

Beam Diagnostic Requirements Overview

Gero Kube

DESY (Hamburg)

- Measurement Principles
- Specific Diagnostics Needs for Hadron Accelerators
- Specific Diagnostics Needs for Electron Accelerators

Beam of Particles

- particle beam (p, \bar{p} , e^{\pm} , n, γ , μ^{\pm} , heavy ions, ...)
 - > ensemble of N particles in 6-dimensional phase space
 - \rightarrow based on canonical coordinates (x, y, z; p_x, p_y, p_z)
- phase space in accelerator physics
 - > use projection onto 3 orthogonal planes
 - \rightarrow instead of phase space in (x, p_x) use (x, x'= p_x / p₀)
- beam characterization \rightarrow statistical ensemble
 - Ist order: *beam centroid* mean values <r_i>
 - beam momenta p_x, p_y, p_z moving along "z"
 - $\rightarrow p_z \approx p_0 \gg p_x, p_y$
 - beam location z(t)
 - beam positions *x*, *y*
 - beam angles $x' = p_x/p_0, y'$

- momentum spread $\sigma_{\Delta p/p}$
- bunch length $\sigma_{\Delta z}$
- beam sizes σ_x , σ_y
- beam divergences $\sigma_{x'}, \sigma_{y'}$
- ... correlations ...

A. Streun (PSI)

how to get information about beam?

Beam Information Transfer

- extraction of beam information
 - > information transfer from *beam particles* to *measuring device*
 - \rightarrow information transfer characterized by *interaction*
 - > information transfer / interaction with beam preferably
 - \rightarrow non-disturbing for beam
 - \rightarrow strong (good signal quality)
 - \rightarrow long-range (measuring device in certain distance from beam)

• fundamental particle interactions

Interaction	Gravitational	Weak	Electromagnetic	Strong
acting on	mass-energy	flavor	electric charge	colour charge
particles experiencing	all particles with mass	quarks, leptons	electrically charged particles	quarks, gluons
exchange particle	Graviton (?)	$\mathrm{W}^{\pm},\mathrm{Z}^{0}$	γ (photon)	g (gluon)
relative strength	6×10 ⁻³⁹	10-5	1/137	1
range [m]	∞	10-18	∞	10-15

restriction to charged particle beams

Electromagnetism

- described by *Maxwell's equations*
 - Gauss' flux theorem

$$\vec{\nabla} \cdot \vec{E}(\vec{r},t) = \frac{\rho(\vec{r},t)}{\varepsilon_0}$$

- Gauss' law for magnetism
 - $\vec{\nabla} \cdot \vec{B}(\vec{r},t) = 0$
- Faraday's law of induction

$$\vec{\nabla} \times \vec{E}(\vec{r},t) = -\frac{\partial \vec{B}}{\partial t}(\vec{r},t)$$

Ampère's law + displacement current $\vec{\nabla} \times \vec{B}(\vec{r},t) = \mu_0 \vec{J}(\vec{r},t) + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}(\vec{r},t)$

$$\iint_{S} \vec{E}(\vec{r},t) \cdot d\vec{S} = \frac{1}{\varepsilon_{0}} \iiint_{V} \rho(\vec{r},t) \, dV$$

$$\oint_{S} \vec{B}(\vec{r},t) \cdot \mathrm{d}\vec{S} = 0$$

in SI units

$$\oint_C \vec{E}(\vec{r},t) \cdot d\vec{l} = -\frac{d}{dt} \iint_S \vec{B}(\vec{r},t) \cdot d\vec{S}$$

$$\oint_C \vec{B}(\vec{r},t) \cdot d\vec{l} = \mu_0 \iint_S \vec{J}(\vec{r},t) \cdot d\vec{S} + \frac{1}{c^2} \frac{d}{dt} \iint_S \vec{E}(\vec{r},t) \cdot d\vec{S}$$

• application to beam particle in accelerator

• consider point-like particle with charge Q, moving with v = const.

