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Outline 

• Halo diagnostic: 
– What is Halo? 
– Halo Quantification 

• Transversal Halo Measurements with: 
– Wire Scanners etc. (slow) 
– Optical Methods (fast) 

• Longitudinal Halo 
– Bunch Purity  
– “Beam in Gap” 
– Coasting Beam 
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What’s Halo? 

… because of the beam distribution’s phase-space rotations, the observed halo in 
1D oscillates, so that halo at different locations along the beam line is observable 
in differing degrees. For example, at some locations the halo may project 
strongly along the spatial coordinate and only weakly along the momentum 
coordinate, while at others the reverse is true, and the halo can be hidden in the 
spatial projection. In most circumstances, the beam halo from simulation appears 
as an irreversible effect, when observed in the 2D phase-space distributions. 
Therefore, it is also important to search for another definition of halo in the 2D 
phase-space distributions…. 
-------------------------------------------------------------------------------------------
- 
…it became clear that even at this workshop (HALO 03) a general definition of 
"Beam Halo" could not be given, because of the very different requirements in 
different machines, and because of the differing perspectives of 
instrumentation specialists and accelerator physicists. 
 

From the diagnostics point of view, one thing is certainly 
clear – by definition halo is low density and therefore 
difficult to measure…  
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PSR 

From the diagnostics point of view, one thing is certainly clear –  
by definition halo is low density and therefore difficult to measure…  

What is Halo? 

Halo measurements 
require high dynamic 
range instruments 
and methods 

Dynamic range > 105 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 



Page 6 

That’s not a halo,  
that’s a tail! 
Dynamic range <103 

What is Halo? 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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Halo Definition 
We will use the definition of halo recently agreed upon by a 
representative group of beam instrumentation experts. In short, the 
beam charge distribution inside the vacuum chamber can be 
separated to three parts: the beam core, the beam halo and the 
transition (the transition is often called “shoulders”, “tails” etc.). 
These parts are characterized by the charge density relative to the 
peak density. The boundaries are not defined exactly but for the 
majority of the cases the beam core boundary is at about 10-2 level, the 
beam halo is at 10-4 -10-6 level and below.  
The low boundary of the halo region is decreasing with higher intensity 
beams, obviously, but the 10-4 -10-6 range represents a good reference 
number for a large range of today’s accelerators and is the current 
state-of-the art in beam measurements. In the context of this paper we 
add to the halo definition a notion that the halo extends far from the 
beam core, it has a negative effect on an accelerator operation, and this 
effect has to be measured and mitigated. 

What is Halo? 

Path to Beam Loss Reduction in the SNS Linac Using Measurements, Simulation and Collimation 
 A.V. Aleksandrov, A.P. Shishlo, Proceedings of the 57th ICFA Advanced Beam Dynamics Workshop on High-Intensity, High Brightness and 
High Power Hadron Beams, Malmö, Sweden, 2016  

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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•Sources of halo are: 
– space charge forces of the beam 
– Mismatch of beam with accel. optics  
– beam beam forces 
– instabilities and resonances 
– RF noise 
– Scattering (inside beam, residual gas, 

macroparticles, photons, obstacles (stripping 
foil, screens etc.) 

– nonlinear forces, e.g. aberrations  
and nonlinearities of focusing elements 

– Misalignments of accel. components 
– electron clouds 
– Beam energy tails from uncaptured  

particles 
– Transverse-longitudinal coupling  

in the RF field 
– etc. 

 

What is Halo? 

DEVELOPMENT OF THE BEAM 
HALO MONITOR IN THE J-
PARC 3-GeV RCS, M. Yoshimoto, 
IPAC12 
 
Techniques for Intense-Proton-
Beam Profile 
Measurements; J. D. Gilpatrick, 
BIW98 

transversal 

longitudinal 
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Outline 

• Halo diagnostic: 
– What is Halo? 
– Halo Quantification 

• Transversal Halo Measurements with: 
– Wire Scanners etc. (slow) 
– Optical Methods (fast) 

• Longitudinal Halo  
– Bunch Purity,  
– “Beam in Gap” 
– Coasting Beam 
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It is important to have a definition of halo in 1D spatial projections for 
which experimental measurements are relatively easy to obtain.  

HALO QUANTIFICATION 

However, because of the beam’s phase-space rotations, the observed halo in 1D 
projections oscillates. For example, at some locations the halo may project 
strongly along the spatial coordinate and only weakly along the momentum 
coordinate, while at others the reverse is true, and the halo can be hidden from 
the spatial projection. Therefore one should extend the 1D work to obtain a halo 
parameter suitable for description of beam halo in whole phase space. This lead 
naturally to the kinematic invariants and are the consequence of the linear 
forces and symplectic structure imposed by Hamilton’s equations. 

 
Used mainly in simulations 
 
The excursions above the Gaussian level 
indicate a large halo. 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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From the Figure 2 we can see in the most locations 
the simulations can properly reproduce the beam 
profiles, and there are a little halo particles in two 
locations. That means the beam in the phase space is 
not elliptic symmetry.  

Simulation and (wire-Scanner) 
measurements at the beam 
transport line at the end of 
the IHEP RFQ.  
 
Hongping Jiang et al, IPAC14 
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• There is no clearly defined separation between the halo and the main 
core of the beam. Consequently, there has been some difficulty 
identifying a suitable quantitative measure of the halo content of a 
beam in a model-independent way.  

• A general characteristic of beam halo is the increased population of 
the outer part of the beam.  

• Methods have been developed, and computationally studied, to 
characterize and quantify beam halo. 

 
1) Kurtosis 
2) The Gaussian area ratio method 
3) Ratio of beam core to offset 
4) Ratio of halo to core 
 
Note that  
1. A measurement always contains instrumental effects!!!! 
2. Powerful simulations are useless if significant physical mechanisms 

are missing or if the beam input distribution is unrealistic. 

