Different power supplies for different machines

Hans-Jörg Eckoldt
DESY
Warrington, UK
17.05.04
Different Power Supplies for different machines

Hans-Jörg Eckoldt

Congratulation for having chosen

POWER ELECTRONICS
Power electronics needs the knowledge of

- Power electronic devices
- Mains behavior
- Regulation theory
- High precision measurement
- Mechanical capabilities
- Analog circuit technology
- Digital circuit technology
- Control system
- Statistics for large number of systems
- Databases
- Cooling technology
- Programming e.g. Internet, FPGAs, DSPs, PLCs
- Simulation tools
 - Missing RF, but with switched mode power supplies we are working on this
Different Power Supplies for different machines

Hans-Jörg Eckoldt

Sorry!

• Please be not disappointed, if your very interesting power supply is not mentioned here

• Due to the large number it is not possible
Different Power Supplies for different machines
Hans-Jörg Eckoldt

Structure of the seminar

• Cycling machines
• Fast ramping machines
• Slow ramping machines
• Pulsed machines
 – Magnet Power Supply
 – Constant power power supply
Cycling Machines

- DESY II, Hamburg
- ESRF, Grenoble
- BESSY II; Berlin
- SLS, Villingen

- Operation at frequencies between 0.3 and some 10 Hz
- Special care has to be taken for the flicker frequencies
Disturbances to the mains

The amount of allowed disturbances is defined in the German standard VDE 0838, IEC 38 or the equivalent European standard EN 61000.

No energy consumer is allowed to produce more distortions than 3% of the voltage variation of the mains.

For low frequencies in the visual spectrum this value is even more restricted. The low frequencies are called flicker frequencies. The human eye is very sensitive to changes in light intensities in this frequency domain.
Different Power Supplies for different machines
Hans-Jörg Eckoldt

Allowed disturbancies to the grid according to IEC 38/VDE 0838

Bild 5-2: Verträglichkeitspegel für regelmäßige rechteckförmige Spannungsänderungen
Different Power Supplies for different machines

Hans-Jörg Eckoldt

White circuit

AC POWER SUPPLY

WHITE CHOKE

DC POWER SUPPLY

CAP BANKS

16 MAGNETS
+ 1 MAGNET ON REFERENCE GIRDER
Different Power Supplies for different machines

Hans-Jörg Eckoldt

Calculated Power with and without White circuit for BESSY II

- Direct dipole powering without White circuit
- Dipole powering via White circuit

Power consumption vs. time
Different Power Supplies for different machines

Hans-Jörg Eckoldt

DESY II
4.5 GeV, 7 GeV, 10 GeV max.

<table>
<thead>
<tr>
<th></th>
<th>Dipole</th>
<th>QP</th>
<th>SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{max}</td>
<td>1170 A</td>
<td>1530 A</td>
<td>530 A</td>
</tr>
<tr>
<td>$I_{\text{rms magnet}}$</td>
<td>873 A</td>
<td>940 A</td>
<td>324 A</td>
</tr>
<tr>
<td>$U_{\text{rms Choke/magnet}}$</td>
<td>4.3 kV * 12</td>
<td>3.34 kV</td>
<td>273 V</td>
</tr>
<tr>
<td></td>
<td>51.6 kV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{\text{DC PS}}$</td>
<td>585 A</td>
<td>765 A</td>
<td>255 A</td>
</tr>
<tr>
<td>$U_{\text{DC PS}}$</td>
<td>27.7 V</td>
<td>122.4 V</td>
<td>32 V</td>
</tr>
<tr>
<td>$I_{\text{AC PS}}$</td>
<td>665 A</td>
<td>540 A</td>
<td>187 A</td>
</tr>
<tr>
<td>$U_{\text{AC PS}}$</td>
<td>990 V</td>
<td>3.22 kV</td>
<td>273 V</td>
</tr>
</tbody>
</table>
Different Power Supplies for different machines

Hans-Jörg Eckoldt

DESY II Overview (artist view)
Different Power Supplies for different machines

Hans-Jörg Eckoldt

DESY II with compound inductor (White choke)
Different Power Supplies for different machines
Hans-Jörg Eckoldt

DESY II dipole power supply with Steinmetz circuit
Different Power Supplies for different machines

