

Beam Diagnostic Requirements Overview

Gero Kube

DESY (Hamburg)

- Measurement Principles
- Specific Diagnostics Needs for Hadron Accelerators
- Specific Diagnostics Needs for Electron Accelerators

Reminder: Lepton Properties

- properties of electrons/positrons
 - simple point objects
 - small rest mass
- onsequences
 - particles are relativistic already at a few MeV
 - \rightarrow typically at first accelerating section
 - particle produce strong electromagnetic field

Lorentz factor:

$$\gamma = E/m_e c^2$$

 $m_e c^2 = 0.511 \, \text{MeV}$

- \rightarrow long range of transverse non-propagating fields
- \rightarrow emission of synchrotron radiation (bend motion)

influence on particle dynamics impact on beam diagnostics

...discussion in context with different accelerator types

Electron Collider

- Comments on Synchrotron Radiation
- Injector Chain
- Storage Ring

Tuusula (Finland), 2-15 June 2018

Lepton Collider (Storage Ring)

SR Emission in circular Accelerators

• emitted power

$$P_{\gamma}[MW] = 8.85 \times 10^{-2} \frac{E^4 [\text{GeV}^4]}{\rho[\text{m}]} I[\text{A}]$$

> HERA e (*I*=50 mA, *E*=27.5 GeV, ρ =550 m): P_{γ} = 4.6 MW

protect accelerator components from direct SR illumination !

• energy loss per turn

$$\Delta E[\text{keV}] = 88.5 \frac{E^4[\text{GeV}^4]}{\rho[\text{m}]}$$

- HERA e (E=27.5 GeV): $\Delta E = 92$ MeV
 - \rightarrow average radiated power restored by RF

cavity provides voltage to accelerate particles back to nominal energy

requires typically a large number of cavities

power is real!

damaged front end gate valve; incident power about 1 kW for time estimated to 2-10 min.

HERA e: 98 cavities, grouped in 8 sections; 8 transmitter stations, each with 1.4 MW nominal power, fed by 2 Klystrons.

Gero Kube, DESY / MDI

Consequences of SR Emission

cavity represents *high impedance* \rightarrow excitation of (multibunch) *instabilities*

- high SR power
 - heat load critical

- protection of machine and instrumentation, necessity of cooling
- high total cavity voltage V_r for loss compensation & lifetime

rms bunch length

$$\sigma_t = \frac{\alpha_c - 1/\gamma^2}{2\pi f_s} \sigma_\delta \propto \frac{1}{\sqrt{V_r}}$$

(above transition energy)

smaller bunch lengths \rightarrow beam spectrum with higher frequencies

- beam emittance
 - formation of *equilibrium emittances* in all 3 planes
 - → *radiation damping* and *quantum fluctuations* (random excitation of oscillations)

emittance determined by storage ring itself

emittance blow-up not critical, relaxed requirements for injector chain

e[±] Injector Complex @ DESY

- thermionic gun
 - 150 keV, 3 µsec long pulses @ 50 Hz
- chopper and collimator

shortening of long gun pulses (60/20 nsec for e+/e-)

• pre-buncher

single cell cavity, matching to linac RF

• Linac sections

3 GHz (S-band) travelling wave structure, $f_{rep} = 50$ Hz

• converter for e⁺ production

7 mm (2 rad. length) thick W target in 1.8 T solenoid field

• Positron Intensity Accumulator (PIA)

re-formation of time structure for synchrotrons $(\rightarrow 500~MHz)$

450 MeV

two RF systems (10.4 MHz and 125 MHz)

3 GHz Linac section

Injector Complex Instrumentation

- key devices for
 - > adjusting beam transport through injector sections
 - tuning the RF system
 - indicating operating status
- overview: standard instrumentation and their tasks
- transfer efficiency
 - \rightarrow current transformers
- > beam position for beam steering
 - \rightarrow screens (low energy deposition)
 - \rightarrow BPMs (sensitivity for long linac bunch trains)
- > beam profiles for beam optics matching
 - \rightarrow scintillating/OTR screens (in straight section)
 - \rightarrow synchrotron light (accumulator ring)

