Accelerating Structures

Alberto DEGIOVANNI

Accelerators for Medical Applications
26 May – 5 June
Vösendorf, Austria, 2015
RF accelerating structures

Accelerating structures are resonant structures used to accelerate (or increase energy) of a beam of charged particles.

\[
\nabla \times \vec{B} - \frac{1}{c^2} \frac{\partial}{\partial t} \vec{E} = 0 \quad \nabla \cdot \vec{B} = 0
\]

\[
\nabla \times \vec{E} + \frac{\partial}{\partial t} \vec{B} = 0 \quad \nabla \cdot \vec{E} = 0
\]

Since \(\vec{v} = v_x \hat{i} + v_y \hat{j} + v_z \hat{k} \approx \beta c \hat{k} \), only the electric field can change the particle energy!

To accelerate the beam along the axis we need a longitudinal component of the electric field, \(E_z \).
Outline

• **EM waves in structure and RF frequency**
 – RF basics
 – Travelling wave
 – Standing wave

• **Structures characteristics**
 – Accelerating voltage
 – Losses and quality factor
 – Structure efficiency - R/Q
 – Shunt impedance

• **Example of structures**
 – Low Beta structures
 – Intermediate beta structures

• **Linacs for medical applications**
EM WAVES IN STRUCTURES
EM waves in waveguides

- EM waves can propagate in cylindrical and rectangular pipes, called waveguides.
- In a waveguiding system, we are looking for solutions of Maxwell’s equations that are propagating along the guiding direction (the z direction) and are confined in the near vicinity of the guiding structure and can be described mathematically by:

\[
E(x, y, z, t) = E(x, y) e^{j \omega t - jk_z z} \\
H(x, y, z, t) = H(x, y) e^{j \omega t - jk_z z}
\]

- These are homogenous plane waves characterized by a wave vector \(\mathbf{k} \):

\[
k_\perp = \frac{\omega_c}{c} \\
k = \frac{\omega}{c} \\
k_z = \frac{\omega}{c} \sqrt{1 - \left(\frac{\omega_c}{\omega}\right)^2}
\]
The precise relationship between \(\omega \) (angular frequency) and \(k_z \) (waveguide propagation constant) is called **dispersion relation**:

\[
\frac{k_z}{c} = \frac{1}{\sqrt{\omega^2 - \omega_c^2}} \quad \omega = \sqrt{\omega_c^2 + k_z^2 c^2}
\]

- \(\omega_c \) is the so-called **cut-off frequency**. The boundary conditions for each waveguide type force \(\omega_c \) to take on certain values.
- At each excitation frequency is associated a phase velocity, the velocity at which a certain phase travels in the waveguide.
- To be synchronized all the time with an accelerating E-field, a particle traveling inside the waveguide has to travel at \(v = v_{ph} > c \)!
- Energy and information travel at the group velocity \((v_g < c < v_{ph}) \)

\[
\lambda_p = \frac{v_{ph}}{f} \quad \text{guide wavelength}
\]
\[
k_z = \frac{2\pi}{\lambda_p} \quad \text{guide wave number}
\]
\[
v_{ph} = \frac{\omega}{k_z} = \left(\frac{c^2 + \omega_c^2}{k_z^2}\right)^{1/2} \quad \text{phase velocity}
\]
\[
v_g = \frac{d\omega}{dk_z} \quad \text{group velocity}
\]
EM propagating modes

- Solutions of Maxwell’s equations can be classified in three families (TEM, TE, TM) depending on whether both, one, or none of the longitudinal components are zero.

- To accelerate particles, we need a mode with **longitudinal E-field** component on axis: a TM mode (Transverse Magnetic, $B_z=0$). The simplest is TM01.

- We inject RF power at a frequency exciting the TM01 mode, but as we have seen before $v_{ph} > c$

- We need to "slow down" the wave in order to use the pipe as an **accelerating structure**
Discs inside the cylindrical waveguide, spaced by a distance l, will induce **multiple reflections** between the discs.

