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Overview
• The principle of special relativity

• Lorentz transformation and consequences

• Space-time

• 4-vectors: position, velocity, momentum, invariants, 
covariance.

• Derivation of E=mc2

• Examples of the use of 4-vectors

• Inter-relation between β and γ, momentum and energy

• An accelerator problem in relativity

• Relativistic particle dynamics

• Lagrangian and Hamiltonian Formulation

• Radiation from an Accelerating Charge

• Photons and wave 4-vector

• Motion faster than speed of light
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Reading
• W. Rindler: Introduction to Special Relativity (OUP 

1991)

• D. Lawden: An Introduction to Tensor Calculus and 
Relativity

• N.M.J. Woodhouse: Special Relativity (Springer 
2002)

• A.P. French: Special Relativity, MIT Introductory 
Physics Series (Nelson Thomes)

• Misner, Thorne and Wheeler: Relativity

• C. Prior: Special Relativity, CERN Accelerator School 
(Zeegse)
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Historical background
• Groundwork of Special Relativity laid by Lorentz in studies of 

electrodynamics, with crucial concepts contributed by Einstein to place 

the theory on a consistent footing.

• Maxwell’s equations (1863) attempted to explain electromagnetism and 

optics through wave theory

– light propagates with speed c = 3×108 m/s in “ether” but with 

different speeds in other frames

– the ether exists solely for the transport of e/m waves

– Maxwell’s equations not invariant under Galilean transformations

– To avoid setting e/m apart from classical mechanics, assume

• light has speed c only in frames where source is at rest

• the ether has a small interaction with matter and is carried along with 

astronomical objects 
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Contradicted by:
• Aberration of star light (small shift in apparent positions of 

distant stars)

• Fizeau’s 1859 experiments on velocity of light in liquids

• Michelson-Morley 1907 experiment to detect motion of the 

earth through ether

• Suggestion: perhaps material objects contract in the direction 

of their motion 

� 

L(v) = L0 1−
v 2

c 2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1
2

This was the last gasp of ether advocates and the germ of 
Special Relativity led by Lorentz, Minkowski and Einstein.
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The Principle of Special Relativity
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The Principle of Special Relativity
• A frame in which particles under no forces move with constant 

velocity is inertial.
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The Principle of Special Relativity
• A frame in which particles under no forces move with constant 

velocity is inertial.

• Consider relations between inertial frames where measuring 
apparatus (rulers, clocks) can be transferred from one to another: 

related frames.
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The Principle of Special Relativity
• A frame in which particles under no forces move with constant 

velocity is inertial.

• Consider relations between inertial frames where measuring 
apparatus (rulers, clocks) can be transferred from one to another: 

related frames.

• Assume:

– Behaviour of apparatus transferred from F to F' is independent of mode 
of transfer

– Apparatus transferred from F to F', then  from F' to F'', agrees with 
apparatus transferred directly from F to F''.
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The Principle of Special Relativity
• A frame in which particles under no forces move with constant 

velocity is inertial.

• Consider relations between inertial frames where measuring 
apparatus (rulers, clocks) can be transferred from one to another: 

related frames.

• Assume:

– Behaviour of apparatus transferred from F to F' is independent of mode 
of transfer

– Apparatus transferred from F to F', then  from F' to F'', agrees with 
apparatus transferred directly from F to F''.

• The Principle of Special Relativity states that all physical laws 
take equivalent forms in related inertial frames, so that we 
cannot distinguish between the frames. 
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Simultaneity

• Two clocks A and B are synchronised if light rays 
emitted at the same time from A and B meet at the 
mid-point of AB

• Frame F' moving with respect to F. Events 
simultaneous in F cannot be simultaneous in F'.

• Simultaneity is not absolute but frame dependent. 

A BCFrame F

A’’ B’’C’’

A’ B’C’Frame F’
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The Lorentz Transformation
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The Lorentz Transformation
• Must be linear to agree with standard Galilean transformation 

in low velocity limit
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The Lorentz Transformation
• Must be linear to agree with standard Galilean transformation 

in low velocity limit

• Preserves wave fronts of pulses of light,

� 

i.e. P ≡ x 2 + y 2 + z2 − c 2t 2 = 0
whenever Q ≡ ′ x 2 + ′ y 2 + ′ z 2 − c 2 ′ t 2 = 0

ct
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The Lorentz Transformation
• Must be linear to agree with standard Galilean transformation 

in low velocity limit

• Preserves wave fronts of pulses of light,

• Solution is the Lorentz transformation from frame F (t,x,y,z) 
to frame F'(t',x',y',z') moving with velocity v along the x-axis:

� 
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The Lorentz Transformation
• Must be linear to agree with standard Galilean transformation 

in low velocity limit

• Preserves wave fronts of pulses of light,

• Solution is the Lorentz transformation from frame F (t,x,y,z) 
to frame F'(t',x',y',z') moving with velocity v along the x-axis:

� 

i.e. P ≡ x 2 + y 2 + z2 − c 2t 2 = 0
whenever Q ≡ ′ x 2 + ′ y 2 + ′ z 2 − c 2 ′ t 2 = 0

ct

′t = γ t − vx
c2

⎛
⎝⎜

⎞
⎠⎟

′x = γ x − vt( )
′y = y
′z = z

where γ = 1− v
2

c2
⎛
⎝⎜

⎞
⎠⎟

− 12
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The Lorentz Transformation
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The Lorentz Transformation
• Must be linear to agree with standard Galilean transformation 

in low velocity limit

• Preserves wave fronts of pulses of light,

• Solution is the Lorentz transformation from frame F (t,x,y,z) 
to frame F'(t',x',y',z') moving with velocity v along the x-axis:

