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Accelerators for Newcomers

D. Brandt, CERN
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Why this Introduction?

• During this school, you will learn about beam dynamics in a rigorous 
way…

• but some of you are completely new to the field of accelerator physics.

• It seemed therefore justified to start with the introduction of a few very 
basic concepts, which will be used throughout the course.

This is a completely intuitive approach (no mathematics) aimed at 
highlighting the physical concepts, without any attempt to achieve any 
scientific derivation.
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Some generalities …



Units: the electronvolt (eV)

The electronvolt (eV) is the energy gained by an electron 
travelling, in vacuum, between two points with a voltage 
difference of 1 Volt.               1 eV = 1.602 10-19 Joule

We also frequently use the electronvolt to express masses 
from E=mc2:     1 eV/c2 = 1.783 10-36 kg
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What is a Particle Accelerator?

 a machine to accelerate some particles ! How is it done ?

 Many different possibilities, but rather easy from the general principle:

- + - - -+ + +
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Ideal linear machines (linacs)

- + - - -+ + +

Advantages: Single pass

High intensity

Drawbacks: Single pass

Available Energy

Available Energy : Ec.m. = m . (2+2γ)1/2 = (2m.(m+E))1/2

with γ = E/E0

E
Target
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Improved solution for Ec.m.

Available Energy : Ec.m. = 2mγ = 2E

with γ = E/E0

Advantages: High intensity
Drawbacks: Single pass  

Space required    

e-

- + - - -+ + +

e+
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Watch out !
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The difference between fixed target and colliding mode 
deserves to be considered in some detail:

Fixed target mode:

Ec.m. ∝ (2mE)1/2

Colliding mode:

Ec.m. ∝ 2E

What would be the required beam energy to achieve Ec.m.=14 TeV in fixed
target mode ?

⇔



Keep particles: circular machines

Basic idea is to keep the particles in the machine for many turns.
Move from the linear design

To a circular one:

Need Bending

Need Dipoles!
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Circular machines 1 (Ec.m. ~ (mE)1/2)
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fixed target:

cyclotron

huge dipole, compact design, B = constant , low energy, single pass.



Circular machines 2 (Ec.m. ~ (mE)1/2)
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fixed target:

synchrotron

RF
varying B

small magnets,

high energy



Colliders (Ec.m.=2E)

Colliders with the same type 
of particles (e.g. p-p) require 
two separate chambers. The 

beam are brought into a 
common chamber around the 

interaction regions
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e-

- + - - -+ + +

e+



Colliders (e+ - e-) et (p – p)

LEP

LHC

CAS Varna 2010 D. Brandt    13Accelerators for Newcomers



CAS Varna 2010 Accelerators for Newcomers D. Brandt    14

Transverse Dynamics

F = e (E + v x B) 
!



Beam Dynamics (1)

In order to describe the motion of the particles, each particle is 
characterised by:

• Its azimuthal position along the machine: s
• Its momentum: p (or Energy E)
• Its horizontal position: x
• Its horizontal slope: x’
• Its vertical position: y
• Its vertical slope: y’

i.e. a sixth dimensional vector

(s, p, x, x’, y, y’)
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Beam Dynamics (2)

• In an accelerator designed to operate at the energy Enom, all particles 
having (s, Enom, 0, 0, 0, 0) will happily fly through the center of the 
vacuum chamber without any problem. These are “ideal particles”.

• The difficulties start when:

 one introduces dipole magnets

 the energy E ≠ Enom or (p-pnom/pnom) = ∆p/pnom ≠ 0

 either of x, x’, y, y’ ≠ 0
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Basic problem:

CAS Varna 2010 Accelerators for Newcomers D. Brandt    17

With more than 1010  particles per bunch, most of them will not be ideal 
particles, i.e. they are going to be lost !

Purpose of this lecture:  how can we keep the particles in the machine ?



Circular machines: Dipoles

B

Classical mechanics:

Equilibrium between two forces

Lorentz force Centrifugal force

F = e.(v x B) F = mv2/ρ

evB = mv2/ρ

Magnetic rigidity:

Bρ = mv/e = p/e

Relation also holds for relativistic case provided the classical momentum 
mv is replaced by the relativistic momentum p

p = m0.c.(βγ)p = m0.c.(βγ)
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Why fundamental ?