For $\lambda_p=0$ and $\lambda_p=\infty$ the wave does not see the discs, i.e. the dispersion curve remains that of the empty cylinder.

At $\lambda_p/2=l$, the wave will be confined between the discs, and present 2 **polarizations** (mode A and B in the figure), 2 modes with same wavelength but different frequencies: the dispersion curve splits into 2 branches, separated by a stop band.
Travelling wave structures

- In an electron linac velocity is practically constant $v = c$ (i.e. $\beta = 1$).
- The linac structure is made of a sequence of identical cells (except for the gun) of length $d = \beta \lambda / 2 = \lambda / 2$.
- The cells are grouped in cavities operating in **travelling wave mode**.
Standing wave structures

- **Standing wave modes** are generated by the sum of 2 waves traveling in opposite directions, adding up in the different cells.
- Boundary condition at both ends is that electric field must be perpendicular to the cover → Only some modes on the disc-loaded dispersion curve are allowed.
Standing wave modes

- Standing wave modes are named from the phase difference between adjacent cells: in the example below, mode 0, $\pi/2$, $2\pi/3$, π.

- For acceleration, the particles must be in phase with the E-field on axis. We have already seen the π mode:

 \[\text{Synchronism conditions:} \]
 \[0\text{-mode : } l = \beta \lambda \]
 \[\pi/2 \text{ mode: } l = \beta \lambda/4 \]
 \[\pi \text{ mode: } l = \beta \lambda/2 \]

- In standing wave structures, cell length can be matched to the particle velocity!
RF accelerating structures

Travelling wave

Standing wave
The Pillbox cavity

• The linac we have seen before is composed of an array of accelerating gaps. Each gap can be seen as a ‘pill box’ cavity.

• The boundary conditions on the cavity walls ($E_{//} = 0$) force the fields to exist only at certain quantized resonant frequencies → an integer multiple of half-wavelengths must fit along each direction.

• Simplest mode is TM_{010}. Indexes indicate number of half wavelength in ϕ, r and z direction → no dependence on z and ϕ, 1 half wavelength in r direction

\[
E_z = E_0 J_0(k_r r)\cos(\omega t)
\]

\[
B_\phi = -\frac{E_0}{c} J_1(k_r r)\sin(\omega t)
\]

\[
k_r = \frac{2.405}{a} = \frac{\omega_0}{c}
\]
STRUCTURES CHARACTERISTICS
1. Accelerating voltage and energy gain

- The **accelerating voltage** in a gap is defined as:

 \[V_{\text{acc}} = \int E_z e^{j \frac{\omega}{c} z} \, dz = V_0 T \]

 The exponential factor accounts for the variation of the field while particles with velocity \(\beta c \) are traversing the gap.

- The **transit time factor** is the ratio of the acceleration voltage to the (non-physical) voltage a particle with infinite velocity would see (\(\Rightarrow \) see also Transit time factor next lecture):

 \[T = \frac{|V_{\text{acc}}|}{\left| \int E_z \, dz \right|} = \frac{\left| \int E_z e^{j \frac{\omega}{c} z} \, dz \right|}{\left| \int E_z \, dz \right|} \]

- The **energy gain** of an arbitrary particle with charge \(q \) travelling through the gap is:

 \[\Delta W = qV_0 T \cos \phi \]
2. Stored energy and losses

- The **losses** P_{loss} are proportional to the stored energy W. In steady state, the total stored energy is:

\[
W = \iiint_{\text{cavity}} \left(\frac{\varepsilon}{2} |\vec{E}|^2 + \frac{\mu}{2} |\vec{H}|^2 \right) dV
\]

- The energy into the cavity is stored in the electric and magnetic field. Since E and H are 90° out of phase, the stored energy continuously swaps from electric energy to magnetic energy. The (imaginary part of the) **Poynting vector** describes this energy flux.

