PATIENT WORKFLOW IN THE ORSAY PROTONTERAPY CENTER (CPO)

institutCurie

Sabine DELACROIX CERN ACCELERATOR SCHOOL ACCELERATOR FOR MEDICAL APPLICATION Vienna Austria 26 May – 5 June 2015

ACCELERATOR FOR MEDICAL APPLICATION Vienna Austria

THE ORSAY PROTONTHERAPY CENTER

- Created in 1991 (1 synchrocyclotron + 2 fixed beam lines)
- Upgraded in 2010 (1 cyclotron+ 1 gantry and a medical area)
 - Connexion to the existed fixed beam lines

3

26 May – 5 June 2015

THE CURIE INSTITUTE PROTONTHERAPY CENTER

5

CLINICAL INDICATIONS

7010 Patients treated from Sept. 1991 to Dec. 2014:

- Ocular tumors (5433 patients treated from Sept 1991 to Dec 2014)
- Base of skull :Chordomas, chondrosarcomas, méningiomas...
 (1558 patients treated from Dec 1993 to Dec 2014 included 392 children)
- Rachis : 19 patients treated from Jan 2013 to Dec 2014

EUROPEAN PROTONTHERAPY OVERVIEW Data from the Particle Co Operative Group/ Up date April 2015

COUNTRY	WHO, WHERE	MAX ENERGY (MeV)	BEAM DIRECTIONS	START OF TREATMENT	TOTAL PATIENTS TREATED (DEC 2014)
ENGLAND	CLATTERBRIDGE	62	1 HORIZ	1989	2626
FRANCE	CAL NICE *	65	2 HORIZ	1991	5204
FRANCE	CPO ORSAY	230	1 GANTRY 2 HORIZ	1991	7004
GERMANY	HZB BERLIN	250	1 HORIZ	1998	2525
GERMANY	RPTC MUNICH	250	4 GANTRIES 1 HORIZ	2009	2307
GERMANY	HIT HEIDELBERG	250	1 GANTRIES 2 HORIZ	2009	824
GERMANY	WPE ESSEN	230	4 GANTRIES 1 HORIZ	2013	139
GERMANY	PTC DRESDEN	230	1 GANTRY	2014	First patient
ITALY	INFN CATANIA	60	1 HORIZ	2002	350
ITALY	CNAO PAVIA	250	3 HORIZ 1 VERT	2011	111
ITALY	APSS TRENTO	230	2 GANTRIES 1 HORIZ	2014	5
POLAND	IFJ PAN KRAKOW	60	1 HORIZ	2011	85
SWEDEN	UPPSALA	200	1 HORIZ	1989	1431
SWITZERLAND	PSI VILLINGEN	250	2 GANTRIES 1 HORIZ	1984	7364

* New facility under construction/ start of treatment planned in 2016

ROOM Y2/ OPHTHALMIC TREATMENTS

R. SSABBBAN Robotic positioner (2006)
Industrial parallel Fanuc design (robustness)
6 DOF (1 extra axis for complete top rotation)
Accuracy : +/- 0.1mm, +/- 0.1°
Security hardware (speed, acceleration, collision)

ROOM Y1/ BASE OF SKULL TREATMENTS

- Robotic positioner (1994) •

- 6 DOF (including pitch & roll)
 Couch, chair or QA water phantom
 Industrial Fanuc design
 Security hardware (speed, acceleration, collision)

GANTRY

Robot Forte Isocentric motion (+/- 0.5 mm) inside treatment volume 6 DOF : pitch & roll (+/- 15°)

MAINTENANCE SCHEMA

LOCAL TEAM:14 technicians and engeneers

IBA TEAM : 3 engineers

ON CALL STAFF 24/7 (2 T ECH+1PHYSICIST)

WEEKLY:

2h on Monday and Thursday morning4h on Saturday morning when needed

QUATERLY: 1.5 days every 3 months

YEARLY: 1 week if necessary

After 4 years of ramp-up, Up-time 2014 : 97.8% (2.2% of patients rescheduled)

26 May – 5 June 2015

CPO

Weekly follow-up of unwanted events and failures requiring associated working groups

BALLISTIC ADVANTAGES OF PROTONS

- Fixed range
- Small lateral penumbra
- High gradient of dose in the distal Bragg peak

BUILDING TOTAL CAR AND

CLINICAL ADVANTAGES OF PROTONS

•Ability to treat tumors close to critical organs (optic nerve, macula, brain stem, optic chiasm, spinal cord,...)

•Possibility to increase the dose delivered to tumors to improve the local control

Paediatric cancers :

- Higher radiosensitivity for normal tissues
- Tumors are often more radiosensitive

Protons can:

- Decrease dose to normal tissues by 50-70%
- Decrease side-effects and complications such as:

Growth impairment Hormone deficiency Impaired cognitive development Impaired visual acuity Hearing troubles

Protons could:

Reduce Secondary Cancer Risk

BEAM SET-UP

Passive Beam

Additional time in the workflow to check the accessories

Scanning Beam

Quality control

TREATMENT PROCESS

- Beam set-up
- Reconstruction of the target volume
- Matching the beam shape with the target volume with a high accuracy

PATIENT WORKFLOW

17

PATIENTS WORKFLOW

Ophthalmic treatment:

- 4 to 8 fractions
- Small target volume
- High dose per fraction/high dose rate

Other localisations:

- Up to 35 fractions
- Photon component may be added
- Standard doses and dose rates
- Children (some of them under total anaesthesia)

OPHTHALMIC PROCESS/ IMAGING

- Diagnostics: routine consultation with an ophthalmologist
- Consultation to confirm the diagnostics (decision of treatment with protons/ Ophthalmologist & Radiation oncologist)
- Ultrasounds:
 - Tumor shape (diameters and thickness)
 - Ocular biometry (eyeball diameter)

