INTRODUCTION
Electronic Switches

- **Thyristor**
 Can be turned *on* by gate signal but can only be turned *off* by reversal of the anode current

- **Gate Turn-Off Thyristor (GTO)**
 Can be turned *on* and *off* by the gate signal but requires large capacitor (snubber) across device to limit dv/dt

- **Transistor (transitional resistor)**
 Can be turned *on* and *off* by the gate (or base) signal but has high conduction losses (it's an amplifier, not a switch)

- **Integrated Gate Commutated Thyristor (IGCT)**
 Can be turned *on* and *off* by the gate signal, has low conduction loss and requires no dv/dt snubber
Available Self-Commutated Semiconductor Devices

THYRISTORS
- GTO (Gate Turn-Off Thyristor)
- MCT (MOS-Controlled Thyristor)
- FCTh (Field-Controlled Thyristor)
- SITh (Static Induction Thyristor)
- MTO (MOS Turn-Off Thyristor)
- EST (Emitter-Switched Thyristor)
- IGTT (Insulated Gate Turn-off Thyristor)
- IGT (Insulated Gate Thyristor)
- IGCT (Integrated Gate-Commutated Thyristor)

TRANSISTORS
- BIPOLAR TRANSISTOR
- DARLINGTON TRANSISTOR
- MOSFET
- FCT (Field Controlled Transistor)
- SIT (Static Induction Transistor)
- IEGT (Injection Enhanced (insulated) Gate Transistor)
- IGBT (Insulated Gate Bipolar Transistor)
High Power Turn-off Devices

- **Power Semiconductors**
 - **Turn-off Devices**
 - Transistors
 - Darlington
 - IGBTs
 - Thyristors
 - GTO
 - IGCT
 - Thyristors
 - Line commutated
 - Fast
 - Bi-directional
 - Pulse
 - Diodes
 - Fast
 - Line commutated
 - Avalanche
Power Semiconductors …

are switches….

….for converting electrical energy
Turn-on Switches (Thyristors)

Thyristors (PCTs)

- thyristors produce voltage distortion in phase control mode

- will ultimately be replaced by ToDs, except...

 in AC configuration for:
 - transfer switches
 - tap changers
 - line interrupters
World Energy Consumption ...

... drives the need for high power electronics

Source: Mitsubishi Electric
Energy trend

By 2020:

- Energy consumption will double
- Electricity generation will double
- Electrification of end-consumption will quintuple

Today, only 15% of electricity flows via electronics

Medium Voltage conversion has only been economically possible in the last 10 years

Power conversion at MV levels set to grow faster than LV (20% p.a.)
SELF- COMMUTATED INVERTERS
Basic Topologies

IGCT Inverter

IGBT Inverter
Turn-on waveforms for IGCTs and IGBTs

$$E_{on - circuit} = (t_2 - t_0) \bullet V_{dc} \bullet (I_{load} + I_{rr})/2(1)$$

$$E_{on - device} \approx I_{load} \bullet \int_{t_2}^{t_3} V_{switch}(t) \cdot dt(2)$$
DEVICES
IGBTs
IGBTs – key features

- Transistors with insulated gate
- Allow dv/dt and di/dt control via gate signal (losses)
- High on-state voltage (transistor)
- High turn-on losses (no snubber)
- Low gate power requirements (voltage control)
- No passives required (independant dv/dt and di/dt control)
HiPak™ High Power IGBT Modules

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Current</th>
<th>Type</th>
<th>Part Number</th>
<th>Vce 125°C</th>
<th>Vf 125°C</th>
<th>Eoff 125°C</th>
<th>Eon 125°C</th>
<th>Vdc</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500V</td>
<td>1200A</td>
<td>Single</td>
<td>5SNA 1200E250100</td>
<td>3.1V</td>
<td>1.8V</td>
<td>1.25J</td>
<td>1.15J</td>
<td>1250V</td>
</tr>
<tr>
<td>3300V</td>
<td>1200A</td>
<td>Single</td>
<td>5SNA 1200E330100</td>
<td>3.8V</td>
<td>2.35V</td>
<td>1.95J</td>
<td>1.89J</td>
<td>1800V</td>
</tr>
<tr>
<td>3300V</td>
<td>1200A</td>
<td>Single</td>
<td>5SNA 1200G330100*</td>
<td>3.8V</td>
<td>2.35V</td>
<td>1.95J</td>
<td>1.89J</td>
<td>1800V</td>
</tr>
<tr>
<td>6500V</td>
<td>600A</td>
<td>Single</td>
<td>5SNA 0600G650100*</td>
<td>4.7V</td>
<td>4.0V</td>
<td>3.5J</td>
<td>4.0J</td>
<td>3600V</td>
</tr>
</tbody>
</table>