input
$$\rightarrow$$
 particle properties (kinematics)

$$\rho(\vec{r},t) = Q \,\delta[\vec{r}(t)] \qquad \qquad \vec{J}(\vec{r},t) = Q \,\vec{v} \,\delta[\vec{r}(t)]$$

 \rightarrow

- \rightarrow output \rightarrow electromagnetic fields
- > typical particle accelerator: $v \gg 1$ ($\rightarrow c$)

take into account relativistic motion

Special Relativity: a Glimpse

- postulates of special relativity ٥
 - principle of relativity (relativistic or Lorentz invariance)
 - \rightarrow laws of physics are invariant under a transformation between two coordinate frames moving at constant velocity w.r.t. each other
 - > invariance of c
 - \rightarrow velocity of light is the same for all observers

Lorentz transformation ٥

- \triangleright primed frame S' moves with velocity v in z-direction w.r.t. fixed reference frame S
- reference frames coincide at t = t' = 0
- point z' is moving with primed frame

Lorentz transformation (from *S* to *S'*)

$\mathbf{x'} = \mathbf{x}$	z' = γ·	(z – β	ct)
$\mathbf{v}' = \mathbf{v}$	$ct' = \gamma$	·(ct –	ßz)
5 5	•• 1	(P =)

Quantities used in Accelerator Calculations

Relativity and Electro-Magnetic Fields

- kinematics / dynamics
 - → trajectory transformation: (x, y, z, ct) in rest frame $S \rightarrow (x', y', z', ct')$ in moving frame S'
 - > Lorentz transformation parameters: reduced velocity β Lorentz factor γ
- transformation of "information carrier"
 - electro-magnetic field transformation
 - \rightarrow as before: system S' moves with v = const. along z-axis of rest frame S
 - (x, y, z, ct) in rest frame $S \rightarrow (x', y', z', ct')$ in moving frame S'

 $\vec{v} \rightarrow -\vec{v}$

$$E'_{x} = \gamma [E_{x} - \nu B_{y}] \qquad B'_{x} = \gamma [B_{x} + \frac{\nu}{c^{2}} E_{y}]$$
$$E'_{y} = \gamma [E_{y} + \nu B_{x}] \qquad B'_{y} = \gamma [B_{y} - \frac{\nu}{c^{2}} E_{x}]$$
$$E'_{z} = E_{z} \qquad B'_{z} = B_{z}$$

transformation from moving frame S' to rest frame S:

- \rightarrow convention: rest frame S: LAB frame
 - moving frame *S'*: rest frame of moving charge
- **comment:** different structure of transformation for space-time coordinates and fields
 - \rightarrow field vectors: cannot form 4-vectors (E-field: polar vector, B-field: axial vector)

Electro-Magnetic Field of moving Charge

• example

- > point charge Q: moving with v = const. along z-axis
- *task:* electro-magnetic fields in LAB frame
- rest frame *S'* of point charge
 - > pure electro-static problem
 - \rightarrow radial symmetric *Coulomb field*

$$\vec{E'}(\vec{r'}) = \frac{Q}{4\pi\varepsilon_0} \frac{\vec{r'}}{r'^3} = \frac{Q}{4\pi\varepsilon_0} \frac{1}{[x'^2 + y'^2 + z'^2]^{3/2}} \binom{x'}{y'}_{z'}$$

É

- electromagnetic fields in LAB frame *S* (rest frame)
 - > apply Lorentz transformation equations using $\vec{v} \rightarrow -\vec{v}$
 - > 1st step: Lorentz transformation for fields $\Rightarrow \vec{E}(\vec{r}')$
 - ▶ 2nd step: Lorentz transformation for space-coordinates

$$\Rightarrow \vec{E}(\vec{r})$$

$$\vec{E}(\vec{r},t) = \frac{1}{4\pi\varepsilon_0} \frac{\gamma Q}{[x^2 + y^2 + \gamma^2(z - vt)^2]^{3/2}} \binom{x}{y}_{z - vt}$$

snap-shot

> point charge in origin of *S* and *S'*: t = 0

$$\vec{E}(x, y, z) = \frac{1}{4\pi\varepsilon_0} \frac{\gamma Q}{[x^2 + y^2 + \gamma^2 z^2]^{3/2}} {\binom{x}{y}}$$