� 

i.e. P ≡ x 2 + y 2 + z2 − c 2t 2 = 0
whenever Q ≡ ′ x 2 + ′ y 2 + ′ z 2 − c 2 ′ t 2 = 0

ct

′t = γ t − vx
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⎝⎜
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′x = γ x − vt( )
′y = y
′z = z

where γ = 1− v
2

c2
⎛
⎝⎜

⎞
⎠⎟

− 12

Minkowski

Poincaré

Minkowski

Lorentz

Tuesday, 21 September 2010



9  

� 

Set ′ t = α t + β x
′ x = γ x + δ t
′ y = εy
′ z = ς z

Then P = kQ

⇔ c 2 ′ t 2 − ′ x 2 − ′ y 2 − ′ z 2 = k c 2t 2 − x 2 − y 2 − z2( )
⇒ c 2 α t + β x( )2 − γ x + δ t( )2 −ε2y 2 − ς 2z2 = k c 2t 2 − x 2 − y 2 − z2( )
Equate coefficients of x, y, z, t.
Isotropy of space ⇒  k = k( v ) = k(  v ) = ±1
Apply some common sense (e.g. ε,ς,k = +1 and not -1)

Outline of Derivation
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�x� = �x + �v

�
γt + (γ − 1)

�v · �x

v2

�

t� = γ

�
t +

�v · �x

c2

�

10

General 3D form of Lorentz Transformation:
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Consequences: length contraction

z

x

Frame F

v

Frame F’
z’

x’
RodA B

Rod AB of length L' fixed in F' at x'A, x'B. What is its length 
measured in F?

Must measure positions of ends in F at the same time, so events 
in F are (t,xA) and (t,xB). From Lorentz:
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Consequences: length contraction

z

x

Frame F

v

Frame F’
z’

x’
RodA B

Moving objects appear contracted in the direction of the motion

Rod AB of length L' fixed in F' at x'A, x'B. What is its length 
measured in F?

Must measure positions of ends in F at the same time, so events 
in F are (t,xA) and (t,xB). From Lorentz:
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Consequences: time dilation
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Consequences: time dilation

• Clock in frame F at point with coordinates (x,y,z) at 
different times tA and tB 
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Consequences: time dilation

• Clock in frame F at point with coordinates (x,y,z) at 
different times tA and tB 

• In frame F' moving with speed v, Lorentz 
transformation gives

t�A = γ
�
tA −

vx

c2

�
t�B = γ

�
tB −

vx

c2

�
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Consequences: time dilation

• Clock in frame F at point with coordinates (x,y,z) at 
different times tA and tB 

• In frame F' moving with speed v, Lorentz 
transformation gives

• So

t�A = γ
�
tA −

vx

c2

�
t�B = γ

�
tB −

vx

c2

�

∆t� = t�B − t�A = γ
�
tB − tA

�
= γ∆t > ∆t
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Consequences: time dilation

• Clock in frame F at point with coordinates (x,y,z) at 
different times tA and tB 

• In frame F' moving with speed v, Lorentz 
transformation gives

• So

Moving clocks appear to run slow

t�A = γ
�
tA −

vx

c2

�
t�B = γ

�
tB −

vx

c2

�

∆t� = t�B − t�A = γ
�
tB − tA

�
= γ∆t > ∆t
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Schematic Representation of 
the Lorentz Transformation

Frame F′

Frame F

t

x

t′

x′

L

L′

Length contraction L<L′

t

x

t′

x′

Δt′Δt

Time dilatation:  Δt<Δt′
Rod at rest in F′. Measurement in F at 
fixed time t, along a line parallel to x-axis

Clock at rest in F. Time difference in F′ 
from line parallel to x′-axis

Frame F

Frame F′
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Schematic Representation of 
the Lorentz Transformation

Frame F′

Frame F

t

x

t′

x′

L

L′

Length contraction L<L′

t

x

t′

x′

Δt′Δt

Time dilatation:  Δt<Δt′
Rod at rest in F′. Measurement in F at 
fixed time t, along a line parallel to x-axis

Clock at rest in F. Time difference in F′ 
from line parallel to x′-axis

Frame F

Frame F′

x� = γ(x− vt) t� = γ
�
t− vx

c2

�
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Schematic Representation of 
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Example: High Speed Train
All clocks synchronised. 
A’s clock and driver’s 
clock read 0 as front of 
train emerges from 
tunnel.
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Example: High Speed Train

• Observers A and B at exit and entrance of tunnel say the train is 
moving, has contracted and has length 

All clocks synchronised. 
A’s clock and driver’s 
clock read 0 as front of 
train emerges from 
tunnel.
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Example: High Speed Train

• Observers A and B at exit and entrance of tunnel say the train is 
moving, has contracted and has length 

� 

100
γ

=100 × 1− v
2

c 2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1
2

=100 × 1− 3
4

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
1
2

= 50m

All clocks synchronised. 
A’s clock and driver’s 
clock read 0 as front of 
train emerges from 
tunnel.
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Example: High Speed Train

• Observers A and B at exit and entrance of tunnel say the train is 
moving, has contracted and has length 

