Concept of Luminosity in particle colliders (or: explaining the jargon...) # Werner Herr, CERN Bruno Muratori, Daresbury Laboratory http://cern.ch/Werner.Herr/CAS2010/lectures/Varna_luminosity.pdf Werner Herr, concept of luminosity, CAS 2010, Varna # Concept of Luminosity in particle colliders (or: explaining the jargon*)...) *) (beta*, squeeze, inverse femtobarn, lumi scan, crossing angle, filling schemes, hour glass effect, crab crossing ...) #### Particle colliders? - > Used in particle physics - **>** Look for rare interactions - > Want highest energies - > Many interactions (events) - Figures of merit for a collider: - energy - number of collisions # Why colliding beams? **Two beams:** $E_1, \vec{p_1}, E_2, \vec{p_2}, m_1 = m_2 = m$ $$E_{cm} = \sqrt{(E_1 + E_2)^2 - (\vec{p_1} + \vec{p_2})^2}$$ Collider versus fixed target: Fixed target: $\vec{p_2} = \mathbf{0} \rightarrow E_{cm} = \sqrt{2m^2 + 2E_1m}$ Collider: $\vec{p_1} = -\vec{p_2} \longrightarrow E_{cm} = E_1 + E_2$ - LHC (pp): $14000 \text{ GeV versus} \approx 115 \text{ GeV}$ - \blacksquare LEP (e⁺e⁻): 210 GeV versus? #### Collider performance issues - Available energy - Number of interactions per second (useful collisions) - Total number of interactions - Secondary issues: - Time structure of interactions (how often and how many at the same time) - > Space structure of interactions (size of interaction region) - > Quality of interactions (background, dead time etc.) # Luminosity: #### We want: Proportionality factor between cross section σ_p and number of interactions per second $\frac{dR}{dt}$ $$\frac{dR}{dt} = \mathcal{L} \times \sigma_p \qquad (\to \text{ units: cm}^{-2}\text{s}^{-1})$$ - → Relativistic invariant - → Independent of the physical reaction - → Reliable procedures to compute and measure # Fixed target luminosity > Interaction rate from flux and target density and size # Fixed target luminosity In a collider: target is the other beam ... (and it is moving!) ## Collider luminosity (per bunch crossing) $$\frac{dR}{dt} = L \sigma_{p}$$ $$N_{1} \rho_{1}(x,y,s,-s_{0})$$ $$N_{2} \rho_{2}(x,y,s,s_{0})$$ $$N_{3} \rho_{4}(x,y,s,s_{0})$$ $$N_{4} \rho_{5}(x,y,s,s_{0})$$ $$N_{5} \rho_{6}(x,y,s,s_{0})$$ $$N_{6} \rho_{6}(x,y,s,s_{0})$$ $$\mathcal{L} \propto K N_1 N_2 \int \int \int \int_{-\infty}^{+\infty} \rho_1(x, y, s, -s_0) \rho_2(x, y, s, s_0) dx dy ds ds_0$$ \mathbf{s}_0 is "time"-variable: $\mathbf{s}_0 = c \cdot \mathbf{t}$ Kinematic factor: $K = \sqrt{(\vec{v_1} - \vec{v_2})^2 - (\vec{v_1} \times \vec{v_2})^2/c^2}$ ## Collider luminosity (per beam) - Assume uncorrelated densities in all planes - \rightarrow factorize: $\rho(x, y, s, s_0) = \rho_x(x) \cdot \rho_y(y) \cdot \rho_s(s \pm s_0)$ - \blacksquare For head-on collisions $(\vec{v_1} = -\vec{v_2})$ we get: $$\mathcal{L} = 2 \cdot N_1 N_2 \cdot f \cdot n_b \cdot \int \int \int \int_{-\infty}^{+\infty} dx dy ds ds_0$$ $$\rho_{1x}(x)\rho_{1y}(y)\rho_{1s}(s-s_0) \cdot \rho_{2x}(x)\rho_{2y}(y)\rho_{2s}(s+s_0)$$ - In principle: should know all distributions - → Mostly use Gaussian ρ for analytic calculation (in general: it is a good approximation) #### Gaussian distribution functions $$\rho_z(u) = \frac{1}{\sigma_u \sqrt{2\pi}} \exp\left(-\frac{u^2}{2\sigma_u^2}\right) \qquad u = x, y$$ $$\rho_s(s \pm s_0) = \frac{1}{\sigma_s \sqrt{2\pi}} \exp\left(-\frac{(s \pm s_0)^2}{2\sigma_s^2}\right)$$ For non-Gaussian profiles not always possible to find analytic form, need a numerical integration # Luminosity for two beams (1 and 2) - Simplest case : equal beams - $\rightarrow \sigma_{1x} = \sigma_{2x}, \quad \sigma_{1y} = \sigma_{2y}, \quad \sigma_{1s} = \sigma_{2s}$ - \rightarrow but: $\sigma_{1x} \neq \sigma_{1y}, \quad \sigma_{2x} \neq \sigma_{2y}$ is allowed - Further: no dispersion at collision point # Integration (head-on) for beams of equal size: $\sigma_1 = \sigma_2 \rightarrow \rho_1 \rho_2 = \rho^2$: $$\mathcal{L} = \frac{2 \cdot N_1 N_2 f n_b}{(\sqrt{2\pi})^6 \sigma_s^2 \sigma_x^2 \sigma_y^2} \int \int e^{-\frac{x^2}{\sigma_x^2}} e^{-\frac{y^2}{\sigma_y^2}} e^{-\frac{s^2}{\sigma_s^2}} e^{-\frac{s^2}{\sigma_s^2}} dx dy ds ds_0$$ integrating over s and s_0 , using: $$\int_{-\infty}^{+\infty} e^{-at^2} dt = \sqrt{\pi/a}$$ $$\mathcal{L} = \frac{2 \cdot N_1 N_2 f n_b}{8(\sqrt{\pi})^4 \sigma_x^2 \sigma_y^2} \int \int e^{-\frac{x^2}{\sigma_x^2}} e^{-\frac{y^2}{\sigma_y^2}} dx dy$$ finally after integration over x and y: \Longrightarrow $\mathcal{L} = \frac{N_1 N_2 f n_b}{4\pi \sigma_x \sigma_y}$ # Luminosity for two (equal) beams (1 and 2) Simplest case: $\sigma_{1x} = \sigma_{2x}, \sigma_{1y} = \sigma_{2y}, \sigma_{1s} = \sigma_{2s}$ or: $\sigma_{1x} \neq \sigma_{2x} \neq \sigma_{1y} \neq \sigma_{2y}$, $but : \sigma_{1s} \approx \sigma_{2s}$ $$\Rightarrow \mathcal{L} = \frac{N_1 N_2 f n_b}{4\pi \sigma_x \sigma_y} \left(\mathcal{L} = \frac{N_1 N_2 f n_b}{2\pi \sqrt{\sigma_{1x}^2 + \sigma_{2x}^2} \sqrt{\sigma_{1y}^2 + \sigma_{2y}^2}} \right)$$ **I** Here comes β^* : $\sigma_{x,y} = \sqrt{\epsilon \cdot \beta_{x,y}^*}$ # Luminosity for two (equal) beams (1 and 2) Simplest case: $\sigma_{1x} = \sigma_{2x}, \sigma_{1y} = \sigma_{2y}, \sigma_{1s} = \sigma_{2s}$ or: $\sigma_{1x} \neq \sigma_{2x} \neq \sigma_{1y} \neq \sigma_{2y}, \quad but: \sigma_{1s} \approx \sigma_{2s}$ $$\Rightarrow \mathcal{L} = \frac{N_1 N_2 f n_b}{4\pi \sigma_x \sigma_y} \left(\mathcal{L} = \frac{N_1 N_2 f n_b}{2\pi \sqrt{\sigma_{1x}^2 + \sigma_{2x}^2} \sqrt{\sigma_{1y}^2 + \sigma_{2y}^2}} \right)$$ - Would you increase n_b or N_1, N_2 ? - \blacksquare Special case LHC: $n_b \rightarrow n_{coll}$ (filling schemes) # Examples | | Energy | \mathcal{L}_{max} | rate | σ_x/σ_y | Particles | |--------------------------------------------------------|------------|-----------------------------------|--------------------------|---------------------------------|--------------------------------| | | (GeV) | $\mathrm{cm}^{-2}\mathrm{s}^{-1}$ | s^{-1} | $\mu \mathbf{m}/\mu \mathbf{m}$ | per bunch | | $\mathbf{SPS} (\mathbf{p}\bar{p})$ | 315x315 | 6 10 ³⁰ | 4 10 ⁵ | 60/30 | pprox 10 10 ¹⁰ | | Tevatron $(p\bar{p})$ | 1000x1000 | 100 10 ³⁰ | 7 10 ⁶ | 30/30 | $pprox 30/8 \ 10^{10}$ | | \parallel HERA ($\mathrm{e^{+}p}$) | 30x 920 | 40 10 ³⁰ | 40 | 250/50 | $pprox 3/7 \ 10^{10}$ | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | | , , | | | LHC (pp) | 7000x7000 | 10000 10 ³⁰ | 10^{9} | 17/17 | $pprox$ 11 10 10 | | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 