> relativistic modification of Coulomb field:

210

240

270

relativistic modification

• field components

Iongitudinal: $\vartheta = 0 \implies E_{\parallel} = \frac{1}{\gamma^{2}} \cdot \frac{Q}{4\pi\varepsilon_{0}} \frac{1}{r^{2}}$ Interpretation in the second state of the s

330

300

- magnetic field
 - > E-field in particle rest frame S' generates B-Field in LAB frame S
 - \rightarrow consequence of transformation properties:

$$B_{\chi} = -\gamma \frac{v}{c^2} E'_{\chi} \qquad \qquad B_{\chi} = \gamma \frac{v}{c^2} E'_{\chi} \qquad \qquad B_{Z} = 0$$

combined

$$\vec{B}(\vec{r},t) = \frac{\mu_0 Q}{4\pi} \frac{\gamma v}{[x^2 + y^2 + \gamma^2 (z - vt)^2]^{3/2}} {\binom{-y}{x} \\ 0}$$

> snapshot (t = 0) in non-relativistic limit: $\gamma \rightarrow 1$

$$\vec{B}(\vec{r}) = \frac{\mu_0 Q}{4\pi} \frac{v}{[x^2 + y^2 + z^2]^{3/2}} \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix} = \frac{\mu_0}{4\pi} Q \frac{1}{r^3} \begin{pmatrix} -vy \\ vx \\ 0 \end{pmatrix}$$

> re-writing

$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} Q \frac{\vec{v} \times \vec{r}}{r^3}$$

Biot Savart law for point charge

Interim Conclusion

- information transfer from / to particle beam
 - electro-magnetic interaction
 - \rightarrow restriction to charged particle beams
- electro-magnetic field of beam particles
 - > acts as information carrier about beam properties
- description of particle field
 - basic knowledge of *Maxwell equations* and *special relativity*
- electro-magnetic field of relativistic point charge
 - electric field almost transversal
 - $\rightarrow \text{ magnetic field } \rightarrow \text{ generated due to particle motion}$
- monitor for charge particle beam diagnostics
 - **b** has to extract information from charged particle beam via electro-magnetic interaction
 - (i) coupling to *particle* electro-magnetic field *carried* by moving charge
 - (ii) coupling to *particle* electro-magnetic field *separated* from moving charge (freely propagating)
 - (iii) exploiting energy deposition due to *particle* electro-magnetic field *interaction* with matter
 - (iv) exploiting *interaction* of *external* electro-magnetic field with charged particle

$$E_{\parallel} \propto \frac{1}{\gamma^2}$$
 , $E_{\perp} \propto$

1

Coupling to Particle Electro-Magnetic Field carried by Moving Charge

- Beam Charge and Beam Current Measurements
- Beam Position Monitoring

Tuusula (Finland), 2-15 June 2018

•

Non-propagating Particle Field

- concept of *Wall Image Current*
 - > charged particle travels through metallic beam pipe of accelerator
 - \rightarrow beam pipe: evacuated tube, bounded by *electrically conducting material*
 - > moving charged particle
 - \rightarrow generates electro-magnetic field: *electric field* \leftrightarrow *charge, magnetic field* \leftrightarrow *charge movement*
 - \rightarrow relativistic motion: Lorentz boost \leftrightarrow electric field contracts in direction of motion
 - > E-field induces image charge
 - \rightarrow generated at inner diameter of vacuum chamber
 - \rightarrow opposite sign
 - > moving charge
 - \rightarrow induced image charge is dragged
 - → creation of *Wall Image Current* (*WIC*)
- no electrical field outside vacuum chamber
 - Gauss' flux theorem:

$$\oint_{S} \vec{E}(\vec{r},t) \cdot d\vec{S} = \frac{1}{\varepsilon_0} \iiint_{V} \rho(\vec{r},t) \, dV$$