• But the tunnel is moving relative to the driver and guard on the 
train and they say the train is 100 m in length but the tunnel has 
contracted to 50 m� 

100
γ

=100 × 1− v
2

c 2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1
2

=100 × 1− 3
4

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
1
2

= 50m

All clocks synchronised. 
A’s clock and driver’s 
clock read 0 as front of 
train emerges from 
tunnel.
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Question 1
A’s clock (and the 
driver's clock) reads 
zero as the driver exits 
tunnel. What does B’s 
clock read when the 
guard goes in?
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Moving train length 50m, so driver has still 50m to 
travel before he exits and his clock reads 0. A's clock 
and B's clock are synchronised. Hence the reading on 
B's clock is 

Question 1
A’s clock (and the 
driver's clock) reads 
zero as the driver exits 
tunnel. What does B’s 
clock read when the 
guard goes in?
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Moving train length 50m, so driver has still 50m to 
travel before he exits and his clock reads 0. A's clock 
and B's clock are synchronised. Hence the reading on 
B's clock is 

Question 1
A’s clock (and the 
driver's clock) reads 
zero as the driver exits 
tunnel. What does B’s 
clock read when the 
guard goes in?

� 

− 50
v

= − 100
3c

≈ −200ns
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Question 2

What does the 
guard’s clock read as 
he goes in?
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Question 2

What does the 
guard’s clock read as 
he goes in?

To the guard, tunnel is only 50m long, so driver is 50m past 
the exit as guard goes in. Hence clock reading is
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Question 2

What does the 
guard’s clock read as 
he goes in?

To the guard, tunnel is only 50m long, so driver is 50m past 
the exit as guard goes in. Hence clock reading is
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Question 3

Where is the guard 
when his clock 
reads 0?
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Question 3

Where is the guard 
when his clock 
reads 0?

Guard’s clock reads 0 when driver’s clock reads 0, which is as driver 
exits the tunnel. To guard and driver, tunnel is 50m, so guard is 50m 
from the entrance in the train’s frame, or 100m in tunnel frame. 

So the guard is 100m from the entrance to the tunnel when his clock 
reads 0.
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Question 1
A’s clock (and the 
driver's clock) reads 
zero as the driver exits 
tunnel. What does B’s 
clock read when the 
guard goes in?

Repeat within framework of 
Lorentz transformation
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F(t,x) is frame of A and B, F'(t',x') is frame of driver and guard.

Question 1
A’s clock (and the 
driver's clock) reads 
zero as the driver exits 
tunnel. What does B’s 
clock read when the 
guard goes in?

Repeat within framework of 
Lorentz transformation
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F(t,x) is frame of A and B, F'(t',x') is frame of driver and guard.

Question 1
A’s clock (and the 
driver's clock) reads 
zero as the driver exits 
tunnel. What does B’s 
clock read when the 
guard goes in?

Repeat within framework of 
Lorentz transformation

x = γ(x� − vt�) t = γ

�
t� − vx�

c2

�

x� = γ(x + vt) t� = γ
�
t +

vx

c2

�
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Question 2

What does the 
guard’s clock read as 
he goes in?
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Question 2

What does the 
guard’s clock read as 
he goes in?

F(t,x) is frame of A and B, F'(t',x') is frame of driver and guard.
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�
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Question 2

What does the 
guard’s clock read as 
he goes in?

F(t,x) is frame of A and B, F'(t',x') is frame of driver and guard.
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xB = 100, x�
G = 100

=⇒ t�G = 100
γ − 1
γv

=
50
v

x = γ(x� − vt�) t = γ

�
t� − vx�

c2

�

x� = γ(x + vt) t� = γ
�
t +

vx

c2

�
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Question 2

What does the 
guard’s clock read as 
he goes in?

F(t,x) is frame of A and B, F'(t',x') is frame of driver and guard.
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Question 3

Where is the guard 

when his clock 

reads 0?
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Question 3

Where is the guard 

when his clock 

reads 0?

F(t,x) is frame of A and B, F'(t',x') is frame of driver and guard.
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Question 3

Where is the guard 

when his clock 

reads 0?

F(t,x) is frame of A and B, F'(t',x') is frame of driver and guard.
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G = 100, t�G = 0

=⇒ x = γx� = 200m

x = γ(x� − vt�) t = γ

�
t� − vx�

c2

�

x� = γ(x + vt) t� = γ
�
t +

vx

c2

�
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Question 3

Where is the guard 

when his clock 

reads 0?

F(t,x) is frame of A and B, F'(t',x') is frame of driver and guard.

Or 100m from the entrance to

the tunnel

Tuesday, 21 September 2010



21

Question 4
Where was the driver 
when his clock reads 
the same as the 
guard’s when he 
enters the tunnel?
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Question 4

F(t,x) is frame of A and B, F'(t',x') is frame of driver and guard.

Where was the driver 
when his clock reads 
the same as the 
guard’s when he 
enters the tunnel?
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Question 4

F(t,x) is frame of A and B, F'(t',x') is frame of driver and guard.