105x 105 | 100 10 ³⁰ | ≤ 1 | 200/2 | $pprox$ 50 10 10 | | $ ho$ PEP ($ m e^+e^-$) | 9x3 | 8000 10 ³⁰ | NA | 150/5 | $pprox \mathbf{2/6} \ 10^{10}$ | # What else? - What about linear colliders? - → See later ... # Complications - Crossing angle - Hour glass effect - Collision offset (wanted or unwanted) - Non-Gaussian profiles - Dispersion at collision point - Strong coupling - etc. # Collisions at crossing angle - Needed to avoid unwanted collisions - → For colliders with many bunches: LHC, CESR, KEKB - → For colliders with coasting beams # Collisions angle geometry (horizontal plane) #### Crossing angle Assume crossing in horizontal (x, s)- plane. Transform to new coordinates: $$\begin{cases} x_1 = x \cos \frac{\phi}{2} - s \sin \frac{\phi}{2}, & s_1 = s \cos \frac{\phi}{2} + x \sin \frac{\phi}{2}, \\ x_2 = x \cos \frac{\phi}{2} + s \sin \frac{\phi}{2}, & s_2 = s \cos \frac{\phi}{2} - x \sin \frac{\phi}{2} \end{cases}$$ $$\mathcal{L} = 2\cos^2\frac{\phi}{2}N_1N_2fn_b \int \int \int_{-\infty}^{+\infty} dx dy ds ds_0$$ $$\rho_{1x}(x_1)\rho_{1y}(y_1)\rho_{1s}(s_1 - s_0)\rho_{2x}(x_2)\rho_{2y}(y_2)\rho_{2s}(s_2 + s_0)$$ ## Integration (crossing angle) use as before: $$\int_{-\infty}^{+\infty} e^{-at^2} dt = \sqrt{\pi/a}$$ and: $$\int_{-\infty}^{+\infty} e^{-(at^2+bt+c)} dt = \sqrt{\pi/a} \cdot e^{\frac{b^2-ac}{a}}$$ #### Further: - Since σ_x , x and $\sin(\phi/2)$ are small: - ightharpoonup drop all terms $\sigma_x^k sin^l(\phi/2)$ or $x^k sin^l(\phi/2)$ for all: $k+l \geq 4$ - > approximate: $\sin(\phi/2) \approx \tan(\phi/2) \approx \phi/2$ ## Crossing angle Crossing Angle $$\Rightarrow$$ $\mathcal{L} = \frac{N_1 N_2 f n_b}{4\pi \sigma_x \sigma_y} \cdot S$ - S is the geometric factor - For small crossing angles and $\sigma_s \gg \sigma_{x,y}$ $$\Rightarrow S = \frac{1}{\sqrt{1 + (\frac{\sigma_s}{\sigma_x} \tan \frac{\phi}{2})^2}} \approx \frac{1}{\sqrt{1 + (\frac{\sigma_s}{\sigma_x} \frac{\phi}{2})^2}}$$ Example LHC (at 7 TeV): $\Phi = 285 \ \mu \text{rad}, \ \sigma_x \ \approx \ 17 \ \mu \text{m}, \ \sigma_s = 7.5 \ \text{cm}, \ S = 0.84$ # Large crossing angle - → Large crossing angle: large loss of luminosity - → "crab" crossing can recover geometric factor # "crab" crossing scheme - → Done with transversely deflecting cavities (if you wondered what they can be used for) - → Feasibility needs to be demonstrated # Offset and crossing angle # Offset and crossing angle Transformations with offsets in crossing plane: $$\begin{cases} x_1 = d_1 + x \cos \frac{\phi}{2} - s \sin \frac{\phi}{2}, & s_1 = s \cos \frac{\phi}{2} + x \sin \frac{\phi}{2}, \\ x_2 = d_2 + x \cos \frac{\phi}{2} + s \sin \frac{\phi}{2}, & s_2 = s \cos \frac{\phi}{2} - x \sin \frac{\phi}{2} \end{cases}$$ \blacksquare Gives after integration over y and s_0 : $$\mathcal{L} = \frac{\mathcal{L}_0}{2\pi\sigma_s\sigma_x} 2\cos^2\frac{\phi}{2} \int \int e^{-\frac{x^2\cos^2(\phi/2) + s^2\sin^2(\phi/2)}{\sigma_x^2}} e^{-\frac{x^2\sin^2(\phi/2) + s^2\cos^2(\phi/2)}{\sigma_s^2}}$$ $$\times e^{-\frac{d_1^2 + d_2^2 + 2(d_1 + d_2)x\cos(\phi/2) - 2(d_2 - d_1)s\sin(\phi/2)}{2\sigma_x^2}} dx ds.