HALO QUANTIFICATION 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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1) Kurtosis 
This method is based on analyzing the fourth moment of the beam 
profile. The kurtosis is a measure of whether a data set is peaked or 
flat relative to a normal (Gaussian) distribution.  
 
 
 
 
 
Distributions with high kurtosis have sharp peaks near the mean that 
come down rapidly to heavy tails. An important feature of such 
quantifiers is that they are model independent and rely only on the 
characteristics of the beam distribution itself. 
 
Might be not so well suited for us instrumental specialists. 
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HALO QUANTIFICATION 

Beam Halo in Proton Linac Beams 
BEAM HALO IN PROTON LINAC BEAMS T. P. Wangler, et al., Linac 2000 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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1) Kurtosis 

HALO QUANTIFICATION 

The kurtosis is more sensitive to 
the halo amplitude. 
Unfortunately, statistical 
quantities using high order 
moments, including kurtosis, are 
very sensitive to small variations 
of the beam density in the 
transition zone (:tails), which 
makes them impractical to use 
for real life measurements. And, 
more important, there is not an 
equation, similar to the RMS 
envelope equation, to calculate 
the kurtosis everywhere in the 
beam line using a limited number 
of profile measurements. 

Beam Halo Characterization and Mitigation 
A.V. Aleksandrov, IPAC16, BEXCO, Busan Korea 



Page 15 

 
f(x) = A exp(-(x-x0)2/(2σ2)) 
 
In order to represent the core, a 
Gaussian fit is performed on the 
top (90 percent) of the profile 
since most profiles greatly 
resemble Gaussian’s in this region 
of the beam core. Dividing the total 
area by the area under the Gaussian 
outside 1 σ gives a ratio of the tails 
to the core and, therefore, a 
quantitative measure of the halo 
present. 

HALO QUANTIFICATION 
2) The Gaussian area ratio method:  

Unlike the Kurtosis method, this method is not as sensitive to outlying 
particles but was found to be more useful for experimental data. The Gaussian 
area ratio method attempts to quantify the “non-Gaussian” component of the 
beam profile. After the data is filtered, it is fitted to a Gaussian of the form:  

 

The Development of Computational Tools for Halo Analysis and Study of Halo 
Growth in the Spallation Neutron Source Linear Accelerator   
Dirk Alan Bartkoski, et al.,  EPAC'06, Edinburgh, Scotland 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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Fit the raw data to the function: 
f(x) = g(x) + l(x); 
where 
g(x) = N exp -(x -xo)2/(2σ2) 
and 
l(x) = c0 + c1x 
The two components of f(x) can be 
thought of as the Gaussian core 
g(x) and non-Gaussian tails l(x) of 
the beam distribution. Defining 
L =∫detectorl(x)dx 
and 
G =∫detector g(x)dx 
we can now characterize the beam 
shape by the ratio L/G. A 
perfectly Gaussian beam will have 
L/G = 0, whereas a beam with halo 
will have L/G > 0. 

3) Ratio of beam core to offset:  

HALO QUANTIFICATION 

An experimentally robust technique for halo measurement using the IPM at 
the Fermilab Booster ; AMUNDSON J. ; et al, NIM A, Vol. 570, no1 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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HALO QUANTIFICATION 
4. Ratio of halo to core: 
a) Define core-halo limit: The core-halo limit can be equivalently defined as 
the location where there is the largest slope variation in the density 
profile, i.e. where the density second derivative is maximum. A pure Gaussian 
profile with σ RMS has a halo starting from √3*σ, containing thus 8.3% 
particles of the beam. 

b) Halo characterization: By two quantities, PHS and PHP which are 
respectively the percentage of halo size and of halo particles: 

PHS and PHP offer concrete numbers  
for characterizing the relative importance of the halo. 
P.A.P. Nghiem et al, IPAC14 
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Outline 

• Halo diagnostic: 
– What is Halo? 
– Halo Quantification 

• Transversal Halo Measurements with: 
– Wire Scanners etc. 
– Optical Methods (fast) 

• Longitudinal Halo  
– Bunch Purity,  
– “Beam in Gap” 
– Coasting Beam 
K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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• The focus of the accelerator physicists is on designing and operating 
their machines to minimize this halo.  
 

•  The focus of the collimation experts is on cleanly and efficiently 
disposing of this halo as it appears, a consequence of the clean and 
efficient disposal being that useful diagnostic information is often lost, 
buried in the collimators.  
 

•  The focus of the instrumentation specialists is twofold;   
 to provide information useful to the accelerator physicists in 

their machine tuning efforts to avoid halo formation, and  
 to provide direct measurement of halo. 

  

Definition of halo diagnostics:  Classification into three categories.  
 

1. Devices that directly measure halo and halo evolution. An example is the 
wire scanner.  
 

2. Devices that contribute to the diagnosis of machine conditions that cause 
halo formation. An example would be a tune measurement system.  
 

3. Devices that measure the effects of halo development. An example would 
be the loss monitor system. 

Halo Measurements 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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Profile monitors like Wire, IPM, LPM, Laser Wire, … are typically not 
designed for halo measurements. Their dynamic range is limited to 
about 103 (to be discussed!!!)! These monitors need some extras to 
increase their high dynamic range. Therefore, if we talk about halo 
monitors we discuss mainly about the extras of a beam profile monitor 
(or a scraper).  
Some Ideas of Extras are folloing: 

• Invasive and non-invasive Techniques 
•  IPM 
• Wire Scanners 
• Scrapers 
• Diamonds 

• Optical Methods (fast) 
•  Screens 
• CID camera 
• Micro-Mirror Array  
• Coronagraph for Halo Measurements 
 

Transversal Halo Measurements 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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• J-Parc RCS:  Idea to use 
additional MCP arrangement with 
lower resolution but high gain for 
halo observations. 