Where was the driver 
when his clock reads 
the same as the 
guard’s when he 
enters the tunnel?
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D = 0, t�D =

50
v

=⇒ x = −γvt�D = −100

x = γ(x� − vt�) t = γ

�
t� − vx�

c2

�

x� = γ(x + vt) t� = γ
�
t +

vx

c2

�
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Question 4

F(t,x) is frame of A and B, F'(t',x') is frame of driver and guard.

or 100 m beyond the tunnel exit

Where was the driver 
when his clock reads 
the same as the 
guard’s when he 
enters the tunnel?
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Example: Cosmic Rays
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Example: Cosmic Rays

• µ-mesons are created in the upper 
atmosphere, 90km from earth. Their half life 
is τ=2 µs, so they can travel at most 2 
×10-6c=600m before decaying. So how do 
more than 50% reach the earth’s surface?
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Example: Cosmic Rays

• µ-mesons are created in the upper 
atmosphere, 90km from earth. Their half life 
is τ=2 µs, so they can travel at most 2 
×10-6c=600m before decaying. So how do 
more than 50% reach the earth’s surface?

• Mesons see distance contracted by γ, so 

vτ ≈ 90
γ

km
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Example: Cosmic Rays

• µ-mesons are created in the upper 
atmosphere, 90km from earth. Their half life 
is τ=2 µs, so they can travel at most 2 
×10-6c=600m before decaying. So how do 
more than 50% reach the earth’s surface?

• Mesons see distance contracted by γ, so 

• Earthlings say mesons’ clocks run slow so 
their half-life is γτ and

v(γτ) ≈ 90 km

vτ ≈ 90
γ

km
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Example: Cosmic Rays

• µ-mesons are created in the upper 
atmosphere, 90km from earth. Their half life 
is τ=2 µs, so they can travel at most 2 
×10-6c=600m before decaying. So how do 
more than 50% reach the earth’s surface?

• Mesons see distance contracted by γ, so 

• Earthlings say mesons’ clocks run slow so 
their half-life is γτ and

• Both give

v(γτ) ≈ 90 km

γv

c
=

90 km

cτ
= 150, v ≈ c, γ ≈ 150

vτ ≈ 90
γ

km
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Space-time
• An invariant is a quantity that has the same value 

in all inertial frames.

• Lorentz transformation is based on invariance of 

• 4D space with coordinates (t,x,y,z) is called 
space-time and the point 
is called an event.

• Fundamental invariant (preservation of speed of 
light):

is called proper time, time in instantaneous rest frame, 
an invariant.  Δs=cΔτ is called the separation between 
two events

(t, x, y, z) = (t, �x)

c2t2 − (x2 + y2 + z2) = (ct)2 − �x2

∆s2 = c2∆t2 −∆x2 −∆y2 −∆z2 = c2∆t2
�

1− ∆x2 + ∆y2 + ∆z2

c2∆t2

�

= c2∆t2
�

1− v2

c2

�
= c2

�
∆t

γ

�2
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Space-time
• An invariant is a quantity that has the same value 

in all inertial frames.

• Lorentz transformation is based on invariance of 

• 4D space with coordinates (t,x,y,z) is called 
space-time and the point 
is called an event.

• Fundamental invariant (preservation of speed of 
light):

is called proper time, time in instantaneous rest frame, 
an invariant.  Δs=cΔτ is called the separation between 
two events

t

x

Absolute future

Absolute past

Conditional 
present

(t, x, y, z) = (t, �x)

c2t2 − (x2 + y2 + z2) = (ct)2 − �x2

∆s2 = c2∆t2 −∆x2 −∆y2 −∆z2 = c2∆t2
�

1− ∆x2 + ∆y2 + ∆z2

c2∆t2

�

= c2∆t2
�

1− v2

c2

�
= c2

�
∆t

γ

�2
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4-Vectors
The Lorentz transformation can be written in matrix 
form as

An object made up of 4 elements which 
transforms like X is called a 4-vector
(analogous to the 3-vector of classical 
mechanics)

t� = γ
�
t− vx

c2

�

x� = γ(x− vt)
y� = y
z� = z

=⇒





ct�

x�

y�

z�



 =





γ −γv
c 0 0

−γv
c γ 0 0

0 0 1 0
0 0 0 1









ct
x
y
z





Lorentz matrix L

Position 4-vector X
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A · A = AT gA = a0b0 − a1b1 − a2b2 − a3b3 = a0b0 − �a ·�b

c2t2 − x2 − y2 − z2 = (ct, x, y, z)





1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









ct
x
y
z



 = XT gX = X · X

A� · A� = (LA)T g(LA) = AT (LT gL)A = AT gA = A · A

A� · B� = A · B

A = (a0,�a), B = (b0,�b)

25

Invariants
Basic invariant 

Inner product of two 4-vectors 

Invariance:

Similarly
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4-Vectors in S.R. Mechanics

Tuesday, 21 September 2010



V =
dX

dτ
= γ

dX

dt
= γ

d
dt

(ct, �x) = γ(c,�v)

26

4-Vectors in S.R. Mechanics

• Velocity:
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V =
dX

dτ
= γ

dX

dt
= γ

d
dt

(ct, �x) = γ(c,�v)

V · V = γ2(c2 − �v2) =
c2 − �v2

1− �v2/c2
= c2

26

4-Vectors in S.R. Mechanics

• Velocity:

• Note invariant
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V =
dX

dτ
= γ

dX

dt
= γ

d
dt

(ct, �x) = γ(c,�v)

V · V = γ2(c2 − �v2) =
c2 − �v2

1− �v2/c2
= c2

P = m0V = m0γ(c,�v) = (mc, �p)

m = m0γ is the relativistic mass
p = m0γ�v = m�v is the relativistic 3-momentum

26

4-Vectors in S.R. Mechanics

• Velocity:

