LONGITUDINAL beam DYNAMICS in circular accelerators

Frank Tecker
CERN, BE-OP

Introduction to Accelerator Physics
Vysoke-Tatry, Slovakia, 8-21/9/2019
Scope and Summary of the 2 lectures:

The goal of an accelerator is to provide a stable particle beam.

The particles nevertheless perform transverse betatron oscillations. We will see that they also perform (so-called synchrotron) oscillations in the longitudinal plane and in energy.

We will look at the stability of these oscillations, their dynamics and derive some basic equations.

More related lectures:
• Linacs - David Alesini
• RF Systems - Heiko Damerau
• Electron Beam Dynamics - Lenny Rivkin
• Non-Linear longitudinal Beam Dynamics - Heiko Damerau
• Hands-on calculations - longitudinal in the second week !!!
Motivation for circular accelerators

- Linear accelerators scale in size and cost(!) ~linearly with the energy.
- Circular accelerators can each turn reuse
 - the accelerating system
 - the vacuum chamber
 - the bending/focusing magnets
 - beam instrumentation, ...

-> economic solution to reach higher particle energies

-> high energy accelerators today are synchrotrons.
Particle types and acceleration

The accelerating system will depend upon the evolution of the particle velocity:
• electrons reach a constant velocity (≈ speed of light) at relatively low energy
• heavy particles reach a constant velocity only at very high energy
 → need different types of resonators, optimized for different velocities
 → the revolution frequency will vary, so the RF frequency will be changing
 → magnetic field needs to follow the momentum increase

Particle rest mass \(m_0 \):
- electron \(0.511 \) MeV
- proton \(938 \) MeV
- \(^{239}\text{U} \) ~220000 MeV

Total Energy: \(E = m_0 c^2 \)

Relativistic gamma factor:
\[
\gamma = \frac{E}{E_0} = \frac{m}{m_0} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}
\]

Momentum:
\[
p = mv = \frac{E}{c^2} = \frac{E}{c} = m_0 c
\]
The revolution and RF frequency will be changing during acceleration. Much more important for lower energies (values are kinetic energy - protons).

PS Booster:
- 50 MeV ($\beta=0.314$) -> 1.4 GeV ($\beta=0.915$)
- 602 kHz -> 1746 kHz => 190% increase

PS:
- 1.4 GeV ($\beta=0.915$) -> 25.4 GeV ($\beta=0.9994$)
- 437 KHz -> 477 KHz => 9% increase

SPS:
- 25.4 GeV -> 450 GeV ($\beta=0.999998$)
- => 0.06% increase

LHC:
- 450 GeV -> 7 TeV ($\beta=0.999999991$)
- => 2 10^{-6} increase

RF system needs more flexibility in lower energy accelerators.

Question: What about electrons and positrons?
Hence, it is necessary to have an electric field E (preferably) along the direction of the initial momentum z, which changes the momentum p of the particle.

In relativistic dynamics, total energy E and momentum p are linked by

$$E^2 = E_0^2 + p^2 c^2$$

The rate of energy gain per unit length of acceleration (along z) is then:

$$\frac{dE}{dz} = v$$

and the kinetic energy gained from the field along the z path is:

$$dW = dE = q E_z$$

To accelerate, we need a force in the direction of motion!

Newton-Lorentz Force on a charged particle:

$$F = \frac{d}{dt} p = e E + v \times B$$

2nd term always perpendicular to motion => no acceleration

$-V$ is a potential
q the charge

May the force be with you!
Methods of Acceleration in circular accelerators

The electric field is derived from a scalar potential ϕ and a vector potential A

The solution: \Rightarrow time varying electric fields

- Induction
- RF frequency fields

\[\oint \vec{E} \cdot d\vec{s} = - \int \int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{A} \]
It is based on the principle of a transformer:
- primary side: large electromagnet - secondary side: electron beam.
The ramping magnetic field is used to guide particles on a circular trajectory as well as for acceleration.

Limited by saturation in iron (~300 MeV e-)

Used in industry and medicine, as they are compact accelerators for electrons

Donald Kerst with the first betatron, invented at the University of Illinois in 1940
Common Phase Conventions

1. For circular accelerators, the origin of time is taken at the zero crossing of the RF voltage with positive slope.

2. For linear accelerators, the origin of time is taken at the positive crest of the RF voltage.

Time $t=0$ chosen such that:

For circular accelerators:

$$ E_1(t) = E_0 \sin(\omega_{RF} t) $$

For linear accelerators:

$$ E_2(t) = E_0 \cos(\omega_{RF} t) $$

3. I will stick to convention 1 in the following to avoid confusion.
Circular accelerators

Cyclotron
Synchrotron
Circular accelerators: Cyclotron

Courtesy: EdukiteLearning, https://youtu.be/cNnNM2ZqIsc
Circular accelerators: Cyclotron

Used for protons, ions

\[B = \text{constant} \]
\[\omega_{RF} = \text{constant} \]

Synchronism condition

\[\omega_s = \omega_{RF} \]
\[2\pi \rho = v_s T_{RF} \]

Cyclotron frequency

\[\omega = \frac{qB}{m_0 \gamma} \]

