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Useful books and references

A. Hofmann, The Physics of Synchrotron Radiation
Cambridge University Press 2004

H. Wiedemann, Synchrotron Radiation
Springer-Verlag Berlin Heidelberg 2003

H. Wiedemann, Particle Accelerator Physics I and II
Springer Study Edition, 2003

A. W. Chao, M. Tigner, Handbook of Accelerator Physics and 
Engineering, World Scientific 1999
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Synchrotron Radiation and Free Electron Lasers

Grenoble, France, 22 - 27 April 1996 
(A. Hofmann’s lectures on synchrotron radiation)
CERN Yellow Report 98-04

Brunnen, Switzerland, 2 – 9 July 2003
CERN Yellow Report 2005-012

http://cas.web.cern.ch/cas/Proceedings.html

CERN Accelerator School Proceedings



GENERATION OF
SYNCHROTRON RADIATION

Swiss Light Source, Paul Scherrer Institute, Switzerland



Curved orbit of electrons in magnet field 

Accelerated charge          Electromagnetic radiation



Crab Nebula
6000 light years away

First light observed
1054 AD

First light observed
1947

GE Synchrotron
New York State
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Synchrotron radiation: some dates

 1873 Maxwell’s equations

 1887 Hertz: electromagnetic waves

 1898 Liénard: retarded potentials
 1900 Wiechert: retarded potentials

 1908 Schott: Adams Prize Essay

... waiting for accelerators …
1940: 2.3 MeV betatron,Kerst, Serber



THEORETICAL UNDERSTANDING 

1873 Maxwell’s equations

 made evident that changing charge densities would 
result in electric fields that would radiate outward

1887 Heinrich Hertz demonstrated such waves:

….. this is of no use whatsoever !



1898 Liénard:

ELECTRIC AND 
MAGNETIC FIELDS 
PRODUCED BY A POINT 
CHARGE  MOVING ON AN 
ARBITRARY PATH
(by means of retarded potentials
… 
proposed first by Ludwig Lorenz 
in 1867)



1912 Schott:

COMPLETE THEORY OF
SYNCHROTRON RADIATION 
IN ALL THE GORY DETAILS 
(327 pages long)
… to be forgotten for 30 years
(on the usefulness of prizes)



Donald Kerst: first betatron (1940)

"Ausserordentlichhochgeschwindigkeitelektronen
entwickelndenschwerarbeitsbeigollitron" 
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Synchrotron radiation: some dates

 1946 Blewett observes energy loss
due to synchrotron radiation
100 MeV betatron

 1947 First visual observation of SR
70 MeV synchrotron, GE Lab

 1949 Schwinger PhysRev paper
…

 1976 Madey: first demonstration of
Free Electron laser
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A larger view



Crab Nebula
6000 light years away

First light observed
1054 AD

First light observed
1947

GE Synchrotron
New York State

Storage ring based 
synchrotron light source
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Charge at rest: Coulomb field, no radiation

Uniformly moving charge 
does not radiate

Accelerated charge

Why do they radiate?

v = const.

But! Cerenkov!



Bremsstrahlung
or 

breaking radiation
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and the electromagnetic fields:

(Lorentz gauge)

Liénard-Wiechert potentials
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Fields of a moving charge



Synchrotron Radiation Basics, Lenny Rivkin, EPFL & PSI, CAS Varna Bulgaria, September 2010

Transverse acceleration

v
a

Radiation field quickly 
separates itself from the 
Coulomb field
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v

a

Radiation field cannot 
separate itself from the 
Coulomb field

Longitudinal acceleration



Moving Source of Waves



Electron with velocity β emits a wave with period Temit
while the observer sees a different period Tobs because 
the electron was moving towards the observer

