cyclotron RF systems

outline

- cyclotron basics
- resonator design techniques
 - transmission line
 - 3D finite element
- resonator tuning
- power coupling
- power generation
- RF control
- some specific examples

cyclotron basics

 original observation: homogeneous magnetic field isochronous (Lawrence & Livingston 1931)

$$\frac{mv^2}{R} = qvB \qquad R = \frac{mv}{Bq} \qquad v_{orb} = \frac{Bq}{2\pi m}$$
centrifugal force Lorentz force

cyclotron basics

 original observation: homogeneous magnetic field isochronous (Lawrence & Livingston 1931)

$$\frac{mv^2}{R} = qvB$$
 $R = \frac{mv}{Bq}$ $v_{orb} = \frac{Bq}{2\pi m}$

- accelerate with RF electric field with $v_{RF} = h v_{orb}$ (h integer)
- drift tube linac "rolled up" in a magnetic field

why it should not work

- transverse optics
 - homogeneous field: fieldindex n = 0
 - Q_z , $v_z = 0$; no vertical stability
 - ➡ linear growth of vertical beamsize
 - Q_r , v_r = 1; resonance
 - no stable orbit due to imperfections
- longitudinal optics
 - isochronous: no longitudinal stability
 - relativistic mass increase
 - loss of synchronisation with accelerating voltage

why it works after all to some extent

- fringe field effects: fieldindex $n = \varepsilon > 0$
 - Q_z , $v_z > 0$; marginal vertical stability
 - → large beamsize → bad transmission
 - Q_r , $v_r < 1$; no resonance
 - "weak" focussing
- loss of synchronisation with accelerating voltage gradual
 - acceleration possible over limited number of turns
 - maximum energy dependent on acceleration voltage 50 keV acceleration voltage: 12 MeV protons Bethe and Rose, Phys. Rev. 52 (1937) 1254–1255

how to get it really working

- radially decreasing field + modulation RF frequency
 - → vertical and phase stability
 E. MacMillan, Phys. Rev. 68 (1945) 144
 V. Veksler, Phys. Rev. 69 (1946) 244
 - synchro-cyclotron ⇒ synchrotron ⇒ storage ring workhorse high energy physics; synchrotron radiation; carbon therapy
- radially increasing field + azimuthal field modulation
 - vertical stability and isochronism
 - Thomas, Phys. Rev. 54 (1938) 580 and 588
 - fixed RF frequency
 - isochronous cyclotron workhorse nuclear physics, isotope production, proton therapy

synchrocyclotron

• $\lambda/2$ transmission line with capacitive load on both ends

- frequency variation by variation of C_R
 - capacitance rotating in vacuum (RotCo)
 - electrode profile → f(t)
- acceleration electrode C_{Dee}
- operational parameters
 - acceleration voltage ~20 kV
 - RF power 10 100 kW
 - rep rate 100 400 Hz
 - self-oscillating
 - frequency swing ~20 %

synchrocyclotron

• $\lambda/2$ transmission line with capacitive load on both ends

- frequency variation by variation of C_R
 - capacitance rotating in vacuum (RotCo)
 - electrode profile → f(t)
- acceleration electrode C_{Dee}
- operational parameters
 - acceleration voltage ~20 kV
 - RF power 10 100 kW
 - rep rate 100 400 Hz
 - self-oscillating
 - frequency swing ~20 %
 Orsay 19 24 MHz

operational parameters

- orbital frequency (non-relativistic) $f_{orb} = 15.2 \frac{Q}{A} \overline{B}$ [MHz] \overline{B} average magnetic field along orbit [T] Q/A charge-to-mass ratio ion
- typical values
 - compact RT cyclotrons
 1 15 MHz
 - superconducting cyclotrons 6 35 MHz
 - separated sector cyclotrons 1 − 10 MHz
 - mostly research machines
 - multi-particle; multi-energy
 - → large orbital frequency range
 - typical example SC AGOR-cyclotron @ KVI-CART
 - particles protons Pb
 - energy 190 5 MeV/nucleon
 - orbital frequency 31 5.5 MHz

operational parameters

- orbital and resonator frequency ranges incompatible
 - → use different harmonic modes (example AGOR) different phasing of resonators

operational parameters

- orbital and resonator frequency ranges incompatible
 - → use different harmonic modes
- harmonic mode $h = f_{RF}/f_{orb}$
 - geometry acceleration electrode → possible values
 - typical h = 1 6, max. 10
- acceleration voltage
 - typical V = 50 100 kV; max. 1000 kV
- RF power
 - typical P = 10 100 kW; max 400 kW (excl. beamloading)

resonator types

- transmission line ($\lambda/4$ or $\lambda/2$)
 - capacitively loaded by acceleration electrode(s)
 - TEM-mode
 - most common solution

shape acceleration electrode vs. harmonic

- highest acceleration: particle passes symmetry axis for $\phi = \pi$ $\Delta E = -QV_D \sin(h\alpha/2)\sin(\phi)$
- not all harmonic modes possible
 e.g. α = 60° → no acceleration for h = 6

resonator types

- single gap resonator
 - limited to separated sector cyclotrons
 - used at PSI, RCNP and RIKEN
 - TE110 mode

resonator types

- single gap resonator
 - separated sector cyclotrons
 - used at PSI, RCNP and RIKEN SRC