Hans-Jörg Eckoldt

DESY QP, SP circuit
Different Power Supplies for different machines

Hans-Jörg Eckoldt

![CAS Logo](https://www.cern.ch/)

ESRF 6 GeV

<table>
<thead>
<tr>
<th></th>
<th>Dipole</th>
<th>QPF</th>
<th>QPDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{max}</td>
<td>1500 A</td>
<td>500 A</td>
<td>500 A</td>
</tr>
<tr>
<td>$U_{\text{rms Choke/magnet}}$</td>
<td>11 kV</td>
<td>2 kV</td>
<td>2 V</td>
</tr>
<tr>
<td>$I_{\text{DC PS}}$</td>
<td>800 A</td>
<td>200 A</td>
<td>180 A</td>
</tr>
<tr>
<td>$U_{\text{DC PS}}$</td>
<td>600 V</td>
<td>200 V</td>
<td>200 V</td>
</tr>
<tr>
<td>$I_{\text{AC PS}}$</td>
<td>800 A</td>
<td>200 A</td>
<td>180 A</td>
</tr>
<tr>
<td>$U_{\text{AC PS}}$</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
</tbody>
</table>
Different Power Supplies for different machines

Hans-Jörg Eckoldt

Power supply of ESRF

Rectifier circuit Chopper DC circuit Inverter
Different Power Supplies for different machines
Hans-Jörg Eckoldt

BE tr ESSY II 1.9 GeV

<table>
<thead>
<tr>
<th></th>
<th>Dipole</th>
<th>QPF</th>
<th>QPDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{max}</td>
<td>2277 A</td>
<td>492 A</td>
<td>395 A</td>
</tr>
<tr>
<td>$U_{\text{rms Choke/magnet}}$</td>
<td>3112 kV</td>
<td>527 V</td>
<td>423 V</td>
</tr>
<tr>
<td>$I_{\text{DC PS}}$</td>
<td>800 A</td>
<td>200 A</td>
<td>180 A</td>
</tr>
<tr>
<td>$U_{\text{DC PS}}$</td>
<td>120 V</td>
<td>70 V</td>
<td>70 V</td>
</tr>
<tr>
<td>$I_{\text{AC PS}}$</td>
<td>778 A</td>
<td>200 A</td>
<td>200 A</td>
</tr>
<tr>
<td>$U_{\text{AC PS}}$</td>
<td>311V</td>
<td>184 V</td>
<td>184 V</td>
</tr>
</tbody>
</table>
Different Power Supplies for different machines

Hans-Jörg Eckoldt

Schematic of the BESSY II Power supply
Different Power Supplies for different machines

Hans-Jörg Eckoldt

Power supply at SLS
Different Power Supplies for different machines

Hans-Jörg Eckoldt

Fast ramping machines

- DESY III
- Tevatron
- Fermilab Main Injector
- Cern Antiproton Decelerator
- PETRA

- Ramping times from a second to a minute
- \(U = R \cdot i + L \cdot \frac{di}{dt} \)

 Due to the inductance the term demands for a significant higher voltage than for steady state
- Negative voltage has to be applied for down ramping
- Precautions for the mains have to be taken
Different Power Supplies for different machines
Hans-Jörg Eckoldt

DESY III

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipole</td>
<td></td>
</tr>
<tr>
<td>$I_{\text{flat top}}$</td>
<td>1160 A</td>
</tr>
<tr>
<td>$U_{\text{flat top}}$</td>
<td>1 kV</td>
</tr>
<tr>
<td>$I_{\text{flat bottom}}$</td>
<td>50 A</td>
</tr>
<tr>
<td>$U_{\text{flat bottom}}$</td>
<td>42 V</td>
</tr>
<tr>
<td>di/dt</td>
<td>665 A/s</td>
</tr>
<tr>
<td>Ramping time</td>
<td>4 sec</td>
</tr>
</tbody>
</table>
Different Power Supplies for different machines

Hans-Jörg Eckoldt

DESY III Power supply with dynamic reactive power compensation
Different Power Supplies for different machines

Hans-Jörg Eckoldt

Waveforms of DESY III
Different Power Supplies for different machines
Hans-Jörg Eckoldt

Signals for the DESY III ramp

1st derivation
Reference value
2st derivation
3st derivation
Different Power Supplies for different machines

