambiguous connectors
- Avoid intermediate cabling

10.1 Inventory Management

Barcode

- Materials are complex choose carefully
- Printer is a specialised (expensive) device
- Scanners wide choice Serial, USB, Wireless, Laser, CCD

Dallas 1-wire bus

- Identity and optional temp sensors available
- Separate bus using 2 wires (data/power and ground)
- No position information

11.1 Remote Management and Diagnostics

- Invest according to scale and remoteness
- Validate controller then diagnose power converter
- First fault detection is very important
- Consider remote logic download
- Include remote code download
- Include remote parameter download

12.1 Power Supplies

- Work out all your requirements
- Consider your powering environment
- Decide on your topology
- Remember to add a switch and status signals

13.2 Testing

Normal device operation:

- Core logic controls pins
- JTAG controller is passive

13.3 Testing

Boundary Scan Mode:

- Core logic disconnected from pins
- JTAG controller controls pins via daisy chain of boundary scan registers

Boundary Scan Register

• O = Output register

13.5 Testing

- Make automatic test equipment for production and repair – lots of work
- Three levels of testing DLI
- Design for Test DTF
- Use JTAG boundary scan for in-situ testing
- Anticipate obsolescence

14.2 Radiation

- <100 Grays is relatively easy with COTS</p>
- 100-200 Grays still feasible with careful choice of COTS components
- Above 200 Grays is difficult
- Above 1000 Grays is VERY expensive
- EDAC memory works
- Crashes inevitable and must be managed
- Latch-ups require a power cycle

15.1 Protocols

- Use ASCII for commands and responses
- Allow low level access with dumb terminal
- Allow non-blocking communication
- Acknowledge all commands
- Support Set and Get only
- Avoid JAVA and C++ in embedded systems

16.1 Documentation

- Golden rule of Data: define everything only once
- Use XML syntax
- Parse your XML into everything you need including documentation
- Exploit the web
- Remember to archive all your datasheets

The End

Thanks for listening!