* High voltage version

AISiC base-plate & AlN substrate
StakPak™ - stackable press-packs (collector side)

StakPak-H4: 2.5 kV/1300 to 3000 A

StakPak-H6: 2.5 kV/ 2000A to 3000 A

StakPak-L2: 4.5 kV/600 to 1000 A

StakPak-J6: 4.5 kV/2000 to 3000 A
IGBT Press-packs

Conventional IGBT press-pack:
requires tight mechanical tolerances

StakPak™ IGBT press-pack with individual springs:
suitable for long stacks with compounded tolerances
StakPak™ HVDC Valve

Long stacks would require very tight mechanical tolerances to ensure identical force on each chip in each housing:

- on assembly
- over time
- with temperature cycling
- with shock and vibration
IGBT Trends
IGBT Trends

- Higher voltages
- Higher *Safe Operating Area* (SOA)
- Softer (controlled) switching
Soft switching: 3.3kV SPT* IGBT/Diode chip-set

IGBT Turn-off
- \(V_{cc} = 1800\text{V}\)
- \(I_c = 50\text{A}\)
- \(R_{Goff} = 33\text{ohm}\)
- \(L_s = 2.4\mu\text{H}\)
- \(T_j = 125\text{°C}\)

Diode Turn-off
- \(V_R = 1800\text{V}\)
- \(I_F = 100\text{A}\)
- \(R_{Gon} = 33\text{ohm}\)
- \(L_s = 2.4\mu\text{H}\)
- \(T_j = 125\text{°C}\)

* Soft Punch Through
Soft switching: 8 kV IGBT PT vs SPT

The diagram shows the current and voltage over time for conventional PT device and SPT. The high di/dt giving rise to EMI issues is indicated on the diagram.
3.3kV Diode RBSOA Performance

3.3kV/100A Diode RBSOA during Reverse Recovery
\(V_R = 2500V, \ I_F = 200A, \ di/dt=1000A/\mu s, \ L_s = 2.4\mu H, \ T_j = 125^\circ C \)

Peak Power = 0.8 MW/cm²
No clamp, no snubber
4.5kV IGBT RBSOA Performance

4.5kV/40A IGBT RBSOA during Turn-off
\[V_{cc} = 3600\text{V}, \, I_c = 120\text{A}, \, R_G = 0\text{ohm}, \, L_s = 12\mu\text{H}, \, T_j = 125^\circ\text{C} \]

Dynamic Avalanche

SSCM

\[I_c = 3 \times I_{\text{nominal}} \]

Peak Power = 0.5 MW/cm²

No Clamp, No Snubbers
6.5kV IGBT RBSOA Performance

6.5kV/2x25A IGBT RBSOA during Turn-off
\(V_{cc} = 4500V, I_c = 100A, R_G = 0\, \text{ohm}, L_s = 20\mu H, T_j = 125^\circ C \)

Peak Power = 0.25 MW/cm²
No Clamp, No Snubbers
6.5kV IGBT Short Circuit Performance

6.5kV/25A IGBT SCOSA during Short Circuit
\(V_{cc} = 4500V, I_{cpeak} = 290A, V_{GE} = 18V, L_s = 2.4 \mu H, T_j = 25^\circ C \)

Peak Power = 1.35 MW/cm²
No Clamp, No Snubbers
3.3kV IGBT Module RBSOA Performance

3.3kV/1200A IGBT module during Turn-off (24 IGBTs)
$V_{cc} = 2600V$, $I_c = 5000A$, $R_G = 1.5\,\text{ohm}$, $L_s = 280\,\text{nH}$, $T_j = 125^\circ\text{C}$

No clamp, no snubbers
IGCTs
IGCTs – key features

- Thyristor with integrated gate unit
- Low on-state voltage
 (thyristor)
- Negligible turn-on losses
 (turn-on snubber)
- No explosive failures
 (fault current limitation by circuit)
Principle of IGCT Operation

Conducting Thyristor

[Diagram showing the conductivity of a thyristor with anode, cathode, and gate connections.]