• Upgrade in 2012, H. Harada, 
IPAC12 

IPM 

S.Lee et al.  
The 14th Symposium on Accelerator Science 
and Technology, Tsukuba, Japan, November 
2003 
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Wire Scanners and Scrapers 

• Used around the world, focus here: 
Dynamic range and sensitivity 

• Problems are well known:  
Emittance blow up, wire heating. 

• Readout by Scintillators and/or SEM 
• Huge dynamic range by: 

– Log-amplifier (PSR) 
– Varying the PMT voltage (ATF) 
– Wire + Scrapers (LEDA) 
– scanning + counting (J-Lab, DESY, AGS) 
– Scraping with collimators (LEP) 
– Other methods 

• Real Halo Measurements 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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PMT, Counting mode, bunch by bunch 

Wire Scanners 
SEM (LEDA, PSR) 
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To plot the complete beam distribution for each axis, the wire scanner and 
two scraper data sets must be joined. To accomplish this joining, several  
analysis tasks are performed on the wire and scraper data including: 
1.Scraper data are spatially differentiated and averaged, 
2.Wire and scraper data are acquired with sufficient spatial overlap (where the wire scanner 
signal rises above the noise), 
3.Differentiated scraper data are normalized to the wire beam core data, 
4.Normalize data to axis  
5.Normalize data to beam current and beam position (true for all kind of halo 
measurements)!!!! 

Wire Scanners at LEDA 
(Proton LINAC, SEM readout) 

J. F. O’Hara, et al, 
PAC2001 

Procedure explained in: J. H. Kamperschroer,et al., PAC2001 
ANALYSIS OF DATA FROM THE LEDA WIRE SCANNER/HALO SCRAPER 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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Wire Scanners at LEDA 

=> 
+             + 

-Y and + Y scrape signal and derivative. The derivative has been multiplied by ten. 

Y-axis wire scan Combined distribution in y. 
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linear amplification and 105 dynamic range  
=> 16-bit A/D converter 
 
As an alternative solution is to process 
the integrated signal using a logarithmic 
amplifier.  
 
Or to use different PMT voltages.  
 
 
 
 A normal function shown in solid blue has been fit to the data 

(red x’s). A sum of two normal functions is shown in solid 
black. The x-axis is scaled as scanner position in mm’s and the 
y-axis is log-amp input current in Amps. 

Wire Scanners at PSR 

Halo Measurements of the Extracted Beam at 
the Los Alamos Proton Storage Ring; A. Browman, 
et al., PAC03 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 

ATF2, L.Lui et al., IPAC14 
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Telescope Operation at the extracted beams (AGS) 

Solid angle remains the same through scan 
Narrow acceptance, reduces noise. 
Telescope acceptance about 10-4 steradian. 

PMT & base 
Scintillator 

Beam 

Target box 

1 meter 

Horizontal 
Scanner 

Vertical 
Scanner 

Wire Scanners 

Scintillator Telescope in the AGS Extracted Beamline; D. Gassner, Ket al.; 29th ICFA Advanced 
Beam Dynamics Workshop on Beam Halo Dynamics, 2003 Workshop, Long Island, New York. 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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Huge dynamic range (108) by 
different wire diameters and  
coincident counting:  

Wire Scanners at 
Jefferson Lab 

Large Dynamic Range Beam Profile Measurements 
T. Freyberger, DIPAC05 

AND Scaler 
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Halo scraping by collimators 
beam loss  
monitors 

x 

In a synchrotron one jaw will 
scrape both sides of the beam 
distribution (β-oscillation)  
=> meas. symmetric halo 
Such a tail scan yields information 
about particles which oscillate 
with an amplitude larger than the 
position of the collimator = Halo 
Scraping 

TRANSVERSE 
BEAM TAILS 
DUE TO 
INELASTIC 
SCATTERING 
H. Burkhardt, I. 
Reichel, G. Roy 
CERN-SL-99-
068 (OP) 

TRANSVERSE H- 
BEAM HALO 
SCRAPER 
SYSTEM 
IN THE J-PARC 
L3BT 
K. Okabe et al., 
IPAC14 
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Measurement (left) and simulation (right) of the horizontal beam tails for a beam energy of 
80.5 GeV and for different collimator settings at LEP. The simulation is the result of tracking 
particles after Compton scattering on thermal photons (black body radiation of vacuum 
chamber). 

LEP 

Measurements were performed by moving one jaw of a collimator closer to the beam in 
steps. Beam current and beam size measurements were recorded for each collimator 
setting. The collimators were moved closer until significant lifetime reductions were 
observed. Lifetimes calculated from beam currents for these points were used to 
calibrate the loss monitors. This allows to give loss rates directly in terms of equivalent 
lifetimes 

Halo Measurement = Scraping by collimators + BLM 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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Ion chamber, SEM 

PROSCAN • Direct measurement by inserting 
monitor or by an intercepting monitor. 
No absolute calibration of halo!!! 
 
 
 
 
 
 
 
 
 
 
 
 
 

Other sensitive, high dynamic halo monitors 

JLab FEL 

BEAM HALO MONITOR FOR FLASH AND THE EUROPEAN 
XFEL; A. Ignatenko et al., IPAC2012 

R. Doelling, BIW2004 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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ELECTRON BEAM HALO MONITORING USING DIAMOND-
BASED DETECTORS TO PROTECT UNDULATOR PERMANENT 
MAGNETS FROM RADIATION DAMAGE 
Hideki Aoyagi, Beam Dynamics Newsletter No. 66, April 2015 

Halo measurement by diamonds 
SACLA XFEL 

How to calibrate 
the 2 monitors? 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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Halo measurement by diamonds 
In vacuum diamond sensor 
(DSv) scanner at ATF2 

S.Liu et al. In vacuum diamond sensor scanner for beam 
halo measurements in the beam line at the KEK 
Accelerator Test Facility ; NIM A832 (2016) 231–242  
 
And very latest results at: 
 
Evaluation of beam halo from beam-gas scattering at the 
KEK Accelerator Test Facility PHYSICAL REVIEW 
ACCELERATORS AND BEAMS 21, 051001 (2018) 
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Optical Methods 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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YAG:Ce Screen with Slit 
Saturation? 