1. \(\gamma \) increases with the energy
 \(\Rightarrow \) no exact synchronism

2. if \(v \ll c \) \(\Rightarrow \gamma \approx 1 \)

Animation: http://www.sciences.univ-nantes.fr/sites/genevieve_tulloue/Meca/Charges/cyclotron.html
Circular accelerators: Cyclotron

Courtesy Berkeley Lab,
https://www.youtube.com/watch?v=cutKuFxeXmQ
Synchrocyclotron: Same as cyclotron, except a modulation of ω_{RF}

- B = constant
- $\gamma \omega_{RF}$ = constant

ω_{RF} decreases with time

The condition:

$$\omega_s(t) = \omega_{RF}(t) = \frac{q B}{m_0 \gamma(t)}$$

 Allows to go beyond the non-relativistic energies

More in lectures by Mike Seidel
Synchronism condition

1. **Constant orbit** during acceleration

2. To keep particles on the closed orbit, B should increase with time

3. ω and ω_{RF} increase with energy

RF frequency can be multiple of revolution frequency

$$\omega_{RF} = h\omega$$

\[
\begin{align*}
T_s &= h T_{RF} \\
\frac{2\pi R}{v_s} &= h T_{RF}
\end{align*}
\]

h integer,

harmonic number:

number of RF cycles per revolution
Circular accelerators: The Synchrotron

Examples of different proton and electron synchrotrons at CERN + LHC (of course!)
The Synchrotron

The synchrotron is a synchronous accelerator since there is a synchronous RF phase for which the energy gain fits the increase of the magnetic field at each turn. That implies the following operating conditions:

\[eV \sin \omega = \frac{h \omega}{c} \]

\[= \text{synchronous particle} \]

\[\omega_{RF} = h\omega \]

\[= \text{RF synchronism (} h \text{- harmonic number)} \]

\[= cte \quad R = cte \quad \text{Constant orbit} \]

\[B = \frac{P}{e} \quad B \quad \text{Variable magnetic field} \]

If \(v \approx c \), \(\omega \) hence \(\omega_{RF} \) remain constant (ultra-relativistic e\(^-\)).
The magnetic field (dipole current) is increased during the acceleration.

The Synchrotron - LHC Operation Cycle

The magnetic field (dipole current) is increased during the acceleration.

The Synchrotron - LHC Operation Cycle

The magnetic field (dipole current) is increased during the acceleration.

The Synchrotron - LHC Operation Cycle

The magnetic field (dipole current) is increased during the acceleration.

The Synchrotron - LHC Operation Cycle

The magnetic field (dipole current) is increased during the acceleration.
The Synchrotron - Energy ramping

Energy ramping by increasing the B field (frequency has to follow v):

\[p = eB \quad \Rightarrow \quad \frac{dp}{dt} = e \dot{B} \quad \Rightarrow \quad (p)_{\text{turn}} = e \dot{B}T_r = \frac{2 e R \dot{B}}{v} \]

Since:

\[E^2 = E_0^2 + p^2 c^2 \quad \Rightarrow \quad E = v \ p \]

\[(E)_{\text{turn}} = (W)_s = 2 e R \dot{B} = e \hat{V} \sin s \]

Stable phase \(\varphi_s \) changes during energy ramping

\[\sin \varphi_s = 2\pi \rho R \frac{\dot{B}}{\hat{V}_{RF}} \quad \Rightarrow \quad \varphi_s = \arcsin \left(2\pi \rho R \frac{\dot{B}}{\hat{V}_{RF}} \right) \]

• The number of stable synchronous particles is equal to the harmonic number \(h \). They are equally spaced along the circumference.

• Each synchronous particle satisfies the relation \(p = eB \rho \).
 They have the nominal energy and follow the nominal trajectory.
During the energy ramping, the RF frequency increases to follow the increase of the revolution frequency:

\[\omega = \frac{\omega_{RF}}{h} = \omega(B, R_s) \]

Hence:

\[\frac{f_{RF}(t)}{h} = \frac{v(t)}{2 R_s} = \frac{1}{2} \frac{e c^2}{E_s(t) R_s} B(t) \quad \text{(using } p(t) = eB(t), \ E = mc^2) \]

Since \[E^2 = (m_0 c^2)^2 + p^2 c^2 \] the RF frequency must follow the variation of the B field with the law

\[\frac{f_{RF}(t)}{h} = \frac{c}{2 R_s} \frac{B(t)^2}{(m_0 c^2 / e c)^2 + B(t)^2}^{1/2} \]

RF frequency program during acceleration determined by B-field

This asymptotically tends towards

\[f_r \rightarrow \frac{c}{2} \frac{1}{R_s} \]

when B becomes large compared to \[m_0 c^2 / (e c) \]

which corresponds to \[v \rightarrow c \]
During the energy ramping, the B-field and the revolution frequency increase.

Example: PS - Field / Frequency change

- **B-field**
- **kinetic energy**
- **'B-dot'**
- **revolution frequency**

![Graphs showing B-field, kinetic energy, 'B-dot', and revolution frequency changes over time.](image-url)
Overtaking in a Formula 1 Race
Overtaking in a Formula 1 Race
Overtaking in a Formula 1 Race

A F1 car wants to overtake another car! It will have a
• a different track length due to a 'dispersion orbit'
• and a different velocity.

\[T = \frac{L}{v} = \frac{2\pi R}{v} \quad \text{and} \quad f_r = \frac{1}{T} = \frac{v}{2\pi R} \]

\[\Rightarrow \frac{\Delta f_r}{f_r} = \frac{\Delta v}{v} - \frac{\Delta R}{R} \]

The winner depends on the relative change in speed compared to the relative change in track length!