The wavelength is shortened by the same factor

in ultra-relativistic case, looking along a tangent to the 
trajectory                             

since

Time compression

  
λobs = 1

2γ2 λemit

emitobs TT )1( βn ⋅−=

 n

 β

 θ

emitobs λθβλ )cos1( −=

  
1 – β = 1 – β2

1 + β ≅ 1
2γ2
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Radiation is emitted into a narrow cone

v << c v ≈ c

v ~ c

θe θ
  

θ = 1
γ ⋅ θe
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Sound waves (non-relativistic)

v

θe θ
v

    
θ =

vs⊥
vs|| + v =

vs⊥
vs||

⋅ 1
1 + v

vs

≈ θe ⋅ 1
1 + v

vs

Angular collimation

Doppler effect (moving source of sound)









−=

s
emittedheard v

1 vλλ
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Synchrotron radiation power

   P ∝ E2B2

   
Cγ = 4π

3
re

mec 2 3 = 8.858 ⋅ 10– 5 m
GeV 3

Power emitted is proportional to:

2

4

2 ρπ
γ

γ
EcC
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2

4

2 ρπ
γ

γ
EcC

P ⋅=

The power is all too real!
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Synchrotron radiation power

   P ∝ E2B2

   
Cγ = 4π

3
re

mec 2 3 = 8.858 ⋅ 10– 5 m
GeV 3

   
U0 = Cγ ⋅ E 4

ρ    
U0 = 4π

3 αhcγ 4

ρ

  
α = 1

137

   hc = 197 Mev ⋅ fm

Power emitted is proportional to:

Energy loss per turn:

2

4

2 ρπ
γ

γ
EcC

P ⋅=
2

4
2

3
2

ρ
γαγ ⋅= cP 
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Typical frequency of synchrotron light

Due to extreme collimation of light observer sees only 
a small portion of electron trajectory (a few mm)

   
l ~ 2ρ

γ

   
∆t ~ l

βc – l
c = l

βc 1 –β

γ/1

Pulse length: 
difference in times it 
takes an electron 
and a photon to 
cover this distance

   
∆t ~ 2ρ

γ c ⋅ 1
2γ 2

   
ω ~ 1

∆t ~ γ 3ω0
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Spectrum of synchrotron radiation

• Synchrotron light comes in a 
series of flashes
every T0 (revolution period)

• the spectrum consists of
harmonics of 

• flashes are extremely short: 
harmonics reach up to very 
high frequencies

• At high frequencies the 
individual harmonics overlap

time

T0

0
0

1
T

=ω

0
3ωγω ≅typ

continuous spectrum !

! Hz10~
4000 ~

MHz1~

16
typ

0

ω

γ
ω
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A useful approximation

spectral Flux G1

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10x

G1

Spectral flux from a dipole magnet with field B
  

Flux photons
s ⋅ mrad ⋅ 0.1%BW = 2.46⋅1013E[GeV] I[A]G1 x

Approximation: G1 ≈ A x1/3 g(x) 

SN

Lx
xxg

1

])(1[()( −=

A = 2.11 ,   N = 0.848 

xL = 28.17 ,   S = 0.0513

Werner Joho, PSI
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Angular divergence of radiation

The rms opening angle R’

• at the critical frequency:

• well below

• well above

  
ω = ωc R′ ≈ 0.54

γ

  
ω « ωc R′ ≈

1
γ

ωc

ω

1 31 3

≈ 0.4
λ
ρ

1 31 3

independent of γ !

  
ω » ωc R′ ≈

0.6
γ

ωc

ω

1 21 2



Polarisation

Synchrotron radiation observed in the plane 
of the particle orbit is horizontally 
polarized, i.e. the electric field vector is 
horizontal

Observed out of the horizontal plane, the 
radiation is elliptically polarized

E 

E γθ



Polarisation: spectral distribution
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Angular divergence of radiation

•at the critical frequency

•well below

•well above

cωω 2.0=

cωω 2=

γθ

γθ

γθ
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Seeing the electron beam (SLS)
visible light, vertically polarisedX rays

mx µσ 55~
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