- **transverse emittance**
 - → multi-screen method or quadrupole scans (in straight section)
 - \rightarrow synchrotron light (accumulator ring)
- Iongitudinal plane
 - → magnet spectrometer for energy (-spread)
 (diagnostics beamline)
 - → time structure via RF deflector, wall current monitor, coh. radiation diagnostics

Comment: e⁺ Production

• principle of positron production

K.Hübner, Hyperfine Interactions 44 (1988) 167

profile measurement close to target desirable conversion target @ DESY Linac II

- → *secondary emission monitors* (no screens because of degradation)
- > matching the energy acceptance ($\Delta E/E$) of accumulator ring
 - \rightarrow i) spread from conversion process, ii) microbunch length
 - \rightarrow precise measurements of energy spread and bunch length

Storage Ring Diagnostics: Remarks

- "walk" along injector chain to storage ring / collider
 - > no fundamental difference in requirements compared to hadron machines
 - > no fundamental difference in instrumentation between e-linac and storage ring
 - \rightarrow direct descripton of needs for storage ring diagnostics

• diagnostics system of storage ring / collider

۶	current monitors (AC and DC)	\rightarrow	bunch charge, stored dc current
۶	BPMs	\rightarrow	orbit (
۶	tune measurement	\rightarrow	working point
۶	feedback system	\rightarrow	stabilization
۶	synchrotron light diagnostics	\rightarrow	beam profile, emittance
۶	energy measurement	\rightarrow	cms energy for particle production
۶	luminosity monitors	\rightarrow	collider key parameter, optimization
			simple point objects, i.e. absolute luminosity
۶	beam loss monitors	\rightarrow	control losses, optimization
			not only protection, also for machine physics
۶	machine protection system	\rightarrow	temperature control,
			protection of sensitive components (heat load)

Storage Ring Diagnostics (1)

- beam position monitors (BPMs)
 - short electron bunches (10 100 psec)
 - \rightarrow use of *button pickups*
 - synchrotron radiation emission
 - → pickups mounted *out of orbit plane*
 - vacuum chamber profile not rotational-symmetric
 - → horizontal emittance » vertical emittance (SR emission in horizontal plane)
 - \rightarrow injection oscillations due to off-axis injection

(allows intensity accumulation)

correction of non-linearitiesin beam position

Super KEKB

H. Fukuma (KEK), Proc. eeFACT 2016, WET1H3

HERA e

PEP II

Gero Kube, DESY / MDI

Storage Ring Diagnostics (2)

• tune

- > radiation damping due to SR emission
 - \rightarrow permanent excitation, online tune control

HERA e tune controller

• feedback

- > long-range electromagnetic fields and short bunch lengths (\rightarrow broad beam spectrum)
 - \rightarrow fields act back on beam itself via environment
 - → excitation of *coupled bunch instability*
- feedback system for instability damping
 - i) detection system to measure beam oscillations
 - ii) signal processing unit to derive correction signal
 - iii) broad band amplifier and beam deflector to act on beam

H. Fukuma (KEK), Proc. eeFACT 2016, WET1H3

Storage Ring Diagnostics (3)

- transverse profile / emittance
 - imaging with synchrotron radiation (SR)
 - \rightarrow non-destructive profile diagnostics
 - HERA e beam sizes: $\sigma_h = 1200 \ \mu m$, $\sigma_v = 250 \ \mu m$
 - \rightarrow resolution with *optical SR* sufficient
 - > problem: *heat load* on *extraction mirror* (X-ray part of SR)
 - \rightarrow material with low absorption coefficient (Be)
 - \rightarrow cooling of extraction mirror
 - \rightarrow not sufficient to prevent image distortion...