 \rightarrow charge and image charge cancels outside beam pipe

no coupling to E-field outside vacuum chamber

Non-propagating Particle Field (2)

- magnetic field
 - > Ampère's law

$$\int_{C} \vec{B}(\vec{r},t) \cdot d\vec{l} = \mu_0 \iint_{S} \vec{J}(\vec{r},t) \cdot d\vec{S}$$

- \rightarrow integration path: circle *C* around beam tube
- WIC: equal magnitude but opposite sign to beam current (in 1st order)
 - \rightarrow sum of beam and image current cancels out
 - \rightarrow magnetic field outside the beam tube is cancelled

no coupling to B-field outside vacuum chamber

- field strength reduction
 - > corresponds to attenuation of EM-wave propagating through conductor
 - → characteristic length: *skin depth* (amplitude reduction e⁻¹ → -8.69dB) non-magnetic, electrically good conductor: $\delta[m] = \frac{\sqrt{10^7}}{2\pi} \sqrt{\frac{\rho[\Omega/m]}{f[Hz]}}$
- consequences for beam monitors
 - > no access to particle electro-magnetic field outside metallic beam pipe

coupling to beam field inside vacuum chamber

allow beam field to extend outside

D. Belohrad, Proc. DIPAC2011, Hamburg (2011) 564

(ceramic gap)

Principles of Signal Extraction

- no electro-magnetic field outside beam pipe
 - > place coupling antenna inside vacuum chamber
- charged particle possesses electric / magnetic field
 - > 2 different coupling schemata:
 - \rightarrow coupling to electric field: *capacitive coupling*
 - \rightarrow coupling to magnetic field: *inductive coupling*

capacitive coupling

inductive coupling

Capacitive versus Inductive Coupling

- \rightarrow output signal \rightarrow displacement current

$$i_{cap}(t) = \varepsilon_0 \frac{\mathrm{d}}{\mathrm{d}t} \iint_S \vec{E}(\vec{r},t) \cdot \mathrm{d}\vec{S}$$

• inductive coupling

capacitive coupling

٥

٥

 \rightarrow output signal \rightarrow Faraday's law of induction

$$u_{ind}(t) = -\frac{\mathrm{d}}{\mathrm{d}t} \iint_{S} \vec{B}(\vec{r},t) \cdot \mathrm{d}\vec{S}$$

- consider relation between E/B-field:
 - here: $\vec{v} = v\hat{e}_z$ relativistic case: $\vec{E} \approx E\hat{e}_r = E_r$

$$\vec{B} = \frac{1}{c^2} \vec{v} \times \vec{E}$$
$$B_{\vartheta} = \frac{1}{c^2} v E_r = \frac{\beta}{c} E_r$$

$$\frac{|i_{cap}(t)|}{|u_{ind}(t)|} = \frac{c}{\beta} \varepsilon_0 \frac{\frac{d}{dt} \iint_{electrode \ surface} E_r \ dS}{\frac{d}{dt} \iint_{loop \ area} E_r \ dS} \rightarrow \text{practical design:} \qquad \frac{\frac{d}{dt} \iint_{electrode \ surface} E_r \ dS}{\frac{d}{dt} \iint_{loop \ area} E_r \ dS} \approx 1$$

$$\Rightarrow \text{broadband signal processing} \rightarrow \text{impedance } \mathbf{R} = 50 \ \Omega$$

$$\frac{\left|\frac{R \cdot i_{cap}(t)}{u_{ind}(t)}\right| = \left|\frac{u_{cap}(t)}{u_{ind}(t)}\right| \approx \frac{Rc\varepsilon_0}{\beta} = \frac{0.133}{\beta}}{\beta}$$