OPHTHALMIC PROCESS/ SURGERY AND IMMOBILIZATION DEVICE

- Fiducial markers around the tumour base (under total aneasthesia)/ transillumination:
 - Distances clips-tumor
 - Limbus diameter

- Immobilization and positionning devices:
 - Mask+bite block
 - Eye retractors
 - PPS

X Ray

21

ACCELERATOR FOR MEDICAL APPLICATION Vienna Austria

26 May - 5 June 2015

OPHTHALMIC PROCESS/ TREATMENT PLANNING

3D reconstruction of the tumor

Choice of the eye position

Eye ball preservation

- Avoid to irradiate full anterior chamber volume
- Reduce irradiated eye volume
- Avoid lacrymal gland

Vision preservation (if possible)

- Avoid optique nerve
- Avoid macula

Beam eye view

Lateral eye view

OPHTHALMIC PROCESS/ SIMULATION

Simulation:

- Validation of the Treatment Planning
- Measurement of the eyelids and curvatures of the eyeball

OPHTHALMIC PROCESS/ TREATMENT

• Treatment

- Daily set-up with X Ray
- Control of patient and eye position with cameras

OPHTHAMIC PROCESS/ FOLLOW - UP

- During the treatment week (ophthalmologist)
- At 1 month, 6 months , 1 year
- Once a year
- Ultrasound/ Visual control

OTHER LOCALISATIONS

OTHER LOCALISATIONS/ FIDUCIAL MARKERS

• Fiducial markers/ Local anaesthesia

OTHER LOCALISATIONS/ IMMOBILIZATION DEVICES

28

Institut Curie

ACCELERATOR FOR MEDICAL APPLICATION Vienna Austria

26 May – 5 June 2015

OTHER LOCALISATIONS / TREATMENT PLANNING

- CT SCAN
- NMR
- FUSION
- Delineation of the tumor and critical organs/ Oncologist
- Ballistic of irradiation: done by physicist or technologist/check by physicist/ Approved by physician
- Simulation

OTHER LOCALISATIONS/ PATIENT SET-UP

OTHER LOCALISATIONS/ PATIENT SET-UP

Patient alignment in Gantry room Orsay VERISUITE (by MEDCOM)

- Fiducial markers matching
- Anatomical manual matching

TREATMENT UNDER TOTAL ANAESTHESIA

- Children under 5 years old
- 2 to 6 children per day
- 2 fields/day (1 hour set-up and treatment)
- Induction and wake -up in the treatment room
- Follow-up in the wake-up room (1 nurse)
- Breakfast in the wake-up room

WAKE - UP ROOM

Institut Curie 33 ACCELERATOR FOR MEDICAL APPLICATION Vienna Austria 26 May – 5 June 2015

HOW CAN WE OPTIMIZE THE WORKFLOW?

26 May – 5 June 2015

CLINICAL OBJECTIVES

* Estimate the number of treatment days (Holidays/ Breakdown /Maintenance) **Treatment time: set-up + beam

DAYLY PLANNING

Activities scheduled in one room:

- Beam tuning
- Reference morning checks
- Periodic checks
- Snout changes
- Simulations/ Treatment/ Treatment under total aneasthesia
- QC/ PHYSICS TESTS/ MAINTENANCE

REAL DAYLY PLANNING (Example)

CAUSES OF DELAY:

- Patient (stress, general state, weariness...)
- Organization (bad transfer of information, staff planning...)
- Devices
- Soft

The challenge is to match the real planning with the predictable one

KEY PERFORMANCE INDICATORS (KPI)

• LEAN PROCESS:

We defined a nominal workflow : any deviation from this situation has to be registered

In each treatment room the technologists, physicists, physicians can declare any unexpected event in an excel file

 Every week an analysis of all the problems is done and, *if necessary*, a working group is initiated

The different events are dispatching to the referents (Mechanical, software ingeneer...)

• The planning is ajusted to the real treatment time

SYSTEM OF DECLARATION

DATE	TIME	TIME (END)	DECLAR	STEP OF THE PROCESS	TYPE OF EVENT	DETAILS
29/04/2015	10:22	10:22	SO/PB	Patient set-up	Verisuite	
30/04/2015	09:23	09:26	VM/PBI	Patient set-up	Flat panel	
05/05/2015	09:18	09:25	VM/SO	Patient set-up	Hand pendant	
06/05/2015	10:05	10:15	VM/SO	Patient set-up	Contention	
05/05/2015	10:28	10:35	IL CB	Room set-up	Cyclotron	
12/05/2015	09:54	09:55	sl/so	Patient set-up	Asterope	
19/05/2015	09:02	09:02	SL/PB	Treatment	Organisation	

- Select IBA or CPO
- The event leads or not to additional X Ray
- The event leads or not to cancel the treatment of the day

AVERAGE TREATMENT TIME IN THE GANTRY

14,7min/ field today 17,2min in 2012 45 in 2010

ACCELERATOR FOR MEDICAL APPLICATION Vienna Austria

PATIENT SCHEDULE

NON PREDICTIBLE EVENTS

The patient schedule can be modified due to:

- Change in the chemotherapy protocol
- Physical state of the patient
- Need of surgery
- Grow up of the target volume
- ...

CONCLUSION

- The respect of the delay of each step of the process (imaging, delineation, QC...) is important to control the patients workflow
- The dayly planning needs to be continuously ajusted with the real data
- The collect and the analysis of the unexpected events:
 - Improve the treatment process
 - Help to reduce the level of stress of the team
 - Involve the staff in the process of optimization

But the patient is in the center of the process and we need time to share with him and to listen to him.

THANKS FOR YOUR ATTENTION

institut