If the relative change in speed is larger than the relative change in track length \(\Rightarrow \) the red car will win!
Overtaking in a Synchrotron

A particle slightly shifted in momentum will have a
• dispersion orbit and a different orbit length
• a different velocity.

As a result of both effects the revolution frequency changes with a "slip factor η":

$$\frac{df_r}{f_r} = \frac{dp}{p} \eta$$

$$\eta = \frac{p \frac{df_r}{f_r}}{dp}$$

Note: you also find η defined with a minus sign!

The "momentum compaction factor" is defined as relative orbit length change with momentum:

$$\alpha_c = \frac{dL/L}{dp/p}$$

$$\alpha_c = \frac{p \frac{dL}{L}}{dp}$$

Circumference

$L = 2\pi R$

Note: p=particle momentum

R=synchrotron physical radius

$f_r=$revolution frequency

Introductory CAS, Slovakia, September 2019
Momentum Compaction Factor

\[\alpha_c = \frac{p \, dL}{L \, dp} \]

\[ds_0 = d \]

\[ds = (1 + x)d \]

The elementary path difference from the two orbits is:

\[\frac{dl}{ds_0} = \frac{ds}{ds_0} = \frac{x}{p} \]

leading to the total change in the circumference:

\[dL = \frac{dl}{c} = \frac{x}{p} ds_0 = \frac{D_x}{p} dp \, ds_0 \]

With \(p = \infty \) in straight sections, we get:

\[\alpha_c = \frac{1}{L} \int_C \frac{D_x(s)}{\rho(s)} \, ds_0 \]

Property of the transverse beam optics!

With \(\rho = \infty \) in straight sections, we get:

\[\alpha_c = \langle D_x \rangle_m \]

\[\alpha_c = \frac{\langle D_x \rangle_m}{R} \]

\(< >_m \) means that the average is considered over the bending magnet only.
Dispersion Effects – Revolution Frequency

The two effects of the orbit length and the particle velocity change the revolution frequency as:

\[f_r = \frac{c}{2R} \]

\[\frac{df_r}{fr} = \frac{d}{R} = \frac{d}{c} \frac{dp}{p} \]

\[\frac{dR}{R} = \frac{d}{c} \frac{dp}{p} \]

\[\frac{df_r}{fr} = \left(\frac{1}{\gamma^2} - \alpha_c \right) \frac{dp}{p} \]

\[p = mv = \frac{E_0}{c} \]

\[\frac{dp}{p} = \frac{d}{c} \left(\frac{1}{2} \right)^{1/2} \]

\[\gamma_t = \frac{1}{\sqrt{\alpha_c}} \]

Slip factor: \(\eta = \frac{1}{\gamma^2} - \alpha_c \) or \(\eta = \frac{1}{\gamma^2} - \frac{1}{\gamma_t^2} \) with \(\gamma_t = \frac{1}{\sqrt{\alpha_c}} \)

Note: you also find \(\eta \) defined with a minus sign!

At transition energy, \(\eta = 0 \), the velocity change and the path length change with momentum compensate each other. So the revolution frequency there is independent from the momentum deviation.
Let's consider a succession of accelerating gaps, operating in the 2π mode, for which the synchronism condition is fulfilled for a phase Φ_s.

$$eV_s = e\hat{V} \sin S$$

is the energy gain in one gap for the particle to reach the next gap with the same RF phase: P_1, P_2, \ldots are fixed points.

RECAP: Principle of Phase Stability (Linac)

If an energy increase is transferred into a velocity increase \Rightarrow

- M_1 & N_1 will move towards P_1 \Rightarrow stable
- M_2 & N_2 will go away from P_2 \Rightarrow unstable

(Highly relativistic particles have no significant velocity change)

For a 2π mode, the electric field is the same in all gaps at any given time.
Phase Stability in a Synchrotron

From the definition of η it is clear that an increase in momentum gives
- below transition ($\eta > 0$) a higher revolution frequency
 (increase in velocity dominates) while
- above transition ($\eta < 0$) a lower revolution frequency ($v \approx c$ and longer path)
 where the momentum compaction (generally > 0) dominates.

\[\eta = \frac{1}{\gamma^2} - \alpha_c \]
Crossing Transition

At transition, the velocity change and the path length change with momentum compensate each other. So the revolution frequency there is independent from the momentum deviation.

Crossing transition during acceleration makes the previous stable synchronous phase unstable. The RF system needs to make a rapid change of the RF phase, a 'phase jump'.

\[\gamma_t \approx \frac{1}{\sqrt{\alpha_c}} \approx Q_x \]

In the PS: \(\gamma_t \) is at \(\sim 6 \text{ GeV} \)
In the SPS: \(\gamma_t = 22.8 \), injection at \(\gamma = 27.7 \)
 => no transition crossing!
In the LHC: \(\gamma_t \) is at \(\sim 55 \text{ GeV} \), also far below injection energy

Transition crossing not needed in leptons machines, why?
Dynamics: Synchrotron oscillations

Simple case (no accel.): $B = \text{const.}, \text{below transition } \gamma < \gamma_t$

The phase of the synchronous particle must therefore be $\phi_0 = 0$.