HERA e: observation out of orbit plane

G. Kube *et al.*, Proc. DIPAC 2005, Lyon, France (2005), p.202

A.S.Fisher et al., Proc. EPAC 1996, TUP098L

Storage Ring Diagnostics (4)

• longitudinal profile

- > SR single particle time structure
 - \rightarrow calculation for 6 GeV electron,

electric field vector in orbit plane

time structure of SR suitable
to resolve *psec* longitudinal
profiles (and even less)

streak camera

 \rightarrow time resolution ~ 1 psec

Storage Ring Diagnostics (5)

• beam energy: e[±] are point objects, i.e. reaction energy directly related to beam energy

• measurement techniques

- > determination via dipole current not sufficient
 - → resonant depolarization or Compton backscattering

e⁺/e⁻ collider SPEAR (SLAC)

J.-E.Augustin et al., Phys. Rev. Lett. 33 (1974) 1406

3rd Generation Light Source

Storage Ring based Light Source

Tuusula (Finland), 2-15 June 2018

Storage Ring based Light Sources

un Pe

undulator: Petra3 @ DESY

SOLEIL 2.75 GeV / C = 354 m

ESRF 6 GeV / C = 844 m

http://www.diamond.ac.uk/AboutDiamond/Diamondstep-by-step/default.htm

- storage ring: energy 1 8 GeV, circumference ca. 100 2300m
 - \rightarrow insertion devices integrated part of storage ring (straight sections)
 - \rightarrow user experiments at end of beamlines (~50-100m away from source)
- short injector chain
 - \rightarrow standard instrumentation

Light Sources: Remarks

- key parameter: spectral brilliance
 - > measure for phase space density of photon flux
 - user requirement: high brilliance
 - \rightarrow lot of monochromatic photons on sample
 - connection to machine parameters

 $B \propto \frac{N_{\gamma}}{\sigma_x \sigma_x, \sigma_y \sigma_y,} \propto \frac{I_{beam}}{\varepsilon_x \varepsilon_y}$

- > requirements for storage ring and diagnostics
 - *i*) high beam current
 - \rightarrow achieve high currents
 - \rightarrow cope with high heat load (stability)

stability is critical issue

 $B = \frac{\text{number of photons}}{[\text{sec}][\text{mm}^2][\text{mrad}^2][0.1\% \text{ bandwidth}]}$

- *ii) small beam emittance*
- \rightarrow achieve small emittance (task of lattice designer)
- \rightarrow measure small emittance
- \rightarrow preserve emittance (stability)

Beam Instrumentation CAS, Tuusula (Finland), 2-15 June 2018

Light Sources: Stability

17 mA, single 152 mA, mult

445

450

• energy stability, suppression of energy widening effects

- cause: (long.) multibunch instabilities
- shift of radiation harmonics from undulator
 - \rightarrow intensity fluctuation, line broadening
- Iongitudinal multibunch feedback systems (MBFS)

• intensity stability

change in background conditions and thermal load on beamline and machine components

Synchrotron Radiation

Sources – A Primer, ed. H.Winick

- \rightarrow position stability!
- > transverse multibunch instabilities \rightarrow transverse MBFS
- operation in top-up mode (passive stabilization)
 - \rightarrow loss compensation by refill small amount of
 - charges in short time intervals

vast dynamic range for instruments, starting from injector chain

position stability

- > intensity fluctuations, emittance dilution \rightarrow reduction of brilliance
- **orbit feedback systems** including **high resolution e-BPMs** and **photon-BPMs** in beamlines

undulator radiation (3rd harmonic) @ ALS

435

Photon energy (eV)

440

courtesy A. Warwick, LBL

425

430

nalized photon flux

0.8

0.4

420

Light Sources: BPMs

- high resolution e-BPMs
 - > typical stability tolerance: 20% emittance growth

$$10\%$$
 of the (1σ) beam size

 \rightarrow example: *average* position stability at IDs for PETRA III @ DESY $\Delta \sigma_{hor} = 2 \,\mu m$, $\Delta \sigma_{vert} = 0.3 \,\mu m$

 $\frac{\Delta \varepsilon}{\Delta \sigma} = 2 \frac{\Delta \sigma}{\Delta \sigma}$

 σ

3

- > typical example: *NSLS-II BPM chamber*
 - \rightarrow asymmetric chamber profiles
 - (pumping channel, avoid heat load, ...)

correction of strong position non-linearities

• photon BPM

 \rightarrow location in user beamlines: two monitors (per plane) \rightarrow correction of position and angle

S. Sharma et al., Proc. MEDSI-6 2011, DLS Proceedings Vol. 1 e63

Gero Kube, DESY / MDI

Beam Instrumentation CAS, Tuusula (Finland), 2-15 June 2018

reflective optics
 kirkpatrick-Baez mirrors,...
 Kirkpatrick-Baez mirrors,...