Constraints:

E and ρ given   Magnets defined (B)

Constraints:

E and B given   Size of the machine (ρ)

Constraints:

B and ρ given   Energy defined (E)



Dipoles (1):
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Dipoles (2):
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Ideal circular machine:

• Neglecting radiation losses in the dipoles
• Neglecting gravitation 

ideal particle would happily circulate on axis in 
the machine for ever!

Unfortunately: real life is different!

Gravitation: ∆y = 20 mm in 64 msec!
Alignment of the machine Limited physical aperture
Ground motion Field imperfections
Energy error of particles and/or (x, x’)inj ≠ (x, x’)nominal

Error in magnet strength (power supplies and calibration)

We need

Focusing!
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Focusing with quadrupoles

Fx = -g.x

Fy = g.y

Force increases linearly with 
displacement.

Unfortunately, effect is opposite in 
the two planes (H and V).

Remember: this quadrupole is 
focusing in the horizontal plane but 
defocusing in the vertical plane!
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Quadrupoles:
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Focusing properties …

A quadrupole provides the required effect in one plane…

but the opposite effect in the other plane!

Is it really interesting ?
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Alternating gradient focusing

Basic new idea:

Alternate QF and QD

QFQF QFQD QD

valid for one plane only (H or V) !
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QF QD QF QD QF QD QF QD QF QD QF QD
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Alternating gradient focusing



Alternating gradient focusing:
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Particles for which x, x’, y, y’ ≠ 0 thus oscillate around
the ideal particle …  

but the trajectories remain inside 
the vacuum chamber !
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Thin lens analogy of AG focusing

x  1     0        x
x’   out =     -1/f   1        x’   in

Xout = xin + 0.x’in
x’out = (-1/f).xin + x’in

1     L     
Drift =   0     1

1-L/f     L
QF-Drift-QD =    -L/f2 1+L/f 

Initial:   x = x0 and L < f
x’ = 0 

x

f

∆x’ = x/f

More intuitively:

x1 x2

x1 < x2

F ∝ x

QD QF



The concept of the « FODO cell »

L

4 L

One complete oscillation in 4 cells ⇒ 90°/ cell ⇒ µ = 90°

QD QF QD QF QD QF QD QF QDQF
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Circular machines (no errors!)

The accelerator is composed of a periodic repetition of cells:

 The phase advance per cell µ can be modified, in each plane, by 
varying the strength of the quadrupoles.

B D B FL

 The ideal particle will follow a particular trajectory, which closes 
on itself after one revolution: the closed orbit.

 The real particles will perform oscillations around the closed orbit.

 The number of oscillations for a complete revolution is called
the Tune Q of the machine (Qx and Qy).

CAS Varna 2010 D. Brandt    31Accelerators for Newcomers



Regular periodic lattice: The Arc
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Synchrotrons …



The beta function β(s)

The β-function is the envelope around all the trajectories of the 
particles circulating in the machine.

The β-function has a minimum at the QD and a maximum at the QF, 
ensuring the net focusing effect of the lattice.

It is a periodic function (repetition of cells). The oscillations of the 
particles are called betatron motion or betatron oscillations.

(εβ)1/2
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Phase space 

 Select a particle in the beam being at 1 sigma (68%) of the distribution 
and plot its position vs. its phase (x vs. x’) at some location in the 
machine for many turns.

X

X’

Area = π.ε

 ε Is the emittance of the beam [mm mrad]
 ε describes the quality of the beam
 Measure of how much particle depart from
ideal trajectory.
 β is a property of the machine (quadrupoles).

ideal
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Emittance conservation

The shape of the ellipse varies along the machine, but its area            
(the emittance ε) remains constant at a given energy.

QF QD QF



Why introducing these functions?
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The β function and the emittance are fundamental parameters, 
because they are  directly related to the beam size (measurable
quantity !):

Beam size [m]

σx,y(s) = (ε.βx,y(s))1/2 

The emittance ε characterises the quality of the injected beam
(kind of measure how the particules depart from ideal ones). It is
an invariant at a given energy.