• TE110 mode

resonator design: transmission line model

traditional approach (used until ~15 years ago)

validation on scale models

$$Z_{c} = Z_{0} \frac{m}{n}; Z_{0} = \sqrt{\frac{\mu_{0}}{\epsilon_{0}}} = 377 \Omega$$

resonator design: transmission line model

- design AGOR cavities
 - transmission line model
 - model measurements
 - results
 - Δ frequency < 1 MHz range 22 62 MHz
 - Δ loop height < 5 mm range 100 mm
 - Δ Q-factor/power < 10 %
- design accuracy sufficient for construction

- recent trend; facilitated by computer and ICT revolution
- advantages
 - calculation of more complex resonator shapes
 - coupling with CAD-packages: input detailed geometry
 - detailed insight in current and voltage distribution
 - →better optimization of
 - cooling
 - peak fields (breakdown probability)
 - detailed maps RF-field for trajectory calculations
 - higher accuracy resonance parameters
 - coupling with thermal and mechanical simulations (deformation)
 - better insight in higher order modes
- disadvantages
 - less insight in critical parameters
 - initial stages design significantly slower
 - large computing power required

- optimization electric fields AGOR central region
 - reduce breakdown rate

- 75 MHz resonator for 400 MeV/nucleon ¹²C cyclotron IBA
- 4 parallel transmission line cavities
 - optimized voltage distribution
 - suppression higher order modes along Dee
 - mechanical stiffness

75 MHz resonator for 400 MeV/nucleon ¹²C cyclotron IBA

frequency tuning transmission line resonator

- resonance condition Z_D = -Z_L
- transmission line resonators
 - length transmission line
 - → mobile short
 - characteristic impedance transmission line
 - → mobile panel, plunger
 - capacitance acceleration electrode
 - → mobile panel
 - combination of techniques for coarse and fine tuning

frequency tuning: VARIAN PT cyclotron

- frequency adjustment and tuning with sliding shorts
 - move both to retain symmetry
 - move under power
- high performance contacts
 - silver plated CuBe spring
 - carbon-silver contact grain
 - 50 A per contact at 60 MHz
 - development GANIL/AGOR

frequency tuning: GANIL injector cyclotron

change characteristic impedance transmission line

frequency tuning: RIKEN ring cyclotron

- change of characteristic impedance at different location
 - no high current density contacts on stem
 - box to median plane: more capitance → lower frequency
 - box to outside: less inductance → higher frequency

- resonator characteristics
 - 18 45 MHz
 - 300 kV @ 45 MHz
 - 150 kW @ 45 MHz

frequency tuning: GANIL main cyclotron

 change capacitance acceleration electrode

frequency tuning: GANIL main cyclotron

 change capacitance acceleration electrode

frequency tuning: single gap resonator

basically two options

flapping panel

frequency tuning: single gap resonator

- basically two options
 - gap capacitance
 - chamber inductance

frequency tuning: single gap resonator

- basically two options
 - gap capacitance
 - chamber inductance

RCNP ring cyclotron

power coupling: capacitive

- √ simple mechanics
- ✓ also fine tuning control
- high voltage
 - **X** insulator
 - ✗ discharge

Dee

power coupling: inductive

✓ low voltage ⇒ insulator no problem

multipactor

x variable frequency resonator: complex mechanics

high current rotating/sliding contact

power generation

- synchrocyclotron: oscillator
 - resonator + RotCo → resonance frequency
 - DC- bias needed to facilitate start-up (multi-pactor)

- isochronous cyclotron: amplifier
 - (broadband) solid state preamplifier
 - narrowband tube endstage (one or two stages)
 - tuned to required frequency
 - impedance matching (50 Ω line or directly to load)

power generation: new development

- modular parallel solid state amplifier
 - √ redundancy → reliable
 - ✓ hot swappable
 - **X** complex
 - ✗ low efficiency
 - reflected power (circulator)

RF controls

- controlled parameters
 - amplitude acceleration voltage
 - phase acceleration voltage
 - required when using several independent resonators
 - resonator tuning
 - high intensity: possibly matching (beam loading)
- measured parameters
 - amplitude acceleration voltage
 - phase acceleration voltage
 - phase incident wave acceleration voltage
 - reflected power

RF controls: design issues

- pick-up probes
 - mechanical stability
- pick-up electronics
 - large amplitude and frequency range
- feedback loops
 - high gain for phase and amplitude stability
 - compensation resonator response
- grounds loop via RF circuitry

RF controls: overview

courtesy Peter Sigg, PSI

RF controls: amplitude

courtesy Peter Sigg, PSI

- power pulse at start-up to pass through multipactor region
- amplitude stability <10⁻⁴