Beam Halo Measurement Utilizing YAG:Ce Screen 
 T. Naito, T.M. Mitsuhashi 
IBIC2015, Melbourne, Australia 

How to calibrate beam core and halo? 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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OTR/fluorescence screens 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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Target assembly 

OTR/fluorescence screens 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 

Beam center                    Tails                              Halo 
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OTR/fluorescence screens 

A Development of High Sensitive Beam 
Profile Monitor Using Multi-Screen  
Y.Hashimoto et al., IBIC2013, Oxford, UK 
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OTR/fluorescence screens 

A Simultaneous observation of beam core with OTR  
and  

fluorescence screen  

Two-Dimensional and Wide Dynamic Range Profile Monitor Using OTR / Fluorescence Screens for Diagnosing Beam Halo of 
Intense Proton Beams, Y.Hashimoto et al., HB2014, East Lansing, USA 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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OTR/fluorescence screens 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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2 CCD camera measurements  

 Two images (on the left) measured simultaneously with 
integration times 20 us and 400 us  

 Background measurements and subtraction is crucial! 
Made separately for two sensors and subtracted on-line. 

 Combining algorithm is efficient enough to provide 5 Hz 
repetition rate for 1024x768 images 

 At the time of measurements was limited by the flexibility of 
DLPC 

 Demonstrated dynamic range of ~ 5E+4 (factor of 100 
increase) 

 Integration time is used for normalization and overlap 
(sufficient) 

 Averaging also improves SNR and therefore DR (beam stability) 

Data combining algorithm 

High Dynamic Range Beam Imaging with Two 
Simultaneously Sampling CCDs; , P. Evtushenko, D. 
Douglas; IBIC2012, Tsukuba, Japan 
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CID Camera 

Subarray 

Control RoI 
Each pixel on the CID array is individually 
addressable and allows for random access non-
destructive pixel readout. The random access 
integration (RAI) mode automatically adjusts 
the integration time from pixel to pixel 
based upon the real-time observation of 
photon flux using CID random accessibility 
and non-destructive readout. With this RAI 
mode a dynamic range (∼106) can be achieved. 

Commercial available  
http://www.thermo.com/eThermo/CMA/PDFs/Product/productPDF_26754.pdf 

C.P. Welsch et al., CLIC Note 657, 2006 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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C.P. Welsch et al, EPAC06 

CID Camera 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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10-2 

101 

100 

10-1 

103 

104 

105 

106 

107 

108 

109 

1010 

102 

Typical 
CCD 

Ideal 
Detector 

SpectraCAM 
RACID84/86 

SpectraCAM 
XDR 

Human Eye 
(Photopic Peak) 

hν s-1 

Photon 
Flux 

9 orders of magnitude !!! 
SPECTRACAM XDR: High resolution scientific imaging camera system using Charge 
Injection Device capable of extremely high dynamic range and random pixel addressing  

CID Camera 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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• grid of 1920×1080 micro alumina mirrors 

• up to 9.600 full array mirror patterns / sec (7.6 Gbs)  

• 10.8µm × 10.8µm in size 

•  optical fill factor of 85% 

• +/- 24° of rotation 

• Switch of 15-20 µs physically,  

The first applications were in digital projection 
equipment, which has now expanded into digital cinema 
projectors, with sometimes more than two million micro 
mirrors per chip switching at frequencies of up to 5 
kHz. Recently MMAs are finding applications in the large 
telecommunications market as optical multiplexers and 
cross-connect switches. 

 

Micro Mirror Array 
OR Digital Micro-mirror Device (DMD) 

CTF3 Instrumentation, T. Lefevre, BIW08  
 
Beam Halo Monitor Based on an HD Digital Micro Mirror Array  
 B.B.D. Lomberg, et al., IBIC2013, Oxford, UK 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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Micro Mirror Array 

UMER: BEAM HALO MEASUREMENTS USING ADAPTIVE MASKING METHODS 
AND PROPOSED HALO EXPERIMENT, H. Zhang et al., HB2012 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 

6.11 mA3.05 mA1.52 mA0.42 mA
Current /bunch

PSF
Injected 
beam 18 mm

Injected Beam Imaging at SPEAR3 with a Digital Optical Mask 

J. Corbett et 
al., Halo 
Workshop 2014 
at SLAC 
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Beam Halo Studies for CTF3  
 S.T. Artikova ET AL., IPAC’10, Kyoto, 2010. 
 



50 

Does It Really Measure Halo? 

 These ideas can measure over a large dynamic range. 
 But…will they measure halo, or will a measurement be dominated by 

diffracted and scattered light from the core? 
 Deconvolution with the point-spread function (transmission pattern of 

a point source) can correct some of this, but: 
 Only if measured with the same optics  
 Each lens or mirror will have unique scatter 
 The beam is not a point source. Its halo is included in any PSF measured 

with the beam. An independent point source would be needed. 
 Also, in a real machine, stray light from bends reflected along the 

inside of the beampipe will look like halo. 
 A thorough arrangement of baffles to restrict the source region can help. 

 Optical techniques are subject to scatter and diffraction. 
 Astronomers have a lot of experience with this problem. 