Blocking Transistor

[Diagram showing the blocking state of a transistor with anode, cathode, and gate connections.]
IGCT turn-off

Anode voltage V_d vs time t (µs)

- V_{dm}: anode voltage
- I_{tgq}: anode current
- V_g: gate voltage

The thyristor starts to block at V_g.

Transistor follows the thyristor behavior.

© ABB Switzerland Ltd - 32 -
General turn-on waveforms for IGCTs and IGBTs

\[E_{\text{on-circuit}} \]

\[V_{\text{switch or L}} = V_{\text{DC}} \]

\[I_{\text{load}} \]

\[I_{\text{FWD}} \]

\[\frac{\text{di}}{\text{dt}}_{\text{on}} \]

\[t_0 \]

\[t_{\text{on}} \]

\[t_1 \]

\[t_2 \]

\[t_3 \]

\[I_{\text{pk}} \]

\[I_{\text{switch}} \]

\[I_{\text{RR}} \]

\[V_{\text{switch}} = f(t) \]
1500 A IGBT turning on 1000 A from 3000 V

$E_{ON} = 7.4 \text{ WS}$

$E_{ON_circuit} = 4.1 \text{ WS}$

$I_C [250 \text{ A/div}]$

$V_{CE} [500 \text{ V/div}]$

833 A/\mu s

$time [2 \mu s/div]$
4000 A IGCT turning on 1000 A from 3000 V

\[E_{on_circuit} = (t_2 - t_0) \cdot V_{dc} \cdot \left(I_{load} + I_{rr} \right) / 2 \ldots (1) \]

\[= 1.5 \mu s \cdot 3000V \cdot 1900 A / 2 = 4.3 \text{Ws} \]
Adjustment of dv/dt by lifetime control

![Graph showing adjustment of dv/dt by lifetime control](image-url)

- I_A, V_{AK}, [A, V]
- V_{AK}: Green line for medium lifetime, Blue line for low lifetime, Red line for high lifetime
- I_A: Line for high lifetime

t [μs] from 6 to 14
Low inductance housing
4 kA/4.5 kV IGCTs

- IGCT
- Power supply connection
- Visible LED indicators
- All copper housing
- IGCT
- Status Feedback
- Command Signal
- Optical fibre connectors
- GCT

© ABB Switzerland Ltd - ABB
30 MW IGCT Power Management

15 + 15 MW 3-Level Back-to-Back Converter
for three-phase to single-phase conversion

Converter efficiency = 99.2%
4 kA/4.5 kV IGCT at 25 kHz in burst mode

- Anode voltage and current (V, A)
- $V_{DC \text{ start}} = 3.5 \text{ kV}$
- $V_{DM \text{ peak}} = 4.5 \text{ kV}$
- $I_{TGQ \text{ peak}} = 4 \text{ kA}$
- $T_J \text{ start} = 25 \degree \text{C}$
- $\alpha = 0.5$
IGCT Outlook
IGDT
Structure of IGDT – Integrated Gate Dual Transistor

Dual Gate Turn-off Thyristor
91 mm 4.5 kV IGDT turn-off

Dual-gate IGCT @ 85°C - gates triggered simultaneously

\[V_{DC} = 2.8 \text{ kV} \]
\[I_{TQG} = 3.3 \text{ kA} \]
\[V_{DRM} = 4.5 \text{ kV} \]
\[V_{TM} = 2.1 \text{ V @ 4 kA/125°C} \]
IGDT Series connection: leakage current reduction

\(V_{DC} = 2800 \text{ V} \)