Terractive optics

Compound Refractive Lenses (CRL)

F. Ewald et al., Proc. IBIC 2013, Oxford, UK (2013) 833

X-ray imaging with non-focusing optics

pinhole camera

example: Diamond Light Source

C. Thomas et al., Phys. Rev. ST Accel. Beams 13 (2010) 022805

Light Sources: Emittance Diagnostics (2)

• exploit coherence properties signal on CCD Synchrotron Radiation Interferometer (SRI) T. Mitsuhashi, Proc. of BIW 2004 Knoxville, Tennessee, p.3 double slit > example: SRI @ PETRA III USR studies at PETRA III (DESY): $\varepsilon_{\rm v} = 160 \text{ pm.rad} \quad @ 3 \text{ GeV}$ • exploit Point Spread Function (PSF) \rightarrow π -polarization imaging V. Schlott et al., Proc. IBIC 2013, Oxford, UK (2013) 519 widely applied @ SLS • coded aperture imaging mid = -0.730 mm amp = 10975.6 cts $\sin = 53.97 \text{ m/s}$ R.H. Dicke, Astrophys. Journal 153, L101, (1968) 8.0×10 J.W. Flanagan et al., Proc. DIPAC 2011, Hamburg, Germany (2011) 561 a.cxid +,014 C. Bloomer, "Coded Aperture @ DLS", TUCZB2 0.0

4th Generation Light Source

Linac based Light Source

→ Free Electron Laser (FEL)

Tuusula (Finland), 2-15 June 2018

Free Electron Lasers (FELs)

• linac (single pass) based 4th generation light sources

Linac based Self Amplification of Spontaneous Emission (SASE) FELs

 $(\rightarrow$ no matter for diagnostics which FEL type)

Electron bunch modulated with its own synchrotron radiation field

- > micro-bunching
- > more and more electrons radiate in phase until saturation is reached
- > beam energy defines photon wavelength λ_r

$$\lambda_r = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} \right)$$

- λ_u : undulator period
- *K* : undulator parameter (measure for B field)

Free Electron Lasers (FELs)

• linac-based European X-ray FELs

SwissFEL @ PSI (Villigen) $E_{max} = 5.8 \text{ GeV}, \quad \lambda = 0.1 - 5 \text{ nm}$

FERMI @ Elettra (Trieste) $E_{max} = 1.5 \text{ GeV}, \quad \lambda = 4 - 65 \text{ nm}$

Th. Tschentscher et al., Appl. Sci. 2017, 7(6), 592

FEL Beam Properties (1)

• single or few bunches, typically with large separation

requires single bunch measurements

• high current density

- > sufficient energy transfer from electron beam to radiation field
- > natural scale: number of electrons per wavelength

$$N_{e,\lambda} = \frac{I\lambda}{ec} \qquad \qquad N_{e,\lambda} = 1 \implies I = \begin{cases} 0.5 \,\mu\text{A} & (\lambda = 100 \,\mu\text{m}) \\ 0.5 \,\text{A} & (\lambda = 0.1 \,\text{nm}) \end{cases}$$

requires additional bunch compression in order to increase current density

extremely short bunch lengths: 10-100 fsec

• charge per bunch: pCb up to about nCb

> new trend: short pulse operation, requires lower and lower charges...