Φ_1
- The particle B is accelerated
- Below transition, an energy increase means an increase in revolution frequency
- The particle arrives earlier - tends toward ϕ_0

Φ_2
- The particle is decelerated
- decrease in energy - decrease in revolution frequency
- The particle arrives later - tends toward ϕ_0
Particle B is performing Synchrotron Oscillations around synchronous particle A.

The amplitude depends on the initial phase and energy.

The oscillation frequency is much slower than in the transverse plane. It takes a large number of revolutions for one complete oscillation. Restoring electric force smaller than magnetic force.
The Potential Well

Cavity voltage

Potential well

phase
The energy-phase oscillations can be drawn in phase space:

The particle trajectory in the phase space ($\Delta p/p, \phi$) describes its longitudinal motion.

Emittance: phase space area including all the particles

NB: if the emittance contour correspond to a possible orbit in phase space, its shape does not change with time (matched beam)
Particle B oscillates around particle A
This is a synchrotron oscillation
Plotting this motion in longitudinal phase space gives:
Synchrotron oscillations – No acceleration

Phase space picture

- Stable region
- Unstable region
- Separatrix
The restoring force is non-linear.
⇒ speed of motion depends on position in phase-space

Remark:
Synchrotron frequency much smaller than betatron frequency.
Synchrotron motion in phase space

\[\Delta E - \phi \] phase space of a stationary bucket (when there is no acceleration)

Bucket area: area enclosed by the separatrix

The area covered by particles is the longitudinal emittance

Particle inside the separatrix:

Particle at the unstable fix-point

Particle outside the separatrix:

Dynamics of a particle
Non-linear, conservative oscillator → e.g. pendulum
(Stationary) Bunch & Bucket

The bunches of the beam fill usually a part of the bucket area.

Bucket area = **longitudinal Acceptance** [eVs]

Bunch area = **longitudinal beam emittance** (rms) = $\pi \sigma_E \sigma_t$ [eVs]

Attention: Different definitions are used!
Synchrotron oscillations (with acceleration)

Case with acceleration B increasing

The symmetry of the case $B = \text{const.}$ is lost
The areas of stable motion (closed trajectories) are called “BUCKET”. The number of circulating buckets is equal to “h”.

The phase extension of the bucket is maximum for $\phi_s = 180^\circ$ (or 0°) which means no acceleration.

During acceleration, the buckets get smaller, both in length and energy acceptance.

=> Injection preferably without acceleration.
Longitudinal Motion with Synchrotron Radiation

Synchrotron radiation energy-loss energy dependant:

During one period of synchrotron oscillation:

- when the particle is in the upper half-plane, it loses more energy per turn, its energy gradually reduces

- when the particle is in the lower half-plane, it loses less energy per turn, but receives U_0 on the average, so its energy deviation gradually reduces

The phase space trajectory spirals towards the origin (limited by quantum excitations)

\Rightarrow The synchrotron motion is damped toward an equilibrium bunch length and energy spread.

More details in the lectures on *Electron Beam Dynamics*
Longitudinal Dynamics in Synchrotrons

Now we will look more quantitatively at the “synchrotron motion”.

The RF acceleration process clearly emphasizes two coupled variables, the energy gained by the particle and the RF phase experienced by the same particle.

Since there is a well defined synchronous particle which has always the same phase ϕ_s, and the nominal energy E_s, it is sufficient to follow other particles with respect to that particle.

So let’s introduce the following reduced variables:

- revolution frequency: $\Delta f_r = f_r - f_{rs}$
- particle RF phase: $\Delta \phi = \phi - \phi_s$
- particle momentum: $\Delta p = p - p_s$
- particle energy: $\Delta E = E - E_s$
- azimuth orbital angle: $\Delta \theta = \theta - \theta_s$
First Energy-Phase Equation

\[f_{RF} = hf_r \quad \Rightarrow \quad Df = -hf \quad \text{with} \quad dt = \int dt \]

particle ahead arrives earlier
\[\Rightarrow \text{smaller RF phase} \]

For a given particle with respect to the reference one:

\[\Delta \omega = \frac{d}{dt} (\Delta \theta) = -\frac{1}{h} \frac{d}{dt} (\Delta \phi) = -\frac{1}{h} \frac{d\phi}{dt} \]

Since:

\[\eta = \frac{p_s}{\omega_{rs}} \left(\frac{d\omega}{dp} \right)_s \]

and

\[E^2 = E_0^2 + p^2 c^2 \]

\[E = v_s \quad p = rs R_s \quad p \]

one gets:

\[\Delta E = -\frac{p_s R_s}{\omega_{rs}} \frac{d(\Delta \phi)}{dt} = -\frac{p_s R_s}{h \eta \omega_{rs}} \phi \]
Second Energy-Phase Equation

The rate of energy gained by a particle is:

\[
\frac{dE}{dt} = e\hat{V}\sin\phi \frac{\omega_r}{2\pi}
\]