• Note invariant

• Momentum:  
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Example of Transformation: 
Addition of Velocities
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Example of Transformation: 
Addition of Velocities

• A particle moves with velocity                          in frame F, so has 4-

velocity  V = γ u (c,
u)
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Example of Transformation: 
Addition of Velocities

• A particle moves with velocity                          in frame F, so has 4-

velocity

• Add velocity                    by transforming to frame F′ to get new 

velocity       corresponding to 4-vector    

� 

 w = (wx,wy,wz )   

� 

W = γw c,  w ( )

 V = γ u (c,
u)
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27

Example of Transformation: 
Addition of Velocities

• A particle moves with velocity                          in frame F, so has 4-

velocity

• Add velocity                    by transforming to frame F′ to get new 

velocity       corresponding to 4-vector  

• Lorentz transformation gives 
  

� 

 w = (wx,wy,wz )

 

′x = γ v x + vt( ) ′t = γ v t + vx
c2

⎛
⎝⎜

⎞
⎠⎟

t ↔γ u ,
x ↔γ u

u, ′t ↔γ w ,
′x ↔γ w

w

  

� 

W = γw c,  w ( )

 V = γ u (c,
u)
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27

Example of Transformation: 
Addition of Velocities

• A particle moves with velocity                          in frame F, so has 4-

velocity

• Add velocity                    by transforming to frame F′ to get new 

velocity       corresponding to 4-vector  

• Lorentz transformation gives 

� 

γw = γ v γ u + vγ uux
c 2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

γwwx = γ v γ uux + vγ u( )
γwwy = γ uuy
γwwz = γ uuz

⇒ wx = ux + v

1+ vux
c 2

wy =
uy

γ v 1+ vux
c 2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

wz = uz

γ v 1+ vux
c 2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

  

� 

 w = (wx,wy,wz )

 

′x = γ v x + vt( ) ′t = γ v t + vx
c2

⎛
⎝⎜

⎞
⎠⎟

t ↔γ u ,
x ↔γ u

u, ′t ↔γ w ,
′x ↔γ w

w

  

� 

W = γw c,  w ( )

 V = γ u (c,
u)
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4-Force
From Newton’s 2nd Law expect 4-Force given 

by
F =

dP

dτ
= γ

dP

dt

= γ
d
dt

(mc, �p) = γ

�
c
dm

dt
,
d�p

dt

�

= γ

�
c
dm

dt
, �f

�
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28

4-Force
From Newton’s 2nd Law expect 4-Force given 

by
F =

dP

dτ
= γ

dP

dt

= γ
d
dt

(mc, �p) = γ

�
c
dm

dt
,
d�p

dt

�

= γ

�
c
dm

dt
, �f

�

Note: 3-force equation:
 

�f =
d�p

dt
= m0

d
dt

(γ�v)
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Einstein’s Relation 
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• Momentum invariant

Einstein’s Relation 
P · P = m2

0V · V = m2
0c

2
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P · dP

dτ
= 0 =⇒ V · dP

dτ
= 0 =⇒ V · F = 0

=⇒ γ(c,�v) · γ

�
c
dm

dt
, �f

�
= 0

=⇒ d
dt

(mc2)− �v · �f = 0

29

• Momentum invariant

• Differentiate

Einstein’s Relation 
P · P = m2

0V · V = m2
0c

2
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�v · �f = rate at which force does work
= rate of change of kinetic energy

P · dP

dτ
= 0 =⇒ V · dP

dτ
= 0 =⇒ V · F = 0

=⇒ γ(c,�v) · γ

�
c
dm

dt
, �f

�
= 0

=⇒ d
dt

(mc2)− �v · �f = 0

29

• Momentum invariant

• Differentiate

Einstein’s Relation 
P · P = m2

0V · V = m2
0c

2
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�v · �f = rate at which force does work
= rate of change of kinetic energy

P · dP

dτ
= 0 =⇒ V · dP

dτ
= 0 =⇒ V · F = 0

=⇒ γ(c,�v) · γ

�
c
dm

dt
, �f

�
= 0

=⇒ d
dt

(mc2)− �v · �f = 0

29

• Momentum invariant

• Differentiate

Einstein’s Relation 
P · P = m2

0V · V = m2
0c

2

T = mc2 + constant = m0c
2(γ − 1)

Therefore kinetic energy is
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�v · �f = rate at which force does work
= rate of change of kinetic energy

P · dP

dτ
= 0 =⇒ V · dP

dτ
= 0 =⇒ V · F = 0

=⇒ γ(c,�v) · γ

�
c
dm

dt
, �f

�
= 0

=⇒ d
dt

(mc2)− �v · �f = 0

29

• Momentum invariant

• Differentiate

Einstein’s Relation 

E=mc2 is total energy

P · P = m2
0V · V = m2

0c
2

T = mc2 + constant = m0c
2(γ − 1)

Therefore kinetic energy is
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�v · �f = rate at which force does work
= rate of change of kinetic energy

P · dP

dτ
= 0 =⇒ V · dP

dτ
= 0 =⇒ V · F = 0

=⇒ γ(c,�v) · γ

�
c
dm

dt
, �f

�
= 0

=⇒ d
dt

(mc2)− �v · �f = 0

29

• Momentum invariant

• Differentiate

Einstein’s Relation 

E=mc2 is total energy

P · P = m2
0V · V = m2

0c
2

T = mc2 + constant = m0c
2(γ − 1)