 
50 

A. Fisher, Beam Halo Workshop 
SLAC, September 2014 
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A coronagraph is a telescopic attachment 
designed specifically to block out the 
direct light from a star, so that nearby 
objects can be resolved without burning 
out the telescope's optics. Most 
coronagraphs are intended to view the 
corona of the Sun, The coronagraph was 
introduced in 1930 by the astronomer 
Bernard Lyot.  
The simplest possible coronagraph is a 
simple lens or pinhole camera behind an 
appropriately aligned occulting disk that 
blocks direct sunlight; during a solar 
eclipse, the Moon acts as an occulting 
disk and any camera in the eclipse path 
may be operated as a coronagraph until 
the eclipse is over. 
 
http://en.wikipedia.org/wiki/Coronagraph 

Halo measurements with coronagraph 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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Directional optical radiation (e.g. Synchrotron radiation or OTR) with small 
opening angles (≈ 1/γ) suffer from diffraction limits:  

Optical halo measurements 

Pictures stolen 
from T. 
Mitsuhashi 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 



Page 53 

When using OTR or SR (narrow cone) the diffraction fringes makes 
tail surrounding from the central beam image. Intensity of 
diffraction tail is in the range of 10-2 -10-3 of the peak intensity. 
The diffraction tail disturb an observation of week object 
surrounding from bright central beam 

Halo measurements with coronagraph 

Following pictures from a talk: BEAM HALO OBSERVATION BY 
CORONAGRAPH. T. Mitsuhashi, DIPAC 2005 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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Halo measurements with coronagraph 

The first lens (objective lens) makes a real image of 
the object (beam image) on to a blocking opaque disk 
 

Lyot’s brilliant idea for the 
coronagraph is to remove 
this diffraction fringe by a 
mask, and relay the hidden 
weak image by a third lens 
onto the final observation 
plane 
 
The Lyot stop effectively 
remove the diffracted light 
halo that surrounds the 
target, giving higher 
contrast improvement.  
 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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Halo measurements with coronagraph 

A second lens (field lens) is set just after the blocking disk. The focusing length of 
the field lens is chosen to make a real image of the objective lens aperture onto a 
mask (Lyot Stop). 

Lyot’s brilliant idea for the 
coronagraph is to remove 
this diffraction fringe by a 
mask, and relay the hidden 
weak image by a third lens 
onto the final observation 
plane 
 
The Lyot stop effectively 
remove the diffracted light 
halo that surrounds the 
target, giving higher 
contrast improvement.  

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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Halo measurements with coronagraph 

Then the re-diffracted light 
makes another diffraction 
fringe around the geometrical 
image of the objective lens 
aperture in the focal plane of 
the field lens. The Lyot stop 
removes this diffraction fringe 
by a mask, and relay the image 
by a third lens onto the final 
observation plane. 

Lyot’s brilliant idea for the 
coronagraph is to remove this 
diffraction fringe by a mask, 
and relay the hidden weak image 
by a third lens onto the final 
observation plane 
 
The Lyot stop effectively 
remove the diffracted light halo 
that surrounds the target, 
giving higher contrast 
improvement.  

Relay lens 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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Halo measurements with coronagraph 
expected dynamic range: 106 - 107 

Beam profile 

Beam tail(!) 

VEPP3 

By T. Mitsuhashi (KEK, Tsukuba),. DIPAC 2005), Lyon, France 

STUDY OF 
BEAM TAILS 
WITH THE 
OPTICAL 
CORONAGRA
PH 
O. I. 
Meshkov et 
al., EPAC04 
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Halo measurements with coronagraph 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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Background sources 
1.Scattering by defects on the lens surface (inside) such as scratches and digs. 
2. Scattering from the optical components (mirrors) near by coronagraph. 
3. Reflections in inside wall of the coronagraph. Cover the inside wall with a flock 

paper (light trapping material). 
4. Scattering from dust in air. Use the coronagraph in clean room. 
 
A background level of 6∙10-7 and a spatial resolution of 50 µm was achieved.  

Mie Scattering: Dust and impurities on lenses  

LIMITATIONS 
• OTR light intensity was not intense enough to 
explore further the halo distribution (CTF3). 
• The masking technique must follow the beam 
position and halo size to avoid the saturation of 
the camera. 

Halo measurements with coronagraph 

BEAM HALO MONITORING AT CTF3  
T. Lefèvre et al, EPAC04 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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First Observation of the LHC Beam Halo Using a Synchrotron 
Radiation Coronagraph, T.M. Mitsuhashi et al., IPAC’17, 
Copenhagen, Denmark 

LHC coronagraph 



61 J.-G. Hwang, Coronagraph based halo monitor                          DEELS2018 - Diamond Light Source, UK, 18-19 April 2018  

▬ wo opaque ▬ wo opaque   --- Gaussian ▬ wo opaque   --- Gaussian 
▬ Opaque1 
▬ wo opaque   --- Gaussian 
▬ Opaque1      ▬ Opaque2 
▬ wo opaque   --- Gaussian 
▬ Opaque1      ▬ Opaque2        
▬ Opaque3 

▬ wo opaque   --- Gaussian 
▬ Opaque1      ▬ Opaque2        
▬ Opaque3      --- Elegant 

Ji-Gwang Hwang, Coronagraph based halo 
monitor development for bERLinPro 

Beam test with PPRE bunch 



High-Contrast Imaging and the 
Direct Detection of Exoplanets 

Sandrine Thomas, Ruslan Belikov, and 
many collaborators 

Beam Halo Workshop 
SLAC, Friday 19th 
September 2014 



High Contrast Imaging 

63 

Like searching for a firefly next to a lighthouse in 
San Francisco from Boston 
=> Very faint and small in comparison 

 Upper Scorpius 
 Lafreniere et al 2008  

 Beta Pictoris b  
 Lagrange et al 2010 

 HR 8799  
 Marois et al 2008 

 Fomalhaut b  
 Kalas et al 2008 

 



Conclusion  

• Similar issues are seen by your groups and coronagraphy for 
astronomy. 