Gero Kube, DESY / MDI

capacitive coupling

 \rightarrow less prone to stray fields

comment: consider plate capacity

 $E = \frac{Q}{\varepsilon_0 \cdot S} \quad \longleftrightarrow \quad Q = \varepsilon_0 \cdot S \cdot E$

with $i(t) = \dot{Q} \implies i(t) = \varepsilon_0 \cdot S \cdot \dot{E}$

WIC alternative Path

- no electro-magnetic field outside beam pipe
 - > provide alternative path for *Wall Image Current (WIC)*
 - \rightarrow conducting path in metallic vacuum chamber has to be broken
- technical realization
 - > non-conducting material (usually ceramic) inserted electrically in series with metallic beam pipe
 - \rightarrow interruption forces WIC to find new path
 - beam diagnostics
 - \rightarrow alternative path under instrument designer's control, outside of vacuum chamber

(ceramic gap)

• example

Cavity Resonators

- beam signal generation using *passive cavity resonator*
 - > passive (beam driven) cavity resonator
 - \rightarrow electro-magnetic discontinuity in beam pipe
 - \rightarrow charged particle passing resonator excites (several) resonator modes
 - example
 - \rightarrow E-field excitation in pillbox cavity
- advantage of resonator
 - electro-magnetic energy dissipation for one period
 - \rightarrow small compared to accumulated energy

- signal averaging over long time
 - \rightarrow good signal quality, high accuracy

- task for beam diagnostics
 - > design cavity for high signal level in

resonator mode of interest

 \rightarrow suppress contribution from disturbing modes

fs laser

(800 - 1100 nm)

Environment Modification

- application: *Electro Optical (EO) techniques*
 - bunch length diagnostics
 - \rightarrow fsec electron bunches
 - > placing EO crystal into beam pipe
 - \rightarrow direct measurement of Coulomb field from ultra-relativistic bunches in time-domain
 - \rightarrow Coulomb-field carried by sub-psec bunches reaches in THz region
 - > Coulomb field induces *refractive index change* in *birefringent crystal*
 - \rightarrow Pockels effect in optically active crystal (e.g. ZnTe, GaP)
 - > probing of refractive index change by short-pulse (fsec), high bandwidth (some tens of nm) laser

polarizer

ΕO

D

scanning

delay

analyzing

polarizer

LΑ

birefringence:

splitting ray into 2 parallel

rays polarized perpendicular

photo

diode

Coupling to freely propagating Particle Electro-Magnetic Field

- Bunch Length Measurements
- transverse Beam Profile Diagnostics

Tuusula (Finland), 2-15 June 2018

•

Propagating Particle Field

- freely propagating particle field
 - electro-magnetic field not bound to charged particle

emitted as radiation (preserving information from beam)

- radiation generation via particle electro-magnetic field
- > particle electro-magnetic field > relativistic boost characterized by Lorentz factor electric field lines total energy *E*: in LAB frame $\gamma =$ $m_0 c^2$ $m_0 c^2$: rest mass energy e $m_p c^2 = 938.272 \text{ MeV}$ proton: $m_e c^2 = 0.511 \text{ MeV}$ electron: http://philschatz.com/physics -book/contents/m42535.html limiting case: plane wave 0 $\gamma \rightarrow \infty$ $m_0 c^2 = 0 \text{ MeV}$: light \rightarrow ,real photon" ultra relativistic energies : idealization \rightarrow "virtual photon" (basis of Weizsäcker-Williams method)

Separation of Particle Field

- electro-magnetic field bound to particle
 observation in far field (large distances)
- separation mechanisms
 - *bending* of *particle* via magnetic field
 - synchrotron radiation

linear accelerator \rightarrow no particle bending...

- separation mechanisms at linear accelerators
 - *diffraction/reflection* of particle *electro-magnetic field* at material structures

 \leftrightarrow

 \leftrightarrow

exploit analogy between real/virtual photons:

- light reflection/refraction at surface
- light diffraction at edges
- light diffraction at grating
- light (X-ray) diffraction in crystal

separate field from particle

 \leftrightarrow Smith-Purcell radiation

 \leftrightarrow parametric X-ray radiation (PXR) ...

diffraction radiation (DR)

backward/forward transition radiation (TR)