ε = beam property β = machine property (quads)

σ (IP) = 17 μm

at 7 TeV (β=0.55 m)
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Recapitulation 1 

 The fraction of the oscillation performed in a periodic cell is called 
the phase advance µ per cell (x or y).

 The total number of oscillations over one full turn of the machine is 
called the betatron tune Q (x or y).

 The envelope of the betatron oscillations is characterised by the 
beta function β(s). This is a property of the quadrupole settings.

 The quality of the (injected) beam is characterised by the emittance 
ε. This is a property of the beam and is invariant around the 
machine for a given energy.

 The r.m.s. beam size (measurable quantity) is σ = (β.ε)1/2 .
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Off momentum particles:

• These are “non-ideal” particles, in the sense that they do 
not have the right energy, i.e. all particles with ∆p/p ≠ 0

What happens to these particles when traversing the magnets ?
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Off momentum particles (∆p/p≠0)

 If ∆p/p > 0, particles are less bent in the dipoles   should spiral out !

 If ∆p/p < 0, particles are more bent in the dipoles   should spiral in !

Effect from Dipoles

No!
There is an 

equilibrium with the 
restoring force of 
the quadrupoles

-25

25

∆p/p>0

∆p/p<0 ∆p/p=0

D(x)
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Dispersion

x

y

(Exβx)1/2

(Eyβy)1/2

∆p/p < 0 ∆p/p = 0 ∆p/p > 0

D(s).∆p/p

VH: Ay(s) = (Eyβy(s))1/2 and HW: Ax(s) = (Exβx(s))1/2 + D(s).∆p/p

The vacuum 
chamber must 
accomodate
the full width.

Only extreme
values of ∆p/p 
are shown. 

In general:



Off momentum particles (∆p/p≠0)

 If ∆p/p > 0, particles are less focused in the quadrupoles  lower Q !

Effect from Quadrupoles

 If ∆p/p < 0, particles are more focused in the quadrupoles  higher Q !

Q=Q0

Q<Q0

Q>Q0

Particles with different 
momenta would have 
a different betatron 

tune Q=f(∆p/p)!
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The chromaticity Q’

 The tune dependence on momentum is of fundamental importance for 
the stability of the machine. It is described by the chromaticity of the 
machine Q’:

Q’ = ∆Q / (∆p/p)

Particles with different momenta (∆p/p) would thus have different tunes Q. 
So what ?

unfortunately

The chromaticity has to be carefully controlled and corrected for 
stability reasons.
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The sextupoles (SF and SD)

• A SF sextupole basically 
« adds » focusing for the particles 
with ∆p/p > 0, and « reduces » it 
for ∆p/p < 0.

• The chromaticity is corrected by 
adding a sextupole after each 
quadrupole of the FODO lattice.

 ∆x’ ∝ x2

CAS Varna 2010 D. Brandt    44Accelerators for Newcomers



Sextupoles:

SPS
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Effect of sextupoles

QF QF QF QF QFQD QD QD QD QD

SF1 SD1 SF2 SD2 SF1 SD1 SF2 SD2 SF1

SD1
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Recapitulation 2

• For off momentum particles (∆p/p ≠ 0), the magnets 
induce other important effects, namely:

 The dispersion (dipoles)

 The chromaticity (quadrupoles)
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Longitudinal plane

 So far, we considered only the motion in the transverse planes 
from an intuitive point of view. The corresponding rigorous 
treatment will be given in the lectures on “Transverse Beam 
Dynamics”.

 The lectures on “Longitudinal Beam Dynamics” will explain 
the details of the corresponding longitudinal motion as well as the 
RF acceleration of the particles.
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The course:

Beam Dynamics is certainly a “core” topic of accelerator physics, but the 
objective of this school is to give you a broader introduction covering:

 Relativity and E.M. Theory History, physics and applications 

 Particle sources Injection, Extraction

 Transfer Lines Magnets

 Beam Diagnostics Radio Protection

 Linear Imp. and Resonances Vacuum

 Synchrotron Radiation, Electron Dynamics, SLS, FELs

 Multi particle Effects Power Converters
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