• Need a translation between astronomy and particle physics 
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Outline 
• Halo diagnostic: 

– What is Halo? 
– Halo Quantification 

• Transversal Halo Measurements with: 
– Wire Scanners and Scrapers (slow) 
– Optical Methods (fast) 

• Longitudinal Halo  
– Bunch Purity: Time-Correlated Single   

                        Photon Counting (TCSPC)  
– “Beam in Gap” 
– Coasting Beam 
K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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Measurement of the sometimes special fill pattern of synchrotron light sources (rings) is 
important for the time-resolved experiments. The adjacent buckets must not have any 
stored particles or, in reality, as few as possible. A method with very good time resolution 
(<< 1ns for a 500 MHz RF-System) and high dynamic range (more than six orders of 
magnitude) is necessary. 

Bunch Purity Measurements 

A typical measurement is: Time-Correlated Single Photon Counting (TCSPC) 

Mechanism of loosing electrons 
1) Quantum lifetime. An electron is lost from a bucket by 
emitting a photon having a momentum larger than bucket 
heigth ηRF and can be captured by the backward buckets.  
2)  Lifetime determined by the vacuum pressure. 
Electrons lose energy by collisions with residual gas 
molecules in the vacuum chamber.  
3) Touschek effect. Electrons in a bunch execute 
betatron oscillation with transverse momenta. When two 
electrons are scattered elastically (Moller scattering), 
the transverse momenta can be transferred to 
longitudinal ones.  
4) Injection errors (energy, timing,). At top-up a source 
of impurity growth on the both time sides of the main rf 
buckets. 

Measurement of the longitudinal bunch structure in the Photon Factory positron 
storage ring with a photon counting method, Obina T. et al., NIM A Vol.354, Nr. 2 

Electron Bunch Pattern Monitoring via Single Photon Counting at 
SPEAR3, B. Xu, et al., IBIC2017, Grand Rapids, MI, USA 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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ESRF Setup 
http://www.esrf.eu/Accelerators/Groups/Diagnostics/BunchPurityMeasurements 

 

PETRA II setup:  
“The parasitic bunch 
measurement is 
achieved by an 
avalanche-photo diode 
(APD) detecting 
scattered X-rays 
from a 1 mm thick 
graphite foil. It is 
located in the PETRA 
beamline 31.3 m 
downstream of a 
dipole used as x-ray 
source. The detector 
signals are amplified 
close to the diode by a 
fast amplifier. “ 
The detector must 
be carefully shielded 
against stray light. 

TCSPC 
Time-correlated single photon counting method 

PARASITIC BUNCH MEASUREMENT IN e+/e– STORAGE 
RINGS, H. Franz et al., DIPAC 2003 – Mainz, Germany 
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The arrival time of single photons emitted by the electron bunches passing 
through a particular dipole in the storage ring is measured. The photon arrival 
time is measured relative to a clock pulse which is synchronized to the bunch 
revolution frequency via the storage ring RF system. 
The amplified signal is analyzed 
using a time-to-digital-converter 
(TDC) and a multichannel-
analyzer (MCA). To reduce the 
influence of the so-called “walk” 
and to reduce the background 
due to electronic noise the 
amplified detector signal is 
filtered by a constant-fraction-
discriminator (CFD). 
 

CFD 

TCSPC 
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The TDC-board offers 4096 channels with minimum width below 40 ps and can 
work at count rates up to 3 MHz (300 ns recovery time). 
To measure a histogram not affected by recovery-time and pile-up effects, 
the detector count rate should be limited to below 1.5% of the sync rate.  
 
Bunch distance = 10 MHz, count rate = 10 kHz, expected dynamic range: 107 

=> time to resolve 1/107 = 100 sec, with better statistic => 1000 s ≈ 16 min!!!! 
 
 

TCSPC 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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PETRA; 500 MHz RF,  
detuned injection energy 

APS, 352 MHz RF, 
after 98 hours 
top-up operation 

TCSPC 

SPEAR3, 476 MHz RF, 
injection 

PARASITIC BUNCH MEASUREMENT IN 
e+/e– STORAGE RINGS, H. Franz et al., 
DIPAC 2003 – Mainz, Germany 
 
Bunch Purity Evolution during APS Storage 
Ring Top-up Operations, A.H. Lumpkin., et 
al, PAC03 
 
Electron Bunch Pattern Monitoring via 
Single Photon Counting at SPEAR3, B. Xu, 
et al., IBIC2017, Grand Rapids, MI, USA 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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Improvements:  
 
1) Better TDC: e.g. HydraHarp 400 ps event timer & TCSPC .The system 
features a time resolution down to 1 ps,…  A common sync input for all 
channels permits to use the system for TCSPC in forward start-stop mode at 
stable excitation sources up to 150 MHz.  
2) Well suited PMT: R10467 from 
Hamamatsu (with APD), PMA Hybrid serie 
with 50 ps resolution.  
 
 
 
 
 
 
 
 
 
3) MCP-PMT for better detector timing 
 

 
 

http://www.picoquant.com/_instrumentation.htm 

TCSPC 

Upgrades to the SPEAR3 Single-Photon Bunch 
Measurement System, T.M. Cope, et al.,  IPAC16, BEXCO, 
Busan Korea 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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APD: The average over many events is shown 
(smooth curve) as well as two single-photon events 
to show an indication of the noise level  
Scale: 50 mV (upper) 100 mV (lower) and  
5 ns /div. 

APD (C30703F) (534X LC)            vs.                 MCP-PMT (R3809U-50) 

Ø 11 mm 

http://datasheet.digchip.com/19
0/190-01565-0-R3809U-
50.pdf 

typ. dark count rate 20-500 c/s 

100 c/s 

Dark count rate 
limits the dynamic 
range in a 100 ns 
interval to ≈107 

0.2 ns/div 

Two Notable APDs for Fast X-ray Detection 
A.Q.R. BARON, et al, 
http://www.spring8.or.jp/pdf/en/ann_rep/99/p149-150.pdf 



Page 73 

Pile up:  

The number of electrons is nearly the same in the bunches of the train, but the 
measurement shows a decreasing number in the first bunches, down to a minimum value, 
followed by a flat top for the rest of the bunches. This effect is due to a too high count 
rate of 4.5 ∙106 counts/s. At this rate, a photon arrives every 220 ns on average: this is 
comparable to the dead time of the PicoHarp 300 (95 ns). As a result the probability of 
a photon from one of the first pulses to be detected is significantly larger than for the 
rest of the train. 