Radiation Generation and Mass Shell

- consider mass hyperboloid
 - > hyperboloid in energy-momentum space describing the solutions to equation

$$E^2 = (\vec{p}c)^2 + (m_0c^2)^2$$

- charged particle behavior governed by this equation E mass shell \rightarrow sitting on the *mass shell* initial state |i> energy loss via radiation emission ٥ photon line transition from *initial* /*i*> to *final* /*f*> state final state |f> $\rightarrow E = pc$ photon: massless particle $m_0 c^2$ energy / momentum conservation has to be fulfilled ٥ missing momentum remains externally provided (radial force, material structure, ...) p_x missing momentum Cherenkov radiation as special case ٥
 - > direct transition from *initial* /*i*> to *final* /*f*> state without external momentum
 - \rightarrow slope of photon line decreased: $c \rightarrow c/n$ (*n*: index of refraction)

Gero Kube, DESY / MDI

Synchrotron Radiation

- bending magnet (wiggler, undulator)
- minimum-invasive
 - unavoidable losses
- strong collimation (vertical)

> opening angle:

• emission over wide spectral range

choice of operational range

oplarized

Gero Kube, DESY / MDI

SR Field: Standard Text Book

Synchrotron Radiation Field

second representation: starting point again Liénard-Wiechert potentials O.Chubar and P.Elleaume, Proc. EPAC96, Stockholm (1996) 1177 $\varphi(t) = \left(\frac{Q}{R\left(1 - \hat{n} \cdot \vec{\beta}\right)}\right) , \qquad \vec{A}(t) = \left(\frac{Q\vec{\beta}}{R\left(1 - \hat{n} \cdot \vec{\beta}\right)}\right)$ observer Fourier transform of potentials: $\dot{R}(\tau)$ $\varphi(\omega) = Q \int_{-\infty}^{+\infty} \mathrm{d}\tau \frac{1}{R(\tau)} e^{i\omega(\tau + R(\tau)/c)}, \quad \vec{A}(\omega) = Q \int_{-\infty}^{+\infty} \mathrm{d}\tau \frac{\vec{\beta}(\tau)}{R(\tau)} e^{i\omega(\tau + R(\tau)/c)}$ 0 $\vec{E}(\omega) = \frac{i\omega Q}{c} \int_{-\infty}^{+\infty} \mathrm{d}\tau \left| \frac{\left(\vec{\beta} - \hat{n}\right)}{R(\tau)} - \frac{ic}{\omega} \frac{\hat{n}}{R^2(\tau)} \right| e^{i\omega(\tau + R(\tau)/c)}$ field derivation: $\vec{r}(\tau)$ with $\tau = \int_0^z \frac{\mathrm{d}z}{c\beta_z(z)} = \frac{1}{c} \int_0^z \mathrm{d}z \left[1 + \frac{1 + (\gamma\beta_x)^2 + (\gamma\beta_y)^2}{2\gamma^2} \right]$ $\tau = t - R(\tau)/c$ origin $\vec{E}(\omega)$ determined knowledge of arbitrary particle orbit: determines orbit and $\vec{E}(\omega)$ arbitrary magnetic field configuration: comments: exact field description numerical near field calculation (i) includes depth of field & curvature no additional contributions, only field propagation (ii) \rightarrow free codes available easy field calculation, even field propagation! (iii) http://www.esrf.eu/Accelerators/Groups/InsertionDevices/Software/SRW SRW: (Chubar & Elleaume, ESRF) Spectra: http://radiant.harima.riken.go.ip//spectra/index.html (Tanaka & Kitamura, SPring8)

Gero Kube, DESY / MDI

Beam Instrumentation CAS, Tuusula (Finland), 2-15 June 2018

SR for Heavy Particles

- synchrotron radiation spectrum ٥
 - characterized by critical energy / wavelength
- heavy particles (protons) ٥

0

(protons: factor 1836 larger than for electrons) large mass

small Lorentz factor
$$\gamma = \frac{E}{m_0 c^2}$$

comparison of SR spectra $T_{kin} = 20 \ GeV, \ \rho = 370 \ m$ 10¹ spectral power density [a.u.] 10⁰ electron example ٥ 10 **HERA-p**: $E = 40...920 \, GeV$ $\rightarrow \lambda_c = 55 \text{ mm} \dots 4.5 \mu \text{m}$ 10⁻² 10⁻³ large diffraction broadening, expensive optical elements,... proton 10 smaller λ achieveable ??? 10¹⁰ 10⁻¹⁰ 10⁻⁵ 10 10^{5} photon energy [eV]