RF controls: phase

courtesy Peter Sigg, PSI

- essential for multi-resonator system
- phase stability <0.1°

RF controls: tuning

courtesy Peter Sigg, PSI

bandwidth typ. 1 Hz

example: IBA S2C2 synchro-cyclotron

- 250 MeV protons
- λ/2 resonator; self-oscillating triode driven circuit
 - novel design RotCo
- frequency range 93 (injection) 63 (extraction) MHz (h = 1)
- accelerating voltage 3 12 kV
 - → 40000 turns due to large phase width

example: IBA S2C2 synchrocyclotron

example: VARIAN PT cyclotron

- 250 MeV protons
- 4 coupled λ/2 resonators driven via one power coupler
 - 4 Eigenmodes; only three can be excited
 - push-pull mode at 72.4 MHz used (h = 2)
 - accelerating voltage 80 kV → ~400 turns
 - RF power ~60 kW
- complex tuning control due to coupling
 - control parameters: 4 positions sliding short
 - error signals
 - phase drive power resonator 1
 - 3 voltage ratios resonator 1 resonator 2; 3 and 4
 - 4 x 4 transfer matrix not diagonal
 - → no independent servo loops

example: VARIAN PT cyclotron

- 250 MeV protons
- 4 coupled $\lambda/2$ resonators; 1 amplifier

example: VARIAN PT cyclotron

- 250 MeV protons
- 4 coupled λ/2 resonators driven via one power coupler
 - 4 Eigenmodes; only three can be excited
 - push-pull mode

example: PET isotope production cyclotron

2 MHz λ /4 resonators; π -mode for protons, 0-mode for deuterons

acknowledgement

- Claude Bieth, GANIL for introducing me in the RF wonderland
- Antonio Caruso, LNS
 Marco di Giacomo, GANIL
 Peter Sigg, PSI
 John Vincent, NSCL
 IBA
 VARIAN PT
 for providing a lot of information

conclusions

- wide range of applications
 - isotope production
 - nuclear physics; radioactive beam production
 - meson factory; spallation neutron source
- wide range of beams and energies
 - protons up to uranium
 - 1.5 MeV/nucleon 590 MeV/nucleon
- large dynamic range in intensity and beam power
 - <1 nA 5 mA
 - <1 W 1.3 MW
- compact cyclotrons, separated sector cyclotrons
- extraction radius 0.2 8 m
- → large variety of RF systems

Oct. 21, 1952

E. M. MOMILLAN
SYNCHRO-CYCLOTRON

2,615,129

Filed May 16, 1947

6 Sheets-Sheet 6

Oct. 21, 1952

E. M. MOMILLAN SYNCHRO-CYCLOTRON 2,615,129

SINCHKO-CICLUIKON

Oct. 21, 1952 E. M. M°MILLAN 2,615,129
SYNCHRO-CYCLOTRON
Filed May 16, 1947 6 Sheets-Sheet 1

- cyclotron: no phase stability (always on transition)
 - $\Delta \phi$ translates into ΔE
 - ⇒radial bunch broadening, overlapping turns
 - increased by fieldimperfections: acceleration on slope
- add odd higher harmonic of RF voltage
 - → reduced energyspread
 - → compensate longitudinal space charge force
- flat topping resonator extracts power from beam
 - → complex voltage and phase control @ high beam intensity

accommodate larger bunchwidth and isochronism deviations

- accommodate larger bunchwidth and isochronism deviations
- compensate longitudinal phase space force
 - phase and amplitude intensity dependent

PSI, RIKEN, RCNP: separate higher harmonic resonator

JAERI AVF cyclotron: higher harmonic superimposed

beam 200 μA 520 MeV H⁻

beam 200 μA 520 MeV H⁻

- 80 23 MHz λ/4 resonators
 - 2 x 20 above median plane
 - 2 x 20 below median plane
- excitation scheme
 - above below
 - adjacent
 - left right

inductive coupling; 0-mode

capacitive coupling; 0-mode

capacitive coupling; π -mode

- inductive coupling; RF power 1.2 MW
- tuning by resonator deformation

electric field distribution in accelerating gap

three 15 – 48 MHz λ/2 resonators

- inter-resonator coupling in center
- not operating in Eigenmode
 - power transfer between resonators → perturbation

- inter-resonator coupling in center
- not operating in normal mode (h = 3)
 - power transfer between resonators perturbation
- some numbers
 - reactive power resonator
 P_R = 100 MW
 - electrode voltage $V_D = 100 \text{ kV}$
 - operating frequency v = 40 MHz
 - reactive power coupling
 1.75 V²ωC_c
 4.4 MW/pF
 - ⇒ minimize coupling capacitance achievable value $C_c \le 10^{-3} \text{ pF}$

- inter-resonator coupling in center
- not operating in normal mode (h = 3)
 - power transfer between resonators perturbation
 - → minimize coupling capacitance achievable value C_c ≤ 10⁻³ pF

synchrocyclotron

• $\lambda/2$ transmission line with capacitive load on both ends

- frequency variation by variation of C_R
 - capacitance rotating in vacuum (RotCO)
- acceleration electrode C_{Dee}
- operational parameters
 - acceleration voltage ~20 kV
 - RF power 10 100 kW
 - rep rate 100 400 Hz
 - self-oscillating
 - frequency swing ~20 %
 Orsay 19 24 MHz