- In a vacuum cavity, losses are dominated by the **ohmic losses** due to the finite conductivity of the cavity walls.

- Surface resistance R_s is related to the **skin depth** δ, which is function of material and frequency:

\[
R_s = \frac{1}{\sigma \delta} \quad \delta = \sqrt{\frac{2}{\omega \mu \sigma}}
\]
3. The quality factor

- The cavity **quality factor** \(Q \) is defined as the ratio:

\[
Q = \frac{\omega_0 W}{P_{\text{loss}}}
\]

- But, how does a resonance look like?

- We can identify the ratio:

\[
\Delta \omega = \frac{P_{\text{loss}}}{W}
\]

as the FWHM of the resonance centred at frequency \(\omega \)

- Therefore we have:

\[
Q = \frac{\omega_0}{\Delta \omega}
\]
4. Structure efficiency: R, Z and R/Q

- The relation between gap voltage and power is characterized by the so-called **shunt impedance**:

$$RT^2 = \left|\frac{V_{\text{acc}}}{P_{\text{loss}}}\right|^2 = \frac{(V_0T)^2}{P_{\text{loss}}}$$

- Let L be cavity length, the average axial electric field is:

$$E_0 = \frac{V_0}{L}$$

- Then we can define the effective cavity **shunt impedance per unit length** (p.u.l.):

$$ZT^2 = \frac{RT^2}{L} = \frac{E_0^2T^2}{P_{\text{loss}}/L}$$

- Taking the ratio between R and Q, we can define the quantity R/Q.

- This quantity represents the proportionality constant between the square of the acceleration voltage and the stored energy. It is **independent of cavity losses** (it only depends on the geometry) and it gives a measure of structure efficiency.
Shunt impedance...

- Shunt impedance per unit length Z (measured in Ω/m) is defined as the ratio of the average electric field squared (E_0^2) to the power (P) per unit length (L) dissipated on the wall surface.

\[
Z = \frac{E_0^2}{P} \cdot \frac{L}{dL} \quad Z = \frac{E_0^2}{dP} \quad \text{for TW}
\]

- Physically it measures how well we concentrate the RF power in the useful region.
- NOTICE that it is independent of the field level and cavity length, it depends on the cavity mode (frequency) and geometry (shape).

- IMPORTANT: beware definition of shunt impedance !!! some people use a factor 2 at the denominator (we will see why later); some (other) people use a definition dependent on the cavity length (the R introduced in the previous slide).
... and Effective shunt impedance

• If we want to take into account the **effect on the beam** (this is what we are interested in, isn’t it?) we need to include the effect of transit time factor $T!$

• From shunt impedance (p.u.l.) to **EFFECTIVE SHUNT IMPEDANCE (p.u.l.)**

\[
Z = \frac{E_0^2}{P} \cdot \frac{L}{P} \quad \Rightarrow \quad ZT^2 = \left(\frac{E_0 T}{L}
ight)^2 \cdot \frac{L}{P}
\]

optimum RF design \(\neq\) optimum structure design adapted to the velocity of the particle to be accelerated
Summary: structure characteristics

Gap accelerating voltage

\[V_{acc} = V_0 T \]

R-upon-Q

\[\frac{RT^2}{Q} = \frac{|V_{acc}|^2}{2 \omega_0 W} \]

Energy stored inside the cavity

\[W \]

Shunt impedance

\[RT^2 = \frac{|V_{acc}|^2}{2 P_{loss}} \]

Power lost in the cavity walls

\[P_{loss} \]

Q factor

\[Q = \frac{\omega_0 W}{P_{loss}} \]
Lumped elements circuit model

\[\omega_{res} = 2\pi f_{res} = \frac{1}{\sqrt{LC}} \]