Instrumental effects: TCSPC 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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Instrumental effects: 

Instrument response function: 
 
MCP-PMT after pulses 

TCSPC 

C.A. Thomas et al., Bunch Purity Measurement for Diamond, NIM A,566(2) 762766, October 2006. 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 



Page 75 K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 

Spring-8: 
Huge dynamic range with fast 
optical light shutters (Pockels 
cells), selecting only one bucket. 
Measuring time: 500 s for 
satellites. 
Main peak is suppressed by 10-5 
due to shutter efficiency. 
 
=> Dynamic range ≈1010!   

Growth of bunch impurity during top up at Spring-8 

TCSPC 

SINGLE BUNCH PURITY DURING SPRING-8 STORAGE RING TOP-UP 
OPERATION, K. Tamura, et al., Proceedings of the 1st Annual Meeting of 
Particle Accelerator Society of Japan and the 29th Linear Accelerator 
Meeting, Funabashi, Japan 
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Proton Synchrotron Light (LHC)  

Measurement of Satellite Bunches at the LHC, A. Jeff, et al., , IPAC12, New Orleans, Lousiana, USA   and 
Longitudinal density monitor for the LHC , A. Jeff, et. al., Phys. Rev. ST Accel. Beams » Volume 15 » Issue 3 

Beam in Satellites 

Longitudinal Density Monitor (LDM) 
with APD and TDC 
 
These satellite and ghost bunches can 
collide at the interaction points and 
create background noise for the 
Experiments. 
 
Measured by Experiment: 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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Bunch impurity 
Another method: Fast wall current monitor (protons) 

Wall-Current-Monitor based Ghost and Satellite Bunch Detection in the 
CERN PS and LHC accelerators; R.J. Steinhagen, BIW12, 2012 

More precise estimates measuring 
bunch populations below the 10-3 level 
require the compensation of the non-
linear phase-delays, signal attenuation 
and recovery of the zero baseline, 
particularly if several bunches are 
circulating.  

HERAp 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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Outline 

• Halo diagnostic: 
– What is Halo? 
– Halo Quantification 

• Transversal Halo Measurements with: 
– Wire Scanners and Scrapers (slow) 
– Optical Methods (fast) 

• Longitudinal Halo  
– Bunch Purity  
– “Beam in Gap” 
– Coasting Beam 

        Temporal Loss Distribution 
By                   or 
        Synchrotron Radiation } 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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Coasting beam 

DC current (upper) and total bunch current (lower)                        

Hadron (!) beams only, rings 

   Tevatron: 980 GeV protons and antiprotons lose about 9 eV/turn due to the SR. 
For uncaptured beam particles, this energy loss is not being replenished by the rf 
system, so they slowly spiral radially inward and die on the collimators, which 
determine the tightest aperture in the Tevatron during collisions. The typical time 
for an uncaptured particle to reach the collimator is about 20 minutes. The total 
uncaptured beam intensity is a product of the rate at which particles leak out 
of the main bunches and the time required for them to leave the machine. 

Generation and diagnostics of uncaptured beam in the Fermilab Tevatron and its control by electron lenses, Xiao-
Long Zhang et al, PRST-AB 11, 051002 (2008) 

HERAp:  
Comparision  
ACCT - DCCT 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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Coasting beam 
Measured by temporal beam loss distribution 
 

HERA-B experiment: Wire scanners + Counters + TDC (only in beam tails) 

Detection efficiency > 50% 
Observation of coasting beam at the HERA proton ring. 
K. Ehret et al. Nucl.Instrum.Meth.A456:206-216,2001 
And 
Bestimmung der We hselwirkungsrate des HERA-B Targets und 
Untersuchung des Coasting Beam am HERA Protonen-Ring, S. Spratte 
Fachbereich Physik d. Universität Dortmund Juni 2000 
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Note the increased rate in the 
Bunch gaps (=coasting beam) 

Detection of coasting beam 

rate 

rate 

1 h 

Coasting beam 

6σ 

4σ 
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CDF 

Coasting beam 
CDF experiment (FNAL): “normal” losses + Counter + variable Trigger delay 

Beam halo monitoring at CDF. 
Muge Karagoz Unel et al.,  Nucl.Instrum.Meth.A506:7-19,2003  

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 



Page 83 

Outline 

• Halo diagnostic: 
– What is Halo? 
– Halo Quantification 

• Transversal Halo Measurements with: 
– Wire Scanners and Scrapers (slow) 
– Optical Methods (fast) 

• Longitudinal Halo  
– Bunch Purity,  
– “Beam in Gap” 
– Coasting Beam 

   

} not mentioned: Abort Gap Cleaning by  
     Kickers (fast or resonant) 
     Electron lens 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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Summary 
 

Transversal Halo 
• Wire scanners still “state of the art” instruments for very high 

dynamic range up to 108 or more. 
• SR with CID and coronagraph has potential to more dynamic range.  
• IPM etc. are sufficient for profiles but background and instrumental 

issues limit their use for halo. 
• Laser work well for H- beams. 

Longitudinal Halo 
• Bunch purity: Measurements with >1010 dynamic range (Electrons) 
• Beam in Gap and LDM: SR limited to high energy beam (Protons/Ions) 

but more methods are under study. 
• DC beam: Compare ACCT and DCCT; Wire scanners are very 

sensitive, applicable in trans. halo only 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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 The End 
Questions? 
 