- \rightarrow signal to noise problems at low charge, even for kA peak currents
- → *high dynamic range* for diagnostic devices

FEL Beam Properties (2)

- high quality electron beam
 - energy spread

 $\frac{\sigma_E}{E} \approx 10^{-4}$

transverse emittance

$$\varepsilon \leq \frac{\lambda}{4\pi}, \qquad \varepsilon = \varepsilon_N / \beta \gamma$$

 $(\rightarrow high energy helps)$

for resonant energy exchange and good overlap with radiation field

high demands on 6-dimensional phase space

Iongitudinal phase space

- \rightarrow short bunches require complicate longitudinal diagnostics
- \rightarrow new methods required to verify pulse lengths of electron and laser bunch

transverse phase space

- \rightarrow beam gets extremely small, often weird shape
- \rightarrow emittance is no equilibrium property, many effects can spoil it
- \rightarrow optics errors propagate through entire machine (linac is open loop system)
- \rightarrow coherent effects due to short pulses and instabilities

FEL Beam Properties (3)

- comment: transverse emittance
 -) electrons *slip back in phase* with respect to photons by λ_r each undulator period
 - > FEL integrates over slippage length \rightarrow

slice emittance of importance

- stability
 - energy stability \rightarrow wavelength stability

$$\frac{\Delta\lambda}{\lambda} = -2\frac{\Delta E}{E}$$

LLRF feedback

high level synchronisation high resolution BPMs, orbit feedback

> arrival time stability (fsec) \rightarrow pump probe experiments

- position stability
 - \rightarrow overlap between beam and radiation in undulators
 - example: XFEL @ DESY
 - length of undulator section: 100-150 m
 - BPM position resolution:

1 μm (single bunch), 100 nm (average over bunch train)

FELs: Comments

> no radiation damping \rightarrow beam quality determined already from the gun

careful diagnostics and control of beam parameters

SASE FEL is not forgiving – instead of reduced brightness, power nearly switches OFF

- accelerating structures
 - part of SASE FELs use superconducting RF cavities

9 cell, 1.3 GHz Nb TESLA cavity

• SASE FELs: FLASH and XFEL @ DESY

FEL Diagnostics: Overview

• standard electron beam diagnostics to operate the linac

instrumentation to measure

- electron beam orbit
- bunch charge
- beam size

fast protection system to shut-off the beam in case of high losses

> prevent damage on undulator (demagnetization) and vacuum system (leakage)

beam phase

energy and energy spread

- diagnostics needed to control and optimize the FEL
 - **beam size / transverse emittance**
 - \rightarrow OTR/wire-scanner stations, resolution < 10 μm
 - **bunch length / longitudinal profile**
 - \rightarrow bunch length < 100 fsec, reconstruction of bunch shape
 - slice emittance
 - **bunch compression** \rightarrow online signal for optimization of SASE process
- diagnostics needed for user experiments
 - characterization of radiation pulse (energy, spectral distribution)
 - > synchronisation & stability (time-resolved experiments \rightarrow fsec)

Standard FEL Diagnostics @ FLASH

		FLASH1	FLASH2
Charge	Toroids	12	5
	Dark Current Monitor	1	
	Faraday Cups	3	
	BPMs	6	33
Transverse	OTR-Screens	~30	
Size	Scintillating-Screens	1	7
	Wire scanners (MDI)	10	
	Wire scanners (Zeuthen)	9	
Transverse	Button-BPMs	26	12
Position	Stripline-BPMs	33	4
	Cold Cavity BPMs	6	
	Cavity BPMs		17
	HOM-based monitors	39	
Beam Loss	BLMs	>70 ~55	
	Cherenkov Fibers	2	1
	Beam Halo Monitors	1x4	1x4
	Ionization Chambers	4	4

about ~ 400 monitors

and a lot of additional special diagnostics...

Standard FEL Diagnostics @ E-XFEL

Monitor (Standard Diagnostics Only)	Number			
BPMs (cold)	120			
BPMs (Striplines, Pickups)	250			
Undulator BPMs (Cavity, 1µm Resolution)	140			
Charge Monitors (Toroids, Faraday Cups)	40			
Beam Size: OTR, Wirescanners	77			
Dark Current	10			
Loss Monitors (PM Systems, Fibers)	320			
Phase	15			
Other	about 50			
Total	about 1000			

and a lot of additional special diagnostics...