A lumped element resonator transformed into a pillbox cavity

F. Gerigk (CERN), CAS2010
Equivalent circuit

\[\frac{R}{\beta} \quad C \quad L \quad R \]

\[\beta : \text{ coupling factor} \]

\[\sqrt{\frac{L}{C}} : R\text{-upon-}Q \]

\[L = R/(Q\omega_0) \]

\[C = Q/(R\omega_0) \]

Simplification: single mode (given frequency)

Generator \[I_G \]

Cavity \[V_{\text{acc}} \]

Beam \[I_B \]

\[R : \text{ Shunt impedance} \]

\[\beta : \text{ coupling factor} \]

- E. Jensen (CERN), CAS2011
- CAS 2015, Vösendorf, Austria

29/05/2015 - A. Degiovanni
Cavities characteristics

- Resonance frequency
 \[\omega_0 = \frac{1}{\sqrt{L \cdot C}} \]
 \[\int E_z e^{j \omega z} \, dz \]
 \[\int E_z \, dz \]

- Transit time factor

- Shunt impedance

- Structure quality factor

- Structure efficiency \(R/Q \)

Circuit definition

\[|V_{acc}|^2 = 2 R P_{loss} \]
\[\omega_0 W = Q P_{loss} \]
\[\frac{R}{Q} = \frac{|V_{acc}|^2}{2 \omega_0 W} = \sqrt{\frac{L}{C}} \]

Linac definition

\[|V_{acc}|^2 = R P_{loss} \]
\[\omega_0 W = Q P_{loss} \]
\[\frac{R}{Q} = \frac{|V_{acc}|^2}{\omega_0 W} \]
Field limiting quantities

- The peak to average field ratio E_{max}/E_0 of a cavity is defined as the ratio between the maximum Surface electric field E_{max} and the average axial electric field E_0:

$$f = 1.64E_kE_0^2e^{-8.5/E_k}$$

- The Kilpatrick criterion is used as the basis for the peak surface electric-field limit at low frequencies ($f < 1$ GHz).

- Experimental evidence supports the model that a combination of electric and magnetic fields at the surface correlate well with the measured breakdown probability.

$$BDR \propto E_0^{30}t_p^5$$
$$BDR \propto S_c^{15}t_p^5$$
$$BDR \propto e^{a(E_0^2 + kT)}$$

Accelerating cavities optimization

GOALS
1. Energy gain
2. Power consumption
3. Final dose rate
4. Acceptable cost

CONSTRAINTS
1. Number of RF sources
2. Repetition rate
3. Mechanical constraints
4. Beam dynamics

DESIGN OPTIMIZATION
1. Structure geometry
2. Tuning features
3. Linac layout (see next lecture)

\[Z' = Z T^2 = \frac{(E_0 T)^2}{P/L} \]

\[W = q(E_0 T)L \cos \phi_S \]

Maximum surface field limit:

\[E_{\text{max}} \propto f^{0.45} \]

Break-Down Rate (BDR):

\[BDR \approx S_c^{15} t_p^5 \]

Modified Poynting vector (Sc)*:

\[S_c = \text{Re}\{S\} + g_c \cdot \text{Im}\{S\} \]
Example: optimization of a cell

- Optimization of the acc. cell geometry
 - maximize the shunt impedance
 \[ZT^2 = \frac{(E_0 T)^2}{P/L} \]
 \[\Delta W \propto \sqrt{ZT^2 \cdot P \cdot L} \]
 - keep the ratio \(\frac{E_{\text{max}}}{E_0} < 5 \)
 - resonant frequency at 3 GHz!
Example of optimization study

- Bore Radius influence on ZT^2
 - $+1 \text{ mm} \sim -10\%$

- Septum influence on ZT^2
 - $+1 \text{ mm} \sim -4\%$
EXAMPLE OF STRUCTURES
Standing wave normal conducting structures

RFQ

SCL

CCDTL

PIMS

DTL

CH

M. Vretenar (CERN), CAS2013
Examples of practical structures

- **TE mode** like structures:
 - RFQ
 - Interdigital H-mode
 - Crossbar H-mode

- **TM mode** like structures:
 - Drift Tube Linac
 - Cell Coupled Drift Tube Linac
 - Cell Coupled Linac
 - Elliptical

F. Gerigk (CERN), CAS2010
Linac structures layout

- The accelerating efficiency is strongly dependent on the type of structure used and on the beam energy.