Therefore kinetic energy is
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Position X = (ct, �x)

Velocity V = γ(c,�v)

Momentum P = m0V = m(c,�v) =
�

E

c
, �p

�

Force F = γ

�
c
dm

dt
, �f

�
= γ

�
1
c

dE

dt
, �f

�

Summary of 4-Vectors

30
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Relative velocity β =
v

c
Velocity v = βc
Momentum p = mv = m0γβc
Kinetic energy T = (m−m0)c2 = m0c2(γ − 1)

γ =
�

1− v2

c2

�− 1
2

=
�
1− β2

�− 1
2

=⇒ (βγ)2 =
γ2v2

c2
= γ2 − 1 =⇒ β2 =

v2

c2
= 1− 1

γ2

31

Basic Quantities used 
in Accelerator Calculations
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T = m0(γ − 1)c2

γ = 1 +
T

m0c2

β =
�

1− 1
γ2

p = m0βγc

For v � c, γ =
�

1− v2

c2

�− 1
2

≈ 1 +
1
2

v2

c2
+

3
8

v4

c4
+ . . .

so T = m0c2(γ − 1) ≈ 1
2
m0v2

32

Velocity v. Energy
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P · P = m2
0 V · V = m2

0c
2 and P =

�
E

c
, �p

�

↓ ↓
E2

c2
− �p2 = m2

0c
2 =

1
c2

E2
0 where E0 is rest energy

=⇒ p2c2 = E2 − E2
0

= (E − E0)(E + E0)

= T (T + 2E0)

33

Energy-Momentum Invariant
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P · P = m2
0 V · V = m2

0c
2 and P =

�
E

c
, �p

�

↓ ↓
E2

c2
− �p2 = m2

0c
2 =

1
c2

E2
0 where E0 is rest energy

=⇒ p2c2 = E2 − E2
0

= (E − E0)(E + E0)

= T (T + 2E0)

33

Energy-Momentum Invariant

Example:  ISIS 800 MeV protons 
(E0=938 MeV)

 =>   pc=1.463 GeV
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βγ =
m0βγc2

m0c2
=

pc

E0
= 1.56

γ2 = (βγ)2 + 1 =⇒ γ = 1.85

β =
βγ

γ
= 0.84

P · P = m2
0 V · V = m2

0c
2 and P =

�
E

c
, �p

�

↓ ↓
E2

c2
− �p2 = m2

0c
2 =

1
c2

E2
0 where E0 is rest energy

=⇒ p2c2 = E2 − E2
0

= (E − E0)(E + E0)

= T (T + 2E0)

33

Energy-Momentum Invariant

Example:  ISIS 800 MeV protons 
(E0=938 MeV)

 =>   pc=1.463 GeV
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1
γ2

= 1− β2

=⇒ 1
γ3

∆γ = β∆β (2)

∆p

p
=

∆(m0βγc)
m0βγc

=
∆(βγ)

βγ

=
1
β2

∆γ

γ
=

1
β2

∆E

E

= γ2 ∆β

β

=
γ

γ + 1
∆T

T
(exercise)

34

Relationships between small variations 
in parameters ΔE, ΔT, Δp, Δβ, Δγ

(βγ)2 = γ2 − 1
=⇒ βγ∆(βγ) = γ∆γ
=⇒ β∆(βγ) = ∆γ (1)
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1
γ2

= 1− β2

=⇒ 1
γ3

∆γ = β∆β (2)

∆p

p
=

∆(m0βγc)
m0βγc

=
∆(βγ)

βγ

=
1
β2

∆γ

γ
=

1
β2

∆E

E

= γ2 ∆β

β

=
γ

γ + 1
∆T

T
(exercise)

34

Relationships between small variations 
in parameters ΔE, ΔT, Δp, Δβ, Δγ

Note: valid to first order only

(βγ)2 = γ2 − 1
=⇒ βγ∆(βγ) = γ∆γ
=⇒ β∆(βγ) = ∆γ (1)
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∆β

β

∆p

p

∆T

T

∆E

E
=

∆γ

γ

1
γ2

∆p

p

1
β2γ2

∆γ

γ∆β

β
=

∆β

β ∆p

p
− ∆γ

γ

1
γ(γ + 1)

∆T

T 1
γ2 − 1

∆γ

γ
∆p

p
= γ2 ∆β

β

∆p

p

γ

γ + 1
∆T

T

1
β2

∆γ

γ
∆T

T
= γ(γ + 1)

∆β

β

�
1 +

1
γ

�
∆p

p

∆T

T

γ

γ − 1
∆γ

γ
∆E

E
= (βγ)2

∆β

β
β2 ∆p

p
∆γ

γ
= (γ2 − 1)

∆β

β

∆p

p
− ∆β

β

�
1− 1

γ

�
∆T

T

∆γ

γ

Table 1: Incremental relationships between energy, velocity and momentum.

35
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4-Momentum Conservation
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36

4-Momentum Conservation
• Equivalent expression 

for 4-momentum   

� 

P = m0γ(c,
 v ) = (mc,  p ) = E

c ,
 p ( )
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m2
0c

2 = P · P =
E2

c2
− �p 2

36

4-Momentum Conservation
• Equivalent expression 

for 4-momentum

• Invariant

  

� 

P = m0γ(c,
 v ) = (mc,  p ) = E

c ,
 p ( )
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m2
0c

2 = P · P =
E2

c2
− �p 2

36

4-Momentum Conservation
• Equivalent expression 

for 4-momentum

• Invariant

• Classical momentum 
conservation laws → 
conservation  of 4-
momentum. Total 3-
momentum and total 
energy are conserved.