$$ #### Offset and crossing angle #### After integration over x: $$\mathcal{L} = \frac{N_1 N_2 f n_b}{8\pi^{\frac{3}{2}} \sigma_s} \quad 2\cos\frac{\phi}{2} \quad \int_{-\infty}^{+\infty} W \cdot \frac{e^{-(As^2 + 2Bs)}}{\sigma_x \sigma_y} ds$$ with: $$A = \frac{\sin^2 \frac{\phi}{2}}{\sigma_x^2} + \frac{\cos^2 \frac{\phi}{2}}{\sigma_s^2}$$ $B = \frac{(d_2 - d_1)\sin(\phi/2)}{2\sigma_x^2}$ and $$W = e^{-\frac{1}{4\sigma_x^2}(d_2 - d_1)^2}$$ ⇒ After integration: Luminosity with correction factors # Luminosity with correction factors $$\mathcal{L} = rac{N_1 N_2 f n_b}{4\pi \sigma_x \sigma_y} \cdot W \cdot e^{ rac{B^2}{A}} \cdot S$$ - $\longrightarrow W$: correction for beam offset - \rightarrow S: correction for crossing angle - $\rightarrow e^{\frac{B^2}{A}}$: correction for crossing angle and offset - \square β -functions depends on position s - $\beta(s) \approx \beta^* (1 + \left(\frac{s}{\beta^*}\right)^2)$ \blacksquare β -functions depends on position s lacksquare Beam size σ $(\propto \sqrt{\beta^*(s)})$ depends on position s #### Hour glass effect - short bunches Small variation of beam size along bunch #### Hour glass effect - long bunches \blacksquare Significant effect for long bunches and small β^* - \square β -functions depends on position s - **Usually:** $\beta(s) = \beta^* (1 + \left(\frac{s}{\beta^*}\right)^2)$ - \rightarrow i.e. $\sigma \implies \sigma(s) \neq \text{const.}$ - Important when β^* comparable to the r.m.s. bunch length σ_s (or smaller !) Without crossing angle and for symmetric, round Gaussian beams we get the relative luminosity reduction as: $$\frac{\mathcal{L}(\sigma_s)}{\mathcal{L}(0)} = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{\pi}} \frac{e^{-u^2}}{\left[1 + \left(\frac{u}{u_x}\right)^2\right]} du = \sqrt{\pi} \cdot u_x \cdot e^{u_x^2} \cdot \operatorname{erfc}(u_x)$$ Using the expression: $u_x = \beta^*/\sigma_s$ $$\mathcal{L}(\sigma_s) = \mathcal{L}(0) \cdot \mathbf{H}$$ with: $\mathbf{H} = \sqrt{\pi} \cdot u_x \cdot e^{u_x^2} \cdot \operatorname{erfc}(u_x)$ # Hour glass effect \longrightarrow Hourglass reduction factor as function of ratio β^*/σ_s . ## Luminosity with (more) correction factors $$\mathcal{L} = rac{N_1 N_2 f n_b}{4\pi \sigma_x \sigma_y} \cdot W \cdot e^{ rac{B^2}{A}} \cdot S \cdot H$$ - \longrightarrow W: correction for beam offset - \rightarrow S: correction for crossing angle - \rightarrow $e^{\frac{B^2}{A}}$: correction for crossing angle and offset - \rightarrow H: correction for hour glass effect # Calculations for the LHC $$N_1 = N_2 = 1.15 \times 10^{11} \text{ particles/bunch}$$ $$n_b = 2808$$ bunches/beam $$f = 11.2455 \text{ kHz}, \quad \phi = 285 \text{ } \mu \text{rad}$$ $$\beta_x^* = \beta_y^* = 0.55 \text{ m}$$ $$\sigma_x^* = \sigma_y^* = 16.6 \ \mu \text{m}, \quad \sigma_s = 7.7 \ \text{cm}$$ Simplest case (Head on collision): $$\mathcal{L} = 1.200 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$$ Effect of crossing angle: $$\mathcal{L} = 0.973 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$$ Effect of crossing angle & Hourglass: $$\mathcal{L} = 0.969 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$$ #### If the beams are not Gaussian?? #### Exercise: Assume flat distributions (normalized to 1) $$\rho_1 = \rho_2 = \frac{1}{2a}, \quad \text{for } [-a \le z \le a], \ z = x, y$$ Calculate r.m.s. in x and y: $$\langle (x,y)^2 \rangle = \int_{-\infty}^{+\infty} (x,y)^2 \cdot \rho(x,y) dx dy$$ and $$\mathcal{L} = \int_{-\infty}^{+\infty} \rho_1(x, y) \rho_2(x, y) \ dxdy$$ - Compute: $\mathcal{L} \cdot \sqrt{\langle x^2 \rangle \cdot \langle y^2 \rangle}$ - Repeat for various distributions and compare $$\mathcal{L}_{\text{int}} = \int_0^T \mathcal{L}(t) dt$$ The figure of merit: $\mathcal{L}_{\text{int}} \cdot \sigma_p = \text{number of events}$ - \square Unit is: cm^{-2} , i.e. inverse cross-section - \blacksquare Often expressed in inverse barn (10⁻²⁴ cm²) - \sim 1 fbarn⁻¹ is $10^{39} cm^{-2}$ - **I** for 1 fbarn⁻¹: requires 10^7 s at L = $10^{32} cm^{-2} s^{-1}$ - \blacksquare Experiments: continuous recording of $\mathcal L$ - For studies: assume some life time behaviour. E.g. $\mathcal{L}(t) \longrightarrow \mathcal{L}_0 \exp\left(-\frac{t}{\tau}\right)$ - Contributions to life time from: intensity decay, emittance growth etc. lacksquare Knowledge of preparation time allows optimization of \mathcal{L}_{int} - Implication Typical run times LEP: $t_r \approx 8$ 10 hours - \blacksquare For LHC long preparation time t_p expected - ightharpoonup Optimum combination of t_r and t_p gives maximum luminosity - \rightarrow t_r is usually a "free" parameter, i.e. can be chosen #### Maximising Integrated Luminosity - Assume exponential decay of luminosity $\mathcal{L}(t) = \mathcal{L}_0 \cdot e^{t/\tau}$ - Average (integrated) luminosity $<\mathcal{L}>$ $<\mathcal{L}>= rac{\int_0^{t_r}dt\mathcal{L}(t)}{t_r+t_p}=\mathcal{L}_0\cdot au\cdot rac{1-e^{-t_r/ au}}{t_r+t_p}$ - (Theoretical) maximum for: $t_r \approx \tau \cdot \ln(1 + \sqrt{2t_p/\tau} + t_p/\tau)$ - **Example LHC:** $t_p \approx 10 \text{h}, \ \tau \approx 15 \text{h}, \Rightarrow t_r \approx 15 \text{h}$ - **Exercise:** Would you improve τ (long t_r) or t_p ? ## Interactions per crossing - \blacksquare Luminosity/ $fn_b \propto N_1N_2$ - In LHC: crossing every 25 ns - Per crossing approximately 20 interactions - May be undesirable (pile up in detector) - $\blacksquare \longrightarrow \text{more bunches } n_b, \text{ or smaller N ??}$ Beware: maximum (peak) luminosity \mathcal{L}_{max} is not the whole story ...! ### Luminosity measurement - One needs to get a signal proportional to interaction rate → Beam diagnostics - Large dynamic range: $10^{27} \text{ cm}^{-2} \text{s}^{-1} \text{ to } 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ - Very fast, if possible for individual bunches - Used for optimization - For absolute luminosity need calibration Remember the basic definition: $$\frac{dR}{dt} = \mathcal{L} \times \sigma_p$$ - For a well known and calculable process we know σ_p - The experiments measure the counting rate $\frac{dR}{dt}$ for this process - Get the absolute, calibrated luminosity $$(e^{+}e^{-})$$ - Use well known and calculable process - $e^+e^- \rightarrow e^+e^-$ elastic scattering (Bhabha scattering) - lacksquare Have to go to small angles $(\sigma_{el} \propto \Theta^{-3})$ - lacksquare Small rates at high energy $(\sigma_{el} \propto rac{1}{E^2})$ - Measure coincidence at small angles - Low counting rates, in particular for high energy! - Background