The rate of relative energy gain with respect to the reference particle is then:

\[
2 \left(\frac{\dot{E}}{r} \right) = e\hat{V}(\sin r \sin s)
\]

Expanding the left-hand side to first order:

\[
\left(\dot{E}_T_r \right) \dot{E}_r + T_{rs} \dot{E} = ET_r + T_{rs} \dot{E} = \frac{d}{dt}(T_{rs} \ E)
\]

leads to the second energy-phase equation:

\[
2 \frac{d}{dt} \left(\frac{E}{rs} \right) = e\hat{V}(\sin r \sin s)
\]
Equations of Longitudinal Motion

\[
\frac{\Delta E}{\omega_{rs}} = -\frac{p_s R_s}{\hbar \eta \omega_{rs}} \frac{d(\Delta \phi)}{dt} = -\frac{p_s R_s}{\hbar \eta \omega_{rs}} \dot{\phi}
\]

\[
2\pi \frac{d}{dt} \left(\frac{\Delta E}{\omega_{rs}} \right) = e \hat{V} (\sin \phi - \sin \phi_s)
\]

deriving and combining

\[
\frac{d}{dt} \left[\frac{R_s p_s}{\hbar \eta \omega_{rs}} \frac{d\phi}{dt} \right] + \frac{e \hat{V}}{2\pi} (\sin \phi - \sin \phi_s) = 0
\]

This second order equation is non-linear. Moreover, the parameters within the bracket are in general slowly varying with time.

We will study some cases in the following...
The longitudinal motion is produced by a force that can be derived from a scalar potential:

\[
F(\phi) = -\frac{\partial U}{\partial \phi}
\]

\[
U = -\int_0^\phi F(\phi) d\phi = -\frac{\Omega_s^2}{\cos \phi_s} (\cos \phi + \phi \sin \phi_s) - F_0
\]

The sum of the potential energy and kinetic energy is constant and by analogy represents the total energy of a non-dissipative system.
Hamiltonian of Longitudinal Motion

Introducing a new convenient variable, W, leads to the 1^{st} order equations:

$$W = \frac{\Delta E}{\omega_{rs}}$$

$$\frac{d\phi}{dt} = -\frac{h\eta \omega_{rs}}{pR} W$$

$$\frac{dW}{dt} = \frac{e \hat{V}}{2\pi} (\sin \phi - \sin \phi_s)$$

The two variables ϕ, W are canonical since these equations of motion can be derived from a Hamiltonian $H(\phi, W, t)$:

$$\frac{d\phi}{dt} = \frac{\partial H}{\partial W}$$

$$\frac{dW}{dt} = -\frac{\partial H}{\partial \phi}$$

$$H(\phi, W) = -\frac{1}{2} \frac{h\eta \omega_{rs}}{pR} W^2 + \frac{e \hat{V}}{2\pi} [\cos \phi - \cos \phi_s + (\phi - \phi_s) \sin \phi_s]$$
Hamiltonian of Longitudinal Motion

What does it represent? The total energy of the system!

Surface of $H(\varphi, W)$

Contours of $H(\varphi, W)$

Contours of constant H are particle trajectories in phase space! (H is conserved)

Hamiltonian Mechanics can help us understand some fairly complicated dynamics (multiple harmonics, bunch splitting, ...)

Introductory CAS, Slovakia, September 2019
Small Amplitude Oscillations

Let’s assume constant parameters \(R_s, p_s, \omega_s \) and \(\eta \):

\[
\ddot{\phi} + \frac{\Omega_s^2}{\cos\phi_s} (\sin\phi - \sin\phi_s) = 0
\]

with

\[
\Omega_s^2 = \frac{h \eta \omega_s e \hat{V} \cos\phi_s}{2 \pi R_s p_s}
\]

Consider now small phase deviations from the reference particle:

\[
\sin\phi - \sin\phi_s = \sin(\phi_s + \Delta\phi) - \sin\phi_s \approx \cos\phi_s \Delta\phi
\]

(for small \(\Delta\phi \))

and the corresponding linearized motion reduces to a harmonic oscillation:

\[
\dddot{\phi} + \frac{2}{\omega_s^2} \phi = 0
\]

where \(\Omega_s \) is the synchrotron angular frequency.

The synchrotron tune \(\nu_s \) is the number of synchrotron oscillations per revolution:

\[
\nu_s = \frac{\Omega_s}{\omega_s}
\]

Typical values are \(<1\), as it takes several \(10 - 1000\) turns per oscillation.

- proton synchrotrons of the order \(10^{-3} \)
- electron storage rings of the order \(10^{-1} \)
Stability condition for ϕ_s

$$\Omega_s^2 = \frac{e\hat{V}_{RF}\eta h \omega_s}{2\pi R_s \rho_s} \cos \phi_s$$

$$\iff \Omega_s^2 = \omega_s^2 \frac{e\hat{V}_{RF}\eta h}{2\pi \beta^2 E} \cos \phi_s \quad \text{with} \quad \frac{R_p}{\omega} = \frac{\beta^2 E}{\omega}$$

Stability is obtained when Ω_s is real and so Ω_s^2 positive:

$$\Omega_s^2 > 0$$

$$\Updownarrow$$

$$\eta \cos \phi_s > 0$$

Stable in the region if:

- $\gamma \lessgtr \gamma_{tr}$
- $\eta \lessgtr 0$

Introductory CAS, Slovakia, September 2019
Synchrotron tune measurement

Reminder: Non-linear force => Synchrotron tune depends on amplitude

Principle A: The synchrotron oscillation modulates the arrival time of a bunch.