Hans-Jörg Eckoldt

DESY III Power supply with dynamic reactive power compensation
Different Power Supplies for different machines

Hans-Jörg Eckoldt

Tevatron

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{\text{flat top}}$</td>
<td>4400 A</td>
</tr>
<tr>
<td>$U_{\text{flat top}}$</td>
<td>1 kV</td>
</tr>
<tr>
<td>$I_{\text{flat bottom}}$</td>
<td>400 A</td>
</tr>
<tr>
<td>$U_{\text{flat bottom}}$</td>
<td>42 V</td>
</tr>
<tr>
<td>$\frac{di}{dt}$</td>
<td>67 A/s</td>
</tr>
<tr>
<td>Ramping time</td>
<td>60 sec</td>
</tr>
</tbody>
</table>
Different Power Supplies for different machines
Hans-Jörg Eckoldt

Tevatron distribution of power supplies

Total of 12 TEV PS's Distributed Around Ring
Different Power Supplies for different machines

Hans-Jörg Eckoldt

Power supply of Tevatron

TEVATRON POWER SUPPLY SYSTEM
POWER CIRCUIT
Different Power Supplies for different machines

Hans-Jörg Eckoldt

Fermilab Main Injector

Main Injector Power Supply Distribution
Bend Bus
Different Power Supplies for different machines
Hans-Jörg Eckoldt

Fermilab main injector data

<table>
<thead>
<tr>
<th>Requirement</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipole and quadrupole power, peak</td>
<td>120 MVA</td>
</tr>
<tr>
<td>Dipole and quadrupole power, average</td>
<td>60 MVA</td>
</tr>
<tr>
<td>RF, beamline power supplies, peak</td>
<td>30 MVA</td>
</tr>
<tr>
<td>RF, beamline power supplies, average</td>
<td>20 MVA</td>
</tr>
<tr>
<td>Backfeed capability, peak</td>
<td>40 MVA</td>
</tr>
<tr>
<td>Backfeed capability, average</td>
<td>30 MVA</td>
</tr>
<tr>
<td>Accelerator cycling time</td>
<td>1.5 sec</td>
</tr>
</tbody>
</table>
Different Power Supplies for different machines

Hans-Jörg Eckoldt

CERN Antiproton Decelerator Cycle
Different Power Supplies for different machines

Hans-Jörg Eckoldt

Antiproton decelerator power supply
Different Power Supplies for different machines
Hans-Jörg Eckoldt

Power supply for the PS-Booster beam transport line with polarity switcher and regenerative circuit
Different Power Supplies for different machines
Hans-Jörg Eckoldt

PETRA-Dipole ring
Different Power Supplies for different machines
Hans-Jörg Eckoldt

Voltage changes due to the ramping of the PETRA-machine
Different Power Supplies for different machines

Hans-Jörg Eckoldt

Slow ramping machines

- HERA
- LEP
- LHC
- Here nearly every lab can be named

- Ramping lasts several minutes or
- Working at steady state
- The variety of power supplies is large and shows in general the state of the art of the power electronics of that time
Different Power Supplies for different machines

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL
Different Power Supplies for different machines
Hans-Jörg Eckoldt

HERA Proton Dipole Power Supply

8000 A, +500V, -300V Optical current 5600A
SCR Power supplies

- Power larger than 50 kW
- Currents larger than 800 A
- Voltages higher than 130 V
- Good prices
- Simple design
- Different Solutions according to the specs
 - LC filter
 - Praeg Filter
 - Active filter
SCR supply with LC filter
Different Power Supplies for different machines

Hans-Jörg Eckoldt

SCR Power supply with Praeg filter

400 V
Different Power Supplies for different machines

Hans-Jörg Eckoldt

HERA Buck converter

400 V
Different Power Supplies for different machines
Hans-Jörg Eckoldt

Schematic of the LEP double resonant power supply

125 V, 300 A or 188 V, 200 A or 250 A, 150 V
Different Power Supplies for different machines

Hans-Jörg Eckoldt

LHC 600A/10V, 40V Power supply

Figure 1: \([\pm 600A, \pm 12V]\) Power converter block diagram
Different Power Supplies for different machines