Beam Position Monitors

• short version of E-XFEL BPM specification

specified charge	range	: 0.1 – 1	nC		h RMS)	ed (RMS)		lange	~	nch	nent MS)
	Number	Beam Pipe	Length	Type	Single Buncl Resolution (I	Train Averag Resolution(Optimum Resolution Range	Relaxed Resolution F	x/y Crosstall	Bunch to Bu Crosstalk	Trans. Align Tolerance (R
		mm	mm		μm	μm	mm	mm	%	μm	μm
Standard BPM	219	40.5	200/ 100	Button	50	10	± 3.0	± 10	1	10	200
Cold BPM	102	78	170	Button/ Re- entrant	50	10	± 3.0	± 10	1	10	300
Cavity BPM Beam Transfer Line	12	40.5	255	Cavity	10	1	± 1.0	±2	1	1	200
Cavity BPM Undulator	117	10	100	Cavity	1	0.1	± 0.5	±2	1	0.1	50
IBFB	4	40.5	255	Cavity	1	0.1	± 1.0	± 2	1	0.1	200

different BPM types to meet different requirements

courtesy: D.Nölle (DESY)

Transverse Beam Profile: Coherent Effects

- backward OTR: reflection of virtual photons
 - instantaneous process
- single shot measurement
- full transverse (2D) profile information
- Coherent OTR observation at LCLS (SLAC) ٥

R. Akre et al., Phys. Rev. ST Accel. Beams 11 (2008) 030703 H. Loos et al., Proc. FEL 2008, Gyeongju, Korea, p.485.

HELMHOLTZ RESEARCH FOR OTR foil Forward OTR Beam $\theta = 1/\gamma$ **Backward OTR** $\theta = 1/\gamma$ courtesy: K. Honkavaara (DESY) Direction of specular reflection

- strong shot-to-shot fluctuations
- doughnut structure
- change of spectral contents

interpretation of coherent formation in terms of "Microbunching Instability" ٥

E.L. Saldin et al., NIM A483 (2002) 516 Z. Huang and K. Kim, Phys. Rev. ST Accel. Beams 5 (2002) 074401

alternative schemes for beam profile diagnostics ٠

bunch trains scintillating screens \rightarrow wire scanners single shot

XFEL Screen Monitors

monitor setup

Ch. Wiebers, M. Holz, G. Kube et al., Proc. IBIC 2013, Oxford (UK), WEPF03

- beam profile observation
 - > projected emittances larger than expected

injector:	~ 1 mm.mrad
BC1, BC2:	> 2 mm.mrad
downstream L3:	> 4 mm.mrad

Gero Kube, DESY / MDI

Beam Instrumentation CAS, Tuusula (Finland), 2-15 June 2018

FEL Diagnostics: Bunch Length/Profile

coherent radiation diagnostics

principle: bunch length/shape dependent emission spectrum of coherent radiation

with

2

Intensity (a.u.) 1 0.5

single particle spectrum bunch form factor no. of particles per bunch

- > spectral decomposition and Fourier transform:
 - bunch length and shape \rightarrow

source: synchrotron radiation, transition radiation, diffraction radiation, Smith-Purcell radiation,...

electro optical sampling (EOS)

Gero Kube, DESY / MDI

principle: Coulomb field induces refractive index change in EO crystal (Pockels effect)

0

Ω

0.5

- \rightarrow effective polarization rotation proportional to Coulomb field
- > Coulomb field converted in opt. intensity variation
 - laser + polarizer (P) + analyzer (A)

example: EOS using variable delay (simple scheme) more sophisticated: temporal, spectral, spatial encoding

FEL Diagnostics: Slice Emittance

• transverse deflecting structure (TDS)

courtesy: H. Schlarb (DESY)

- Intra Beam Streak Camera':
 - \rightarrow vertical deflecting RF structure (2.856 GHz) operated at zero crossing
- 'parasitical' measurement using kicker and off-axis screen
- vertical size of beam at imaging screen
 - \rightarrow bunch length
- horizontal size at imaging screen
 - \rightarrow access to *slice emittances*

FLASH: slice emittance under SASE conditions @ 13.7 nm

Beam Instrumentation CAS, Tuusula (Finland), 2-15 June 2018

Outlook

- Iinear collider
- what is coming next...