  

� 

P = m0γ(c,
 v ) = (mc,  p ) = E

c ,
 p ( )
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m2
0c

2 = P · P =
E2

c2
− �p 2

36

4-Momentum Conservation
• Equivalent expression 

for 4-momentum

• Invariant

• Classical momentum 
conservation laws → 
conservation  of 4-
momentum. Total 3-
momentum and total 
energy are conserved.

  

� 

P = m0γ(c,
 v ) = (mc,  p ) = E

c ,
 p ( )
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A body of mass M disintegrates while at rest 
into two parts of rest masses M1 and M2. 
Show that the energies of the parts are given 
by

Problem
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P2 =
�

E2

c
,−�p

�P =
�
Mc,�0

�

38

Solution
Before: After:

P1 =
�

E1

c
, �p

�
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P2 =
�

E2

c
,−�p

�P =
�
Mc,�0

�

38

Solution
Before: After:

Conservation of 4-momentum:

P1 =
�

E1

c
, �p

�
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P2 =
�

E2

c
,−�p

�P =
�
Mc,�0

�

38

Solution
Before: After:

Conservation of 4-momentum:

� 

P = P1 + P2 ⇒ P − P1 = P2
⇒ P − P1( ) ⋅ P − P1( ) = P2 ⋅ P2
⇒ P ⋅ P − 2P ⋅ P1 + P1 ⋅ P1 = P2 ⋅ P2
⇒ M 2c 2 − 2ME1 + M1

2c 2 = M2
2c 2

⇒ E1 = M 2 + M1
2 −M2

2

2M
c 2

P1 =
�

E1

c
, �p

�
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Example of use of invariants
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Example of use of invariants

• Two particles have equal rest mass m0.
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Example of use of invariants

• Two particles have equal rest mass m0.

– Frame 1: one particle at rest, total energy is 
E1.

– Frame 2: centre of mass frame where 
velocities are equal and opposite, total energy 
is E2.
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Example of use of invariants

• Two particles have equal rest mass m0.

– Frame 1: one particle at rest, total energy is 
E1.

– Frame 2: centre of mass frame where 
velocities are equal and opposite, total energy 
is E2.

Problem: Relate E1 to E2

Tuesday, 21 September 2010



P2 =
�
m0c,�0

�

P2 =
�

E2

2c
,−�p�

�

P1 =
�

E1 −m0c2

c
, �p

�

P1 =
�

E2

2c
, �p�

�

Invariant: P2 · (P1 + P2)

40

Total energy E1

(Fixed target experiment)

Total energy E2

(Colliding beams expt)
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P2 =
�
m0c,�0

�

P2 =
�

E2

2c
,−�p�

�

P1 =
�

E1 −m0c2

c
, �p

�

P1 =
�

E2

2c
, �p�

�

Invariant: P2 · (P1 + P2)

40

Total energy E1

(Fixed target experiment)

Total energy E2

(Colliding beams expt)
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Collider Problem
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Collider Problem

• In an accelerator, a proton p1 with rest mass m0 
collides with an anti-proton p2 (with the same rest 
mass), producing two particles W1 and W2 with equal 
rest mass M0=100m0
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Collider Problem

• In an accelerator, a proton p1 with rest mass m0 
collides with an anti-proton p2 (with the same rest 
mass), producing two particles W1 and W2 with equal 
rest mass M0=100m0

– Expt 1: p1 and p2 have equal and opposite velocities in the 

lab frame. Find the minimum energy of p2 in order for W1 

and W2 to be produced.
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41

Collider Problem

• In an accelerator, a proton p1 with rest mass m0 
collides with an anti-proton p2 (with the same rest 
mass), producing two particles W1 and W2 with equal 
rest mass M0=100m0

– Expt 1: p1 and p2 have equal and opposite velocities in the 

lab frame. Find the minimum energy of p2 in order for W1 

and W2 to be produced.

– Expt 2: in the rest frame of p1, find the minimum energy E' 

of p2 in order for W1 and W2 to be produced.
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Note:         ⇒ same m0, same p mean same E.

p1

W1

p2

W2

Total 3-momentum is zero before 
collision and so is zero afterwards.

4-momenta before collision:

  

� 

P1 = E
c ,
 p ( ) P2 = E

c ,−
 p ( )

4-momenta after collision:

  

� 

P1 = ′ E 
c ,
 q ( ) P2 = ′ E 

c ,−
 q ( )

Energy conservation ⇒ E=E′ > rest energy = M0c2 = 100 m0c2 

Experiment 1
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p2

p1

W1

W2

Before collision:

  

� 

P1 = m0c,
 
0 ( ) P2 = ′ E 

c ,  p ( )
Total energy is 

� 

E1 = ′ E + m0c
2

Use previous result                         to relate E1 to total energy E2 in 
C.O.M frame

� 

2m0c
2E1 = E2

2

⇒ 2m0c
2 ′ E + m0c

2( ) = (2E)2 > 200m0c
2( )2

⇒ ′ E > 2 ×104 −1( ) m0c
2 ≈ 20,000m0c

2

Experiment 2

2m0c
2E1 = E2

2
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• 4-Acceleration=rate of change of 4-Velocity

• Use

• In instantaneous rest-frame

44

4-Acceleration

1
γ2

= 1− �v · �v
c2

=⇒ 1
γ3

dγ

dt
=

�v · �̇v
c2

=
�v · �a
c2

A = γ

�
γ3�v · �a

c
, γ�a + γ3

�
�v · �a
c2

�
�v

�

A =
dV

dτ
= γ

d
dt

�
γc, γ�v

�

A = (0,�a), A · A = −|�a|2
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• Rate of radiation, R, known to be invariant and 
proportional to       in instantaneous rest frame.