Hans-Jörg Eckoldt

LHC 600A/10V, 40V Power supply
Different Power Supplies for different machines

Hans-Jörg Eckoldt

LHC 600A/10V, 40V Power supply
Different Power Supplies for different machines
Hans-Jörg Eckoldt

SCR unit for LHC transport line with active filter
Pulsed machines

- Linear Collider, sometimes, somewhere
- XFEL, Hamburg
- VUV-FEL, Hamburg

- Machines are working with short pulses between a few µsec up to ms
- Repetition rates between 1 and 50 Hz
- High demands on power supplies
- Suppress the repetition rate toward the grid
Different Power Supplies for different machines

Hans-Jörg Eckoldt

New XFEL power supply for sc QP
+/- 100 A/10V
Different Power Supplies for different machines

Hans-Jörg Eckoldt

The CERN Accelerator School

XFEL Power supply

(A) T_1 off, T_2 off, T_3 on, T_4 on

halfbridge

u_{out}

C_1

T_1

C_2

u_{Tr}

T_2

C_3

$iprim$

UB

$halfbridge$

$iprim$

u_{Tr}

T_3

T_4

T_1 on, T_2 off, T_3 on, T_4 off

isec/2

output filter

L_1

u_{out}

Z_L

(B) T_1 on, T_2 off, T_3 on, T_4 off

halfbridge

u_{out}

C_1

T_1

C_2

u_{Tr}

T_2

C_3

$iprim$

UB

$halfbridge$

$iprim$

u_{Tr}

T_3

T_4

$isec$

Z_L

rectifier

output filter

(C) T_1 on, T_2 off, T_3 on, T_4 off

halfbridge

u_{out}

C_1

T_1

C_2

u_{Tr}

T_2

C_3

$iprim$

UB

$halfbridge$

$iprim$

u_{Tr}

T_3

T_4

$isec$

Z_L

rectifier

output filter

u_{out}

t_{on}

t_{off}

t_p

t_{delay1}

t_{delay2}

u_{Tr}

Z_L
Different Power Supplies for different machines

Hans-Jörg Eckoldt

Web Access to the power supply
Different Power Supplies for different machines

Hans-Jörg Eckoldt

Voltage at XFEL Modulator

Different Power Supplies for different machines

Hans-Jörg Eckoldt
Different Power Supplies for different machines
Hans-Jörg Eckoldt

Switched mode power supply for constant power

\[G \]
\[i_B \] supply current
\[i_L \] primary current of the transformer
\[u_C \] voltage of the resonance capacitor
\[U_{\text{load}} \] output voltage to the switch of the klystron
\[i_{B1} \] current \(i_B \) at the time \(t_1 \)
\[L \] primary stray inductivity of the transformer
\[f \] resonance frequency of the resonant circuit of \(L \) and \(C \)
\[n \] gear ratio of the transformer and rectifier
\[T \] period time of the switching frequency of \(S_1 \) and \(S_2 \)
\[C \] resonance capacitor
\[U_B \] supply voltage
\[U_N \] line voltage
\[C_f \] filter capacitor
\[L_f \] filter inductance
Different Power Supplies for different machines
Hans-Jörg Eckoldt

Derivation of the equivalent circuit to the switch mode power supply

\[\frac{C}{2} u_c \]

\[U_N \]

\[C_f \]

\[U_B \]

\[S1 \]

\[S2 \]

\[T_r \]

\[D1 \]

\[D2 \]

\[\approx \]

\[G \]

\[C_{\text{load}} \]

\[U_{\text{load}} \]

\[t_1 \]

\[t_2 \]

\[T/2 \]

\[t \]

\[u_c \]

\[u \]

\[i_L \]

\[i_B \]

\[I_B \]

\[Zerannten \]

\[\text{switching} \]
Different Power Supplies for different machines

Hans-Jörg Eckoldt

Series connection of buck converters
Conclusion

• There are a lot of very interesting power supplies in the machines
• This was only a very short overview of what is installed into machines over the world
• It shall give an idea what kind and where solutions and help are to find when someone encounters a new problem
• A very good source of information is:
 • Joint Accelerator Conferences Website
 • http://accelconf.web.cern.ch/AccelConf/
Different Power Supplies for different machines
Hans-Jörg Eckoldt

Thanks for your attention