DESY. DESY. HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Tuusula (Finland), 2-15 June 2018

Outlook

- putting it all together...
 - injector linac, including e⁺ production
 - storage ring with opportunity of radiation damping
 - Inac with stringent requirements for 6-dimensional phase space

...and build a linear collider: ... or the CERN version: superconducting RF normalconducting RF Compact Linear Collider L-band, 1.3 GHz Tesla-Technology X-band, 12 GHz Technology İİĹ circumference 326 klystrons 33 MW, 139 μs 326 klystrons 33 MW, 139 μs delay loop 72.4 m CR1 144.8 m CR2 434.3 m rive beam accelerator 2.38 GeV, 1.0 G ccelerator 2.38 GeV. 1.0 GHz 1 km 1 km decelerator, 24 sectors of 876 r 2.75 k TA radius = 120 m e⁻ main linac, 12 GHz, 100 MV/m, 21.02 km TA radius = 120 48.3k m ooster linac, 9 GeV CR combiner ring turnaround DR damping ring PDR predamping ring njector, 2.4 GeV e⁻ injector, 2,4 Ge BC hunch compresso beam delivery system e⁻ PDR 365 m interaction poin **CLIC layout 3 TeV** II C Scheme | ©www.form-one.de

https://www.linearcollider.org/pdf/ILC_Accelerator_bynumbers.pdf

ilc **International Linear Collider**

key parameters (nominal values) 0

	Collision Energy	500 giga-electron-volts (500 GeV = 250 GeV + 250 GeV)		
	Luminosity	2 x 10 ³⁴ cm ⁻² s ⁻¹		
	Bunch population	2 x 1010		
	Number of bunches	1312		
Beam	Bunch spacing	554 ns		
Parameters	Number of collision	6560 s ⁻¹		
	Number of beam acceleration	5 s ⁻¹		
	Acceleration gradient	31.5 MV/m		
	Beam size at collision point	Width 474 nm		
	Number of acceleration cavity unit	Thickness 5.9 nm		
	Number of cryomodules	14742		
Accelerator	Number of klystrons in	1701		
unit	distributed klystron system	378		
	Size of cryomodule	1m diameter, 12m length		
	Cryomodule type			
<u>.</u>	Type 1	9 units of 9-cell acceleration cavities		
Cryomodule	Type 2	8 units of 9-cell acceleration cavities		
		+ 1 unit of superconducting quadrupole magne		
	Frequency of pulsed RF	1.3 GHz		
o	Power of pulsed RF	190 kW/cavity		
Operation	Operation temperature of acceleration cavity	y 2K		
Size of	Circumference of Damping ring	3.2 km		
accelerator	Length of main linac	11 km (electron linac) + 11 km (positron linac)		
Collision experiment	Number of Detectors	2 (push-pull alternation)		

enges

- m position
 - measurement
 - stability

m size

- measurement
- non-invasive

https://www.linearcollider.org/pdf/ILC_Accelerator_bynumbers.pdf

ILC: Diagnostics

- beam position measurements with sub-µm resolution
 - > *Cavity BPMs* for higher resolution applications
 - Iocation in cold and warm sections
 - variety of R&D activities for ILC BPMs at different laboratories
 - single bunch position resolution of ~20 nm achieved at ATF (KEK)

courtesy: T.Nakamura (Tokio University)

high resolution cavity BPM for ILC final focusing system

- non-invasive beam profile monitors
 - Iaser wire scanner
 - \rightarrow scanning a finely focussed laser beam across bunches
 - \rightarrow measure scattered photons (*inverse Compton scattering*)

in downstream detector

 \rightarrow photon rate as function of relative laser beam position

beam profile

Gero Kube, DESY / MDI

Outlook: New Accelerators

• circular colliders

Circular e⁻e⁺ Collider (CEPC) @ China (Super pp Collider - SppC)

• light sources

> circular: Ultra Low Emittance Rings

$$\varepsilon \propto \gamma^2 \theta^3$$
 –

→ Multi Bend Achromat (MBA) scheme, i.e. small bend angle θ

challenging for *emittance diagnostics*

> linear: from *pulsed* to *cw* operation

low charge operation for attosecond photon pulses

challenging for *all diagnostics*

- plasma wakefield acceleration, dielectric wakefield acceleration, ...
 - require new concepts for beam diagnostics