Use pick-up intensity signal and perform an FFT

⇒ The synchrotron tune will appear as sideband of revolution harmonics

Practical approach: Mix the signal with RF signal ⇒ proportional to phase offset

Problem for proton machines since the synchrotron tune is very small. The revolution harmonic lines are huge compared to the synchrotron lines, so a very good and narrow bandwidth filter is needed to separate them.
Synchrotron tune measurement – cont.

Principle B: The transverse beam position is modulated through dispersion:

\[x = x_0 + D \frac{\Delta p}{p} \]

Use horizontal position signal from a BPM in dispersive region + perform FFT

Radial beam position after injection with phase/energy offset (at the PS)

A-S. Müller
Synchrotron tune measurement - cont.

Principle C: The transverse tune is modulated through chromaticity:

\[Q = Q_0 + \xi \frac{\Delta p}{p} \]

Frequency modulation (FM) of the betatron tunes.

Use horizontal position signal from a BPM + perform FFT

The synchrotron tune will appear as sidebands of the betatron tune.

Tune measurement for positrons (at the SPS)

E. Wanvik

A Boudzko (EPAC’98)
Large Amplitude Oscillations

For larger phase (or energy) deviations from the reference the second order differential equation is non-linear:

$$\ddot{\phi} + \frac{\Omega_s^2}{\cos \phi_s} (\sin \phi - \sin \phi_s) = 0$$

(Ω_s as previously defined)

Multiplying by $\dot{\phi}$ and integrating gives an invariant of the motion:

$$\frac{\dot{\phi}^2}{2} - \frac{\Omega_s^2}{\cos \phi_s} (\cos \phi + \phi \sin \phi_s) = I$$

which for small amplitudes reduces to:

$$\frac{\dot{\phi}^2}{2} + \frac{2}{s} \left(\frac{\phi}{2} \right)^2 = I'$$

(the variable is $\Delta \phi$, and ϕ_s is constant)

Similar equations exist for the second variable: $\Delta E \propto d\phi/dt$
When ϕ reaches $\pi - \phi_s$ the force goes to zero and beyond it becomes non restoring.
Hence $\pi - \phi_s$ is an extreme amplitude for a stable motion which in the phase space $(\phi, \dot{\phi})$ is shown as closed trajectories.

Equation of the separatrix:

$$\frac{\dot{\phi}^2}{2} - \frac{\Omega_s^2}{\cos \phi_s} (\cos \phi + \phi \sin \phi_s) = -\frac{\Omega_s^2}{\cos \phi_s} (\cos(\pi - \phi_s) + (\pi - \phi_s) \sin \phi_s)$$

Second value ϕ_m where the separatrix crosses the horizontal axis:

$$\cos \phi_m + \phi_m \sin \phi_s = \cos(\pi - \phi_s) + (\pi - \phi_s) \sin \phi_s$$
Energy Acceptance

From the equation of motion it is seen that $\dot{\phi}$ reaches an extreme at $\phi = \phi_s$. Introducing this value into the equation of the separatrix gives:

$$\frac{\Delta E}{E_s}_{\text{max}} = \pm \beta \sqrt{\frac{e\hat{V}}{\pi\hbar\eta E_s}} G(\phi_s)$$

That translates into an energy acceptance:

$$G(\phi_s) = 2\cos \phi + (2\phi)'\sin \phi$$

This “RF acceptance” depends strongly on ϕ_s and plays an important role for the capture at injection, and the stored beam lifetime.

It’s largest for $\phi_s=0$ and $\phi_s=\pi$ (no acceleration, depending on η).

It becomes smaller during acceleration, when ϕ_s is changing.

Need a higher RF voltage for higher acceptance.

For the same RF voltage it is smaller for higher harmonics h.

This equation is represented graphically in the figure.
The areas of stable motion (closed trajectories) are called “BUCKET”. The number of circulating buckets is equal to “h”.

The phase extension of the bucket is maximum for $\phi_s = 180^\circ$ (or 0°) which means no acceleration.

During acceleration, the buckets get smaller, both in length and energy acceptance.

$=>$ Injection preferably without acceleration.
This is the case $\sin \phi_s = 0$ (no acceleration) which means $\phi_s = 0$ or π. The equation of the separatrix for $\phi_s = \pi$ (above transition) becomes:

$$\dot{\phi}^2 + \Omega_s^2 \cos \phi = \Omega_s^2$$

$$\dot{\phi}^2 = 2\Omega_s^2 \sin^2 \frac{\phi}{2}$$

Replacing the phase derivative by the (canonical) variable W:

$$W = \pm \frac{\Delta E}{\omega_s} = -\frac{p_s R_s}{\hbar \eta \omega_s} \dot{\phi}$$

and introducing the expression for Ω_s leads to the following equation for the separatrix:

$$W = \pm \frac{C}{\hbar c} \sqrt{\frac{e \hat{V} E_s}{2 \hbar}} \sin \frac{\phi}{2} = \pm W_{bk} \sin \frac{\phi}{2}$$