 $\hbar\omega_c = \frac{3}{2}\hbar c \frac{\gamma^3}{\rho}$

 \Leftrightarrow

SR Single Particle Time Structure

• geometrical interpretation

 Δt : distance in travel time between photon and particle

 Δt

Time Squeezing

• introduce sharp "cut-off" in time domain

Constant Linear Motion

Transition Radiation

Diffraction Radiation

- problem OTR: screen degradation / damage
 - \rightarrow limited to only few bunch operation, no permanent observation
- Optical Diffraction Radiation (ODR): non-intercepting beam diagnostics
 - > DR generation via interaction between particle EM field and conducting screen

Parametric X-Ray Radiation (PXR)

- idea: higher photon energies $\hbar\omega$ ٥
 - better resolution
 - insensitive on coherent effects
- real photons ٠
 - Bragg reflection, crystals \rightarrow X-rays \leftrightarrow
- virtual photons ٥
 - > field separation by Bragg reflection at crystal lattice
 - radiation field: **Parametric X-Ray Radiation (PXR)**
- crystal periodicity (3D) ٥
 - discrete momentum transfer (reciprocal lattice vector $\vec{\tau}_{hkl}$)

 \vec{E}_{ρ}

 d_{hkl}

courtesy: M.J. Winter

 $\vec{k}_{PXR}, \hbar\omega$

(Science Photo Library)

 Θ_{R}

Smith-Purcell Radiation

- Coherent Radiation Diagnostics (CRD)
 - \rightarrow compact setup (combined radiator / analysator)
- Smith-Purcell radiation (SPR)
 - Field separation
 - → virtual photon diffraction at 1D
 Bravais-structure (grating)
 - \rightarrow grating provides 1D discrete momentum

momentum conservation:

$$\vec{p}_i = \vec{p}_f + \hbar \vec{k} + \hbar n \frac{2\pi}{D} \hat{v}$$
$$(\vec{p}_i - \vec{p}_f) \cdot \vec{v} = \hbar \omega = \hbar \vec{k} \cdot \vec{v} + \hbar n \frac{2\pi}{D} \hat{v} \cdot \vec{v}$$
$$2\pi \frac{c}{\lambda} = \frac{2\pi}{\lambda} v \cos \theta + n \frac{2\pi}{D} v$$

h

CRD: standard method for radiation based bunch length diagnostics long bunch ($\lambda < \sigma_{\tau}$) short bunch $(\lambda > \sigma_z)$ \vec{E}_{ρ} d D

Particle Electro-Magnetic Field Interaction with Matter

- Beam Loss Monitoring
- Beam Charge Measurements (Faraday Cup)
- Beam Profile Measurements (Wire Scanner, SEM, Scintillator)

Tuusula (Finland), 2-15 June 2018

•

Charged Particle Interaction with Matter

- energy deposition of charged particles in matter
 - > applied for beam monitoring \rightarrow scintillating light generation, secondary electron emission, ...
- types of particle interaction
 - > charged particle transmits some of its energy to particles in medium \rightarrow excitation of medium particles via:

- level of particle–particle interaction: important modes of interaction
 - elastic scattering \rightarrow incident particle scatters off target particle, total T_{kin} of system remains constant
 - inelastic scattering
- \rightarrow incident particle excites atom to higher electronic/nuclear state

- > annihilation
- > Bremsstrahlung emission
- > Cherenkov & Transition Radiation, ...