may be problematic (hadrons, e.g. pp or $p\bar{p}$) - Must measure beam current and beam sizes - Beam size measurement: - > Wire scanner or synchrotron light monitors - \triangleright Measurement with beam ... \rightarrow remember luminosity with offset - Move the two beams against each other in transverse planes (van der Meer scan, ISR 1973 - LHC 2010) ## Luminosity optimization ## Luminosity optimization - \blacksquare From ratio of luminosity $\mathcal{L}(\mathbf{d})/\mathcal{L}_0$ - **Remember:** $W = e^{-\frac{1}{4\sigma^2}(d_2 d_1)^2}$ - \blacksquare Determines σ - ... and centres the beams! - Others: - > Beam-beam deflection scans LEP - > Beam-beam excitation ## Absolute value of \mathcal{L} (pp or $p\bar{p}$) - By Coulomb normalization: - **Coulomb amplitude** exactly calculable: $$\lim_{t \to 0} \frac{d\sigma_{el}}{dt} = \frac{1}{\mathcal{L}} \frac{dN_{el}}{dt}|_{t=0} = \pi |f_C + f_N|^2$$ $$\simeq \pi |\frac{2\alpha_{em}}{-t} + \frac{\sigma_{tot}}{4\pi} (\rho + i) e^{b\frac{t}{2}}|^2 \simeq \frac{4\pi\alpha_{em}^2}{t^2}|_{|t|\to 0}$$ - \triangleright Fit gives: σ_{tot}, ρ, b and \mathcal{L} - Can be done measuring elastic scattering at small angles #### Differential elastic cross section - Measure dN/dt at small t (0.01 < (GeV/c)**2) and extrapolate to t = 0.0 - Needs special optics to allow measurement at very small t - Measure total counting rate N_{el} + N_{inel} Needs good detector coverage - Often use slightly modified method, precision 1 – 2 % - Mainly (only) e + e colliders - Past collider: SLC (SLAC) - Under consideration: CLIC, ILC - Special issues: - > Particles collide only once (dynamics) ! - > Particles collide only once (beam power) ! - Must be taken into account Basic formula: From: $$\mathcal{L} = \frac{N^2 f n_b}{4\pi\sigma_x\sigma_y}$$ to: $\mathcal{L} = \frac{N^2 f_{rep} n_b}{4\pi\sigma_x\sigma_y}$ - **Replace** frequency f by repetition rate f_{rep} . - \blacksquare And introduce effective beam sizes $\overline{\sigma_x}, \overline{\sigma_y}$: $$\mathcal{L} = \frac{N^2 f_{rep} n_b}{4\pi \overline{\sigma_x} \overline{\sigma_y}}$$ \blacksquare Using the enhancement factor H_D : $$\mathcal{L} = \frac{N^2 f_{rep} n_b}{4\pi \overline{\sigma_x} \overline{\sigma_y}} \longrightarrow \mathcal{L} = \frac{H_D \cdot N^2 f_{rep} n_b}{4\pi \sigma_x \sigma_y}$$ - Enhancement factor H_D takes into account reduction of nominal beam size by the disruptive field (pinch effect) - \blacksquare Related to disruption parameter \mathcal{D} : $$\mathcal{D}_{x,y} = \frac{2r_e N \sigma_z}{\gamma \sigma_{x,y} (\sigma_x + \sigma_y)}$$ #### Pinch effect - disruption > Additional focusing by opposing beams #### Pinch effect - disruption > Additional focusing by opposing beams **I** For weak disruption $\mathcal{D} \ll 1$ and round beams: $$H_D = 1 + \frac{2}{3\sqrt{\pi}}\mathcal{D} + \mathcal{O}(\mathcal{D}^2)$$ For strong disruption and flat beams: computer simulation necessary, maybe can get some scaling ### Beamstrahlung - Disruption at interaction point is basically a strong "bending" - Results in strong synchrotron radiation: beamstrahlung - This causes (unwanted): - > Spread of centre-of-mass energy - > Pair creation and detector background - Again: luminosity