with $C = 2\pi R_s$
Bucket height - bucket area

Setting $\phi=\pi$ in the previous equation gives the height of the stationary bucket:

$$W_{bk} = \frac{C}{hc} \sqrt{\frac{e\hat{V}E_s}{2h}}$$

The bucket area is:

$$A_{bk} = 2\int_0^{2\pi} W d\phi$$

Since:

$$\int_0^{2\pi} \sin \frac{\phi}{2} d\phi = 4$$

one gets:

$$A_{bk} = 8W_{bk} = 8\frac{C}{hc} \sqrt{\frac{e\hat{V}E_s}{2h}}$$

$$W_{bk} = \frac{A_{bk}}{8}$$

For an accelerating bucket, this area gets reduced by a factor depending on Φ_s:

$$\alpha(\phi_s) \approx \frac{1 - \sin \phi_s}{1 + \sin \phi_s}$$
Phase Space Trajectories inside Stationary Bucket

A particle trajectory inside the separatrix is described by the equation:

\[\frac{\dot{\phi}^2}{2} - \frac{\Omega_s^2}{\cos \phi_s} (\cos \phi + \phi \sin \phi_s) = I \]

\[\phi_s = \pi \]

\[\frac{\dot{\phi}^2}{2} + \Omega_s^2 \cos \phi = I \]

The points where the trajectory crosses the axis are symmetric with respect to \(\phi_s = \pi \)

\[\frac{\dot{\phi}^2}{2} + \Omega_s^2 \cos \phi = \Omega_s^2 \cos \phi_m \]

\[\dot{\phi} = \pm \Omega_s \sqrt{2(\cos \phi_m - \cos \phi)} \]

\[W = \pm W_{bk} \sqrt{\cos^2 \frac{m}{2} \cos^2 \frac{\phi}{2}} \]

\[\cos(\phi) = 2 \cos^2 \frac{\phi}{2} - 1 \]
Injection: Bunch-to-bucket transfer

- **Bunch from sending accelerator into the bucket of receiving**

Advantages:

- Particles always subject to **longitudinal focusing**
- No need for RF capture of de-bunched beam in receiving accelerator
- No particles at unstable fixed point
- Time structure of beam preserved during transfer
Effect of a Mismatch

Injected bunch: short length and large energy spread after 1/4 synchrotron period: longer bunch with a smaller energy spread.

For larger amplitudes, the angular phase space motion is slower (1/8 period shown below) => can lead to filamentation and emittance growth

restoring force is non-linear

stationary bucket

accelerating bucket
Effect of a Mismatch (2)

- Long. emittance is only preserved for correct RF voltage

Matched case

- Bunch is fine, longitudinal emittance remains constant

Longitudinal mismatch

- Dilution of bunch results in increase of long. emittance
Effect of a Mismatch (3)

Evolution of an injected beam for the first 100 turns.

For a mismatched transfer, the emittance increases (right).

matched beam

mismatched beam - phase error
Longitudinal matching - Beam profile

Matched case

\[\Delta \phi = 0, \, \frac{V_{\text{inj}}}{V_{\text{RF}}} = 1 \]

→ Bunch is fine, *longitudinal emittance remains constant*

Longitudinal mismatch

\[\Delta \phi = 0, \, \frac{V_{\text{inj}}}{V_{\text{RF}}} = 2 \]

→ Dilution of bunch results in increase of long. emittance
Matching quiz!

• **Find the difference!**

\rightarrow -45° phase error at injection
\rightarrow *Can be easily corrected by bucket phase*

\rightarrow Equivalent energy error
\rightarrow *Phase does not help: requires beam energy change*
We can reconstruct the phase space distribution of the beam.

- Longitudinal bunch profiles over a number of turns
- Parameters determining Ω_s
Bunch Rotation

Phase space motion can be used to make short bunches.

Start with a long bunch and extract or recapture when it's short.

initial beam
Capture of a Debunched Beam with Fast Turn-On
Capture of a Debunched Beam with Adiabatic Turn-On

CAPTURE OF DEBUNCHED BEAM WITH ADIABATIC TURN-ON TURN 400

CAPTURE OF DEBUNCHED BEAM WITH ADIABATIC TURN-ON TURN 1000
Generating a 25ns LHC Bunch Train in the PS

- **Longitudinal bunch splitting (basic principle)**
 - Reduce voltage on principal RF harmonic and simultaneously rise voltage on multiple harmonics (adiabatically with correct phase, etc.)