Interaction of Heavy Charged Particles

- "heavy" particles: $A \ge 1$ (p, α , ions,...)
- interaction modes
 - (1) Rutherford (Coulomb) scattering \rightarrow elastic scattering
 - Coulomb force interaction between *incident particle* and *target nucleus* \rightarrow not applied for beam diagnostics
 - (2) passage of particles through matter
 - > number of electronic/nuclear mechanisms, through which charged particle can interact with medium particles
 - > net result of all interactions \rightarrow reduction of particle energy
 - > underlying interaction mechanisms are complicated
 - \rightarrow rate of energy loss fairly accurately predicted by semi-empirical relations

relevant for beam diagnostics

- energy transfer from projectile to target
 - \rightarrow projectile \rightarrow beam particle
 - $\rightarrow target \rightarrow atomic shell electron$

> maximum energy transfer \rightarrow head-on collision

dominated by elastic collisions with shell electrons

2 electro-magnetic interaction channels ...

$$\frac{\Delta E_{max}}{T_{kin}} = 4 \frac{m_e M}{(m_e + M)^2} \xrightarrow{M \gg m_e} 4 \frac{m_e}{M}$$
proton beam: $\frac{\Delta E_{max}}{T_{kin}} = 4 \cdot \frac{1}{1836} \sim \frac{1}{500}$

small energy transfer in single collision

Gero Kube, DESY / MDI

Beam Instrumentation CAS, Tuusula (Finland), 2-15 June 2018

Energy Loss by Ionization – Bohr

- classical derivation by Bohr (1913): ٥
 - > particle with *charge Ze* moves with *velocity v* through medium with *electron density n*
 - > electrons are conidered free and initially at rest

(assumption of elastic collisions \rightarrow losses in fact inelastic)

 $\int \vec{E} \cdot \mathrm{d}\vec{S} = 4\pi Z e$

е

momentum transfer to single electron ٥

$$\Delta \vec{p}_{\perp} = \int \mathrm{d}t \; \vec{F}_{\perp} = \int \mathrm{d}x \; \vec{F}_{\perp} \frac{\mathrm{d}t}{\mathrm{d}x} \; = \int \vec{F}_{\perp} \frac{\mathrm{d}x}{v} = e \int \vec{E}_{\perp} \frac{\mathrm{d}x}{v}$$

 $\Delta \vec{p}_{\parallel}$: averages to *zero* \rightarrow symmetry

> apply Gauss' flux theorem (in cgs units):

$$\int \vec{E}_{\perp} \cdot 2\pi b \, \mathrm{d}x = 4\pi Z e \qquad \Longrightarrow \qquad \int \vec{E}_{\perp} \, \mathrm{d}x = \frac{2Ze}{b}$$

$$\begin{array}{c|c}
\hline \vec{E} \\
\hline \vec{v} \\
\hline Ze, M \\
\hline \end{array} \\
\begin{array}{c}
\hline \vec{v} \\
\hline \end{array} \\
\begin{array}{c}
\hline b \\
\hline x \\
\hline \end{array} \\
\begin{array}{c}
\hline x \\
\hline x \\
\hline \end{array} \\
\begin{array}{c}
\hline x \\
\hline x \\
\hline \end{array} \\
\begin{array}{c}
\hline x \\
\hline x \\
\hline x \\
\hline \end{array} \\
\begin{array}{c}
\hline x \\
\hline x \\$$

$$\implies \qquad \Delta \vec{p}_{\perp} = \frac{2Ze^2}{bv}$$

energy transfer to *single* electron, located at transverse distance *b* ٠

$$\Delta E(b) = \frac{\Delta \vec{p}^2}{2m_e} \qquad \qquad \Rightarrow \qquad \Delta E(b) = \frac{2Z^2 e^4}{m_e v^2 b^2}$$

integration over all electrons in medium 0

 \triangleright consider cylindrical barrel with N_{e} electrons

$$N_e = n \ 2\pi b \ \mathrm{d} b \ \mathrm{d} x$$

dxdhZe

Energy Loss by Ionization (2) – Bohr

• energy loss per path length dx for distance between b and b+db in medium with electron density n:

$$-dE(b) = \frac{\Delta p^2}{2m_e} N_e = \frac{4\pi Z^2 e^4}{m_e v^2} n \frac{db}{b} dx$$

$$\implies -\frac{dE}{dx} = \frac{4\pi