• But in instantaneous rest-frame

• Deduce

• Rearranged:  

45

Radiation from an accelerating 
charged particle

Relativistic 
Larmor 
Formula

|�a|2

A · A = −|�a|2

R ∝ A · A = −γ6

��
�v · �a

c

�2

+
1
γ2

�a2

�

R =
2e2

3c3
γ6

�
|�a|2 − (�a× �v)2

c2

�
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Motion under constant 
acceleration; world lines

• Introduce rapidity ρ defined by

• Then

• And

• So constant acceleration satisfies  

V = γ(c, v) = c(cosh ρ, sinh ρ)

A =
dV

dτ
= c(sinh ρ, cosh ρ)

dρ

dτ

a2 = |�a|2 = −A · A = c2

�
dρ

dτ

�2

=⇒ dρ

dτ
=

a

c
, so ρ =

aτ

c

β =
v

c
= tanh ρ =⇒ γ =

1�
1− β2

= cosh ρ
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c sinh ρ = c sinh
aτ

c
= γv = γ

dx

dt
=

dx

dτ

=⇒ x = x0 +
c2

a

�
cosh

aτ

c
− 1

�

cosh ρ = cosh
aτ

c
= γ =

dt

dτ

=⇒ t =
c

a
sinh

aτ

c

cosh2 ρ− sinh2 ρ = 1

=⇒
�

x− x0 +
c2

a

�2

− c2t2 =
c4

a2

47
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Relativistic Lagrangian 
and Hamiltonian Formulation

 


f = dp

dt
⇒ m0

d
dt

x
1− v2/c2( )1/2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= −

∂V
∂x

etc

 

d
dt

∂L
∂x

⎛
⎝⎜

⎞
⎠⎟
=
∂L
∂x

etc ⇒
∂L
∂x

=
m0 x

1− v2/c2( )1/2
, ∂L

∂x
= −

∂V
∂x

� 

v 2 = ˙ x 2 + ˙ y 2 + ˙ z 2

3-force eqn of motion 
under potential V:

Standard Lagrangian 
formalism:

Since                            , deduce

Relativistic Lagrangian

L = −m0c
2

�
1− v2

c2

� 1
2

− V = −m0c2

γ
− V
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H = x ∂L
∂x∑ − L =

m0

1− v
2

c2
⎛
⎝⎜

⎞
⎠⎟

1
2
x2 + y2 + z2( ) − L

= m0γ v
2 +

m0c
2

γ
+V = m0γ c

2 +V

= E +V ,

Hamiltonian

total energy

Hamilton’s equations of motion

Since

 H = c p2 + m0
2c2( )12 +V
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Photons and Wave 4-Vectors

Monochromatic plane wave:

Phase                      is the number of wave crests passing 

an observer, an invariant.  
 

1
2π

ω t −

k ⋅ x( )

 


k = wave vector, 


k =

2π
λ

; ω = angular frequency = 2πν

Position 4-vector, X Wave 4-vector, K

sin(ωt− �k · �x)

ωt− �k · �x = (ct, �x) ·
�ω

c
,�k

�
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K =
ω

c
(1,�n)

51

For light rays, phase velocity is

So       where                                is a unit vector

Relativistic Doppler Shift

v

F F'

θ θ'

Lorentz transform

c =
ω

|�k|
�n = (cos θ, sin θ, 0)

ct↔ ω

c
, �x↔ ω

c
�n
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ct� = γ
�
ct− vx

c

�

x� = γ(x− vt)

y� = y

51
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For light rays, phase velocity is

So       where                                is a unit vector

Relativistic Doppler Shift

v

F F'

θ θ'

Lorentz transform

c =
ω

|�k|
�n = (cos θ, sin θ, 0)

ct↔ ω

c
, �x↔ ω

c
�n

ω� = γ

�
ω − vω cos θ

c

�

ω�cosθ� = γ
�
ω cos θ − v

ω

c

�

ω� sin θ� = ω sin θ
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ω
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c
cos θ

�
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γ
�
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c
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51

For light rays, phase velocity is

So       where                                is a unit vector

Relativistic Doppler Shift

v

F F'

θ θ'

Lorentz transform

Note: transverse Doppler

 effect even when θ=½π

c =
ω

|�k|
�n = (cos θ, sin θ, 0)

ct↔ ω

c
, �x↔ ω

c
�n

ω� = γω
�
1− v

c
cos θ

�

tan θ� =
sin θ

γ
�
cos θ − v

c

�
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Motion faster than light
1. Two rods sliding over each 

other. Speed of intersection 
point is  v/sinα, which can 
be made greater than c.

2. Explosion of planetary 
nebula. Observer sees 
bright spot spreading out. 
Light from P arrives 
t=dα2/2c later.

α
xc
P

O
d
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