- For proton linac, several structures are used in sequence to adapt to the increasing particle velocity β.

- In order of increasing β typical structures are:
 1. RFQ
 2. DTL or SCDTL
 3. CCL

Back to TE modes: the RFQ

Cavity with vanes

Empty cavity; mode TE_{21}
The Radio Frequency Quadrupole

- The Radio Frequency Quadrupole is a special RF structure used for acceleration of low β protons and ions
- It uses a quadrupolar electric field to:
 1. **bunch** the beam adiabatically
 2. **focusing** the beam transversally
 3. **accelerating**

- There are 2 types: 4 vanes and 4 rods
- Typical frequencies used 10-350 MHz!
- Machining tolerances and related frequency errors limit scaling up in frequency
The 4 vane-structure

- Capacitance between vane tips, inductance in the inter-vane space
- Each vane is a resonator!
- Frequency depends on cylinder dimensions (good at frequency of the order of 200MHz, at lower frequency the diameter of the tank becomes too big)
- Vane tip are machined by a computer controlled milling machine.
- Need stabilization (problem of mixing with dipole modeTE110)
The 4 rod-structure

- **Capacitance** between rods, **inductance** with holding bars (remember the circuit model!)
- **Each cell** is a resonator!
- Cavity dimensions are independent from the frequency
- Easy to machine (better access)
- Problems with end cells, less efficient than 4-vane due to strong current in the holding bars
The High Frequency RFQ for medical applications

750 MHz RFQ - 4 MODULES
40 keV-5 MeV in 2 meter

1. Injector for proton therapy linac
2. Two units (10 MeV) for radioisotope production

Modulation machining test on a minor vane

LINAC Conference 2014,
M. Vretenar et al.
A COMPACT HIGH-FREQUENCY RFQ FOR MEDICAL APPLICATIONS

IPAC Conference 2015,
A. Lombardi et al.
BEAM DYNAMICS IN A HIGH FREQUENCY RFQ
Interdigital H structure

- TE mode (also called H mode)
- Transverse electric field is pushed along the axis by the presence of the stems

- Good ZT2 for very low β (0.02-0.08) and low frequency (f ~ 200 MHz)

- Low intensities beam
CLUSTER: a CH structure for proton therapy

- Another **TE mode** like structure!
- Two stems per drift tube alternated from one cell to the next

- H-mode structures are more efficient at low beta than SCDTL and SCL
The Drift Tube Linac (DTL)

- Standing wave linac structure for protons and ions
- $\beta=0.1-0.5$, $f=20-400$ MHz
- Drift tubes are suspended by stems
- Coupling between cells is maximum (no slot, fully open!)
- The 0-mode allows a long enough cell ($d=\beta\lambda$) to house focusing quadrupoles inside the drift tubes
Example: the Linac4 DTL

DTL tank 1 fully equipped: focusing by small permanent quadrupoles inside drift tubes.

- 352 MHz frequency
- Tank diameter 500mm
- 3 resonators (tanks)
- Length 19 m
- 120 Drift Tubes
- Energy 3 MeV to 50 MeV
- Beta \(0.08\) to \(0.31\) \(\rightarrow\) cell length \((\beta \lambda)\) 68mm to 264mm
- \(\rightarrow\) factor 3.9 increase in cell length

M. Vretenar (CERN), CAS2013
Example of Cell Coupled Linacs

\[\pi/2 \text{-mode in a coupled-cell structure} \]

Annular ring Coupled Structure (ACS)

On axis Coupled Structure (OCS)