Use double splitting at 25 GeV to generate 50ns bunch trains instead

Introductory CAS, Slovakia, September 2019
Production of the LHC 25 ns beam

1. Inject four bunches ~ 180 ns, 1.3 eVs

2. Inject two bunches

Wait 1.2 s for second injection

3. Triple split after second injection

~ 0.7 eVs

4. Accelerate from 1.4 GeV (E_{kin}) to 26 GeV
5. During acceleration: longitudinal emittance blow-up: $0.7 - 1.3$ eVs

6. Double split ($h_{21} \rightarrow h_{42}$)

7. Double split ($h_{42} \rightarrow h_{84}$) ~ 0.35 eVs, 4 ns

10. Fine synchronization, bunch rotation \rightarrow Extraction!
The LHC25 (ns) cycle in the PS

Inject 4+2 bunches

\(h = 7 \)

Eject 72 bunches

\(h = 84 \)

Each bunch from the Booster divided by \(12 \rightarrow 6 \times 3 \times 2 \times 2 = 72 \)
Triple splitting in the PS
Two times double splitting in the PS

Two times double splitting and bunch rotation:

- Bunch is divided twice using RF systems at $h = 21/42$ (10/20 MHz) and $h = 42/84$ (20/40 MHz)

- Bunch rotation: first part $h84$ only + $h168$ (80 MHz) for final part
Summary

- Cyclotrons/Synchrocylotrons for low energy
- **Synchrotrons** for high energies, constant orbit, rising field and frequency
- Particles with higher energy have a longer orbit (normally) but a higher velocity
 - at low energies (below transition) velocity increase dominates
 - at high energies (above transition) velocity almost constant
- Particles perform **oscillations around synchronous phase**
 - synchronous phase depending on acceleration
 - below or above transition
- **Hamiltonian** approach can deal with fairly complicated dynamics
- **Bucket** is the stable region in phase space inside the **separatrix**
- **Matching** the shape of the bunch to the bucket is essential
Bibliography

S.Y. Lee
Accelerator Physics
(World Scientific, 2011)

M. Conte, W.W. Mac Kay
An Introduction to the Physics of particle Accelerators
(World Scientific, 1991)

P. J. Bryant and K. Johnsen
The Principles of Circular Accelerators and Storage Rings
(Cambridge University Press, 1993)

D. A. Edwards, M. J. Syphers
An Introduction to the Physics of High Energy Accelerators
(J. Wiley & sons, Inc, 1993)

H. Wiedemann
Particle Accelerator Physics
(Springer-Verlag, Berlin, 1993)

M. Reiser
Theory and Design of Charged Particles Beams
(J. Wiley & sons, 1994)

A. Chao, M. Tigner
Handbook of Accelerator Physics and Engineering
(World Scientific 1998)

K. Wille
The Physics of Particle Accelerators: An Introduction
(Oxford University Press, 2000)

E.J.N. Wilson
An introduction to Particle Accelerators
(Oxford University Press, 2001)

And CERN Accelerator Schools (CAS) Proceedings
In particular: CERN-2014-009
Advanced Accelerator Physics - CAS
Acknowledgements

I would like to thank everyone for the material that I have used.
In particular (hope I don't forget anyone):
- Joël Le Duff (from whom I inherited the course)
- Rende Steerenberg
- Gerald Dugan
- Heiko Damerau
- Werner Pirkl
- Genevieve Tulloue
- Mike Syphers
- Daniel Schulte
- Roberto Corsini
- Roland Garoby
- Luca Bottura
- Chris Warsop
- Berkeley Lab
- Edukite Learning
The moon changing LEP Energy

Beam energy measurement during full moon compared to a prediction by a geological model

(L. Arnaudon et al.: Effects of Terrestrial Tides on the LEP Beam Energy. NIM A357, pages 249–252, 1995.)
Appendix: Relativity + Energy Gain

Newton-Lorentz Force

\[\vec{F} = \frac{d\vec{p}}{dt} = e \left(\vec{E} + \vec{v} \times \vec{B} \right) \]

2nd term always perpendicular to motion \Rightarrow no acceleration

Relativistic Dynamics

\[\beta = \frac{v}{c} = \sqrt{1 - \frac{1}{\gamma^2}} \]
\[\frac{E}{E_0} = \frac{m}{m_0} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \]
\[p = mv = \frac{E}{c^2} \]
\[c = \frac{E}{mc} = m_0c \]
\[E^2 = E_0^2 + p^2c^2 \]
\[dE = \gamma d\vec{p} = \gamma \frac{dp}{dt} = \gamma eE_z \]
\[dE = dW = eE_z \, dz \]
\[W = eE_z \, dz \]

RF Acceleration

\[E_z = \hat{E}_z \sin \omega_{RF} \, t = \hat{E}_z \sin (t) \]
\[\hat{E}_z \, dz = \hat{V} \]
\[W = e\hat{V} \sin \phi \]

(neglecting transit time factor)

The field will change during the passage of the particle through the cavity
\Rightarrow effective energy gain is lower
The Synchrotron - Energy ramping

Energy ramping by increasing the B field (frequency has to follow v).
Stable phase ϕ_s changes during energy ramping

$$\sin \phi_s = 2\pi \rho R \frac{\dot{B}}{\dot{V}_{RF}}$$

$$\phi_s = \arcsin \left(2\pi \rho R \frac{\dot{B}}{\dot{V}_{RF}} \right)$$

$\eta = \frac{1}{\gamma^2} - \alpha_c$

stable synchr. particle for $\eta < 0$

above transition

early \rightarrow late

$\phi = \omega_{RF} t$

Introductory CAS, Slovakia, September 2019
Case with acceleration B increasing

\[\gamma < \gamma_t \]

Transition

Phase space picture

\[\Delta p / p \]

Stable region

Unstable region

Separatrix

Particles will accumulate energy difference each turn

\[\phi_s < \phi < \pi - \phi_s \]