Halo: a ring of light 
22 degrees from 
the sun or moon  

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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More: 
Wire Scanner + Scraping 
Vibrating Wire Scanner 
Halo Collimation 
Beam in Gap 
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To 1: Scraper data are spatially differentiated and averaged 
As the scraper marches inward, it intercepts an ever increasing segment of 
the beam. It is therefore necessary to differentiate the scraper signal to 
determine the transverse distribution. Take scraper data with N-times finer 
steps than used for the wire scan. This finer stepping allows the 
differentiation algorithm to smooth the data. The numerical derivative can 
be computed as the difference between two N-point averages on either side 
of the point in question divided by the spatial separation between them. 
Larger values of N improve the signal-to-noise ratio, but at the cost of 
additional time to complete the scrapes. 

Wire Scanners  

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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to 2: Wire and scraper data are acquired with sufficient spatial overlap  
The first step in joining the scraper data to the wire scanner data is 
determining where the data sets overlap. The overlap region consists of 
wire scanner locations ranging from where the wire scanner signal-to-noise 
ratio is greater than 2 to the maximum insertion location of the scraper.  
 
to 3 and 4: Differentiated scraper data are normalized to the wire beam 
core data and 
Normalize data to axis  
Once the region of overlap has been determined, the scraper data must be 
normalized to attach it to the wire scanner data. The scaling factor is the average 
of wire scanner to halo scraper signal ratios at two of the three most-inboard points in the 
overlap region (the most inboard point is excluded). Once scaled, the entire scraper data set is 
thinned by keeping only every Nth scraper point and attached at the connecting points. 
Measurements of wire to scraper distances were carried out in Lab. with an 
uncertainty of 0.25 mm. This implies a positional attachment uncertainty of 
0.25 mm. At this point, the resulting three distributions have been 
combined into a single distribution with uniform step size.  

Wire Scanners  

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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to 5: Normalize data to beam current and beam position  
Each data point has to be normalized to the measured beam current and 
beam position for each measurement. 

Wire Scanners and others  
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Wire Scanners 

PMTs                         AND (Coincidence unit)  Scaler         Timer 

1234 

Wire 
position 

Normalize counts to time interval! 
Reduced background from dark counts and beam losses 

Start 
 
 
Stop 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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Vibrating wire scanner 

HINS: M. Chung 
et al. IPAC13 

J-PARC L3BT:  
K. Okabe et al, IPAC13 
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 W. Scandale  
IPAC11 

Bent Crystals for Halo Collimation 
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Concept 
The hollow electron beam 
collimator is a cylindrical, hollow, 
magnetically confined, possibly 
pulsed electron beam overlapping 
with the beam halo (Fig. 3). 
Electrons enclose the circulating 
beam. Halo particles are kicked 
transversely by the 
electromagnetic field of the 
electrons. If the hollow charge 
distribution is axially symmetric, 
the core of the circulating beam 
does not experience any electric 
or magnetic fields. 
 

Halo scraping by collimators 

BEAM HALO DYNAMICS AND 
CONTROL WITH HOLLOW ELECTRON BEAMS∗ 
G. Stancari et al. HB2012 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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Beam in Gap 

If beam (AC or DC) in gap, extraction 
kicker ramp will spray beam.   

 Will result in:  
•Quenches (SC-magnets) 
•activation 
•spikes in experiments 
•equipment damage 
• ... 
 

Therefore a continuous determination of 
the amount of beam in the gap is necessary 
to either clean the gap or dump the whole 
beam before major problems arise.  

Beam in Gap (hadrons) due to: 
• Injection errors (timing) 
• debunching 
• diffusion 
• RF noise/glitches 
• … 

Measurement of the intensity of the beam in the abort gap at the 
Tevatron utilizing synchrotron light. R. Thurman-Keup, FERMILAB-
CONF-05-139 
 
Development of an abort gap monitor for the Large Hadron Collider. 
J.F. Beche, LBL-55208 (04/07,rec.Nov.) 

Hadron storage rings 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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Proton Synchrotron Light (Tevatron, LHC)  

Depending on the amount of protons measured in 
the gap, a software alarm is sent that would 
trigger Radio-Frequency dampers, which would 
clean the abort gap to acceptable levels, before 
the beam is dumped.  

LARP Note 1, 2005, 
Design of an Abort 
Gap Monitor for the 
Large Hadron Collider; 
J.-F. Beche et al. 

First Operation of the Abort Gap 
Monitor for LHC, T. Lefèvre, et al., , 
IPAC’10, Kyoto 
 

Beam in Gap 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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Note that in principle any other fast process, e.g. 
Beam Induced Gas Scintillation, Secondary 
Electron Emission or beam loss monitor signals (e.g. 
at halo scrapers or at wire scanners) can serve as 
a signal source, which are not limited to very high 
beam energy. A fast and gate-able detector which 
is synchronized by the revolution frequency is 
most useful to avoid saturation due to the signal of 
the main bunches.  

Measurement at J-PARC with fast Kickers +  
Scintillator-BLM:  
“We first found that (supposed to be) empty bucket 
contains 10−5 level of the main pulse. … 
Any existing beam monitor could not detect this level 
of the beam. Surprisingly, it is accelerated both in 
the RCS and the MR without any monitor signal as a 
invisible beam.” 
 
LHC: New studies with Diamond based detectors are 
ongoing by monitoring the gap population with  
beam <-> gas interactions. 

Measurements of Proton Beam Extinction at J-PARC  
K. Yoshimura, et al, IPAC’10 

Feasibility Study of Monitoring the Population of the 
CERN-LHC Abort Gap with Diamond Based Particle 
Detectors, Oliver Stein, IPAC2015 

Beam in Gap 

K. Wittenburg, DESY, Beam Halo Monitoring, CAS Beam Instrumentation, 2018 
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------ 
In Gap 
 
Delay 
+ 20 dB  
gain 
 
=>  
dynamic 
range 
104 

Using laser wire at SNS:  

Beam in Gap 

Beam in Gap Measurements at the SNS Front-End; 
PAC 2003 , Aleksandrov, A; et al,   
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