Side Coupled Structure (SCS)
PIMS structure for LINAC 4

352 MHz PI Mode Structure
intermediate β structure
102-160 MeV - 22 meter
12 Modules 7 cells
courtesy of R. Wegner (CERN)
LIBO (Linac Booster): the first 3 GHz SCL for proton therapy

- Linear accelerating structure:
 - Standing wave
 - $\pi/2$ mode
 - Biperiodic structure (off-axis coupling cavities)

- Synchronism condition:

$$L = v \cdot \frac{T}{2} = \beta c \frac{\lambda}{2c} = \frac{\beta \lambda}{2}$$

Amaldi et al., NIM A 521 (2004)
Accelerating unit
Side Coupled Linac
LINACS FOR MEDICAL APPLICATIONS
Linacs for medical applications!

- The most used linacs with $E > 1$ MeV in the world are radiotherapy linacs!
- About 10’000 e- linacs are used daily for radiotherapy
- Electron tubes can be both SW or TW
- RF sources: magnetrons or klystrons in the 5 MW range
Electron linacs

To order these specialized brazed products contact us today.

- Energy range of linacs: 4-25 MeV
- Electrons are accelerated by microwaves (10^3-10^4 MHz)
- Philips SL-75/5: S-band 2856 MHz, MW cavities dimensions - length 3 cm, radius 5 cm, electrons 5 MeV, tungsten target
An example of full linac solution for proton therapy by A.D.A.M. SA.

- **RFQ (750 MHz):** 0.04 – 5 MeV
- **SCDTL (3 GHz):** 5-37.5 MeV
- **CCL (3 GHz):** 37.5 – 230 MeV

Proton pulses 4us @ 200 Hz

29/05/2015 - A. Degiovanni

CAS 2015, Vösendorf, Austria
Bibliography

General Introductions to linear accelerators

P. Lapostolle, *Proton Linear Accelerators: A theoretical and Historical Introduction*, LA-11601-MS, 1989

Reference Books on linacs and RF engineering:

http://www.ece.rutgers.edu/~orfanidi/ewa/

Yellow books:

M. Vretenar, *Differences between electron and ion linacs*, CERN-2006-012
Acknowledgements

Material used from:

• E. Jensen, RF Cavity Design (CAS 2011 - Chios)
• M. Vretenar, Introduction to RF Linear Accelerators (CAS 2009 - Divonne)
• M. Vretenar, Linear Accelerators (CAS 2013 - Trondheim)
• F. Gerigk, Cavity types (CAS 2010 - Ebeltoft)

• S. J. Orfanidis, Electromagnetic Waves and Antennas (2014)
THANK YOU!
EXTRA
This model clarifies also the meaning of the group velocity. The plane wave is bouncing left and right with the speed of light c. However, the component of this velocity in the z-direction will be $v_z = c \sin \theta$. This is equal to the group velocity. Indeed, it follows from Eq. (9.9.3) that:

$$v_z = c \sin \theta = c \sqrt{1 - \frac{\omega_c^2}{\omega^2}} = v_{gr}$$

(9.9.5)

The effective speed in the z-direction of the common-phase points will be $v_{ph} = c / \sin \theta$ so that $v_{ph} v_{gr} = c^2$.

29/05/2015 - A. Degiovanni
CAS 2015, Vösendorf, Austria
Rectangular waveguide modes

- TE_{10}
- TE_{20}
- TE_{01}
- TE_{11}
- TM_{11}
- TE_{21}
- TM_{21}
- TE_{31}
- TM_{31}
- TE_{40}
- TM_{31}
- TE_{02}
- TM_{41}
- TE_{12}
- TM_{12}
- TE_{22}
- TM_{22}
- TE_{50}
- TE_{32}

plotted: E-field
Circular waveguide modes

TE_{11} TE_{11} TM_{01}

TE_{21} TE_{21} TE_{31}

TE_{31} TE_{01} TM_{11}

plotted: E-field