- Anode gate floating (no bias)
- Anode gate with 20V reverse biased

\[I_D (mA) \]

\[T_J (°C) \]

140°C
91 mm 4.5 kV IGDT - Leakage current control

$V_{GK} = -20V$, $T_J = 25^\circ C$

I_D - anode leakage current [mA]

I_{GA} Anode gate current [mA]
IGDT anode gate control of tail current

![Graph showing IGDT anode gate control of tail current](image-url)
Increased SOA
IGCT SOA improvement at 4.5 kV

TODAY
- 38 mm reverse conducting
- 250 kW/cm²

TOMORROW
- 91 mm asymmetric
- 1000 kW/cm²
- 400 kW/cm²
6.5 kA @ 2.8 kV_{DC} on 91 mm wafer

Snubberless turn-off
T_j = 125°C, V_D = 2.8kV

Developmental 4” 4.5 kV IGCT with improved GU and silicon design allowing 50% SOA improvement
1.3 kA @ 2.8 kV\textsubscript{DC} on 38 mm RC wafer

Developmental 2” 4.5 kV RC_IGCT with improved GU and silicon design allowing 300% SOA improvement
10 kV IGCT
Engineering Sample of 68 mm 10 kV IGCT
Forward Blocking Characteristics at 25°C

Anode Current I_{DR} [mA] vs. Blocking Voltage V_{AK} [kV]

- magnified by factor 1000:
 - $1 \mu A / \text{div}$

(<17 $\mu A \text{ @ } 10 \text{ kV, 25°C})
Forward Blocking Characteristics at 125°C

(<14 mA @ 7 kV, 125°C)

(8-13 mA @ 6 kV, 125°C, $P_L=50W-80W$ (5%-10% of P_{RP})
Turn-off Waveforms (SOA)

Operating conditions:
\(V_{\text{DC}} = 7 \text{kV}, I_A = 1000 \text{A}, T_j = 85^\circ \text{C} \)

Switching characteristics:
\(E_{\text{off}} = 14.8 \text{ J}, V_{\text{AK, max}} = 8 \text{ kV}, t_{\text{off}} = 8 \mu\text{s}, t_f = 1 \mu\text{s}, t_{\text{tail}} = 5 \mu\text{s}, 250 \text{ kW/cm}^2 \)
Conclusions
SOA Limits of HV Devices are increasing

- Under RBSOA operational conditions
 - Devices withstands dynamic avalanche mode
 - IGBTs withstands “SSCM” mode
 - Devices achieve the ultimate square SOA behaviour
Switching-Self-Clamping-Mode “SSCM”

IGBT SOA turn-off waveforms including SSCM
- devices start to limit voltage during turn-off
- over-voltage safely reaches the static breakdown after turn-off

\[
di/dt = \frac{V_{SSCM} - V_{DC}}{L_S}
\]
For high power conversion, only two devices possible today:
- IGBT
- IGCT

Safe Operating Area is increasing from 250 kW/cm² to 1 MW/cm²

IGDT offers possibility of high voltage devices with low losses (future?)
Challenges
Challenges for HV Power ToDs

- High voltage devices present following challenges:
 - Dynamic Avalanche ruggedness (for reliable operation)
 - Short Circuit Failure Modes (IGBT) and fault interruption (IGCT)
 - Design Trade-off between Losses and SOA
 - Critical Punch-Through voltages (for controllable voltage, low EMI)
 - High DC link voltage (leakage stability, cosmic ray withstand)
 - Large inductance and overshoot voltages in HV power systems
 - High frequency (limited by losses, T_J)
Challenges for this decade

- 10 kV switches with 1 kHz snubberless operation
 (for the 6.9 kV\textsubscript{RMS} MV line for drives and power conditioners)

- Snubberless series operation
 (static and dynamic for MV lines > 6.9 kV\textsubscript{RMS})

- Power supply free operation
 (autogenous power supply for series connection)

- System cost-reduction
 (e.g. pay-back times \(\approx \) 1 year for MV Drives)

- Reduced thermal resistance and increased \(T_J \)

- Reduced losses?
ABB