is not the only important parameter #### Beamstrahlung Parameter Y Measure of the mean field strength in the rest frame normalized to critical field B_c : $$Y = \frac{\langle E + B \rangle}{B_c} \approx \frac{5}{6} \frac{r_e^2 \gamma N}{\alpha \sigma_z (\sigma_x + \sigma_y)}$$ with: $$B_c = \frac{m^2 c^3}{e\hbar} \approx 4.4 \times 10^{13} G$$ ## Energy loss and power consumption **Average fractional energy loss** δ_E : $$\delta_E = 1.24 \frac{\alpha \sigma_z m_e}{\lambda_C E} \frac{Y}{(1 + (1.5Y)^{2/3})^{1/2}}$$ where E is beam energy at interaction point and λ_C the Compton wavelength. Using the beam power P_b and beam energy E in the luminosity: $$\mathcal{L} = \frac{H_D \cdot N^2 \ f_{rep} \ n_b}{4\pi\sigma_x \ \sigma_y} \longrightarrow \mathcal{L} = \frac{H_D \cdot N \cdot P_b}{eE \cdot 4\pi\sigma_x \ \sigma_y}$$ Beam power P_b related to AC power consumption P_{AC} via efficiency η_b^{AC} $$P_b = \eta_b^{AC} \cdot P_{AC}$$ ## Figure of merit in linear colliders Luminosity at given energy normalized to power consumption and momentum spread due to beamstrahlung: $$M = \frac{\mathcal{L}E}{\sqrt{\delta_b} P_{AC}}$$ With previous definition (and reasonably small beamstrahlung) this becomes: $$M = \frac{\mathcal{L}E}{\sqrt{\delta_b} P_{AC}} \propto \frac{\eta_b^{AC}}{\sqrt{\epsilon_y^*}}$$ These are optimized in the linear collider design ### Not treated: - Coasting beams (e.g. ISR) - Asymmetric colliders (e.g. PEP, HERA, LHeC) #### How to cook high Luminosity? - Get high intensity - \blacksquare Get small beam sizes (small ϵ and β^*) - Get many bunches - Get small crossing angle (if any) - Get exact head-on collisions - Get short bunches $$\mathcal{L} = \frac{N_1 N_2 f n_b}{4\pi \sigma_x \sigma_y} \cdot W \cdot e^{\frac{B^2}{A}} \cdot S \cdot H$$ $$\mathcal{L} = \frac{N_1 N_2 f n_b}{4\pi \sigma_x \sigma_y} \cdot W \cdot e^{\frac{B^2}{A}} \cdot S \cdot H$$ Are there limits to what we can do? $$\mathcal{L} = \frac{N_1 N_2 f n_b}{4\pi \sigma_x \sigma_y} \cdot W \cdot e^{\frac{B^2}{A}} \cdot S \cdot H$$ - Are there limits to what we can do? - Yes, there are beam-beam effects $$\mathcal{L} = \frac{N_1 N_2 f n_b}{4\pi \sigma_x \sigma_y} \cdot W \cdot e^{\frac{B^2}{A}} \cdot S \cdot H$$ For large amplitude particles: collision point longitudinally displaced - For large amplitude particles: collision point longitudinally displaced - Can introduce coupling (transverse and synchro betatron, bad for flat beams) - → A particle's collision point amplitude dependent - \longrightarrow Different (vertical) β functions at collision points - → A particle's collision point amplitude dependent - \longrightarrow Different β functions at collision points (hour glass!) ### "crab waist" scheme - Make vertical waist (β_y^{min}) amplitude (x) dependent - All particles in both beams collide in minimum β_y region #### "crab waist" scheme - Make vertical waist (minimum of β) amplitude (x) dependent - Without details: can be done with two sextupoles - First tried at DAPHNE (Frascati) in 2008 - Geometrical gain small - Smaller vertical tune shift as function of horizontal coordinate - Less betatron and synchrotron coupling - Good remedy for flat (i.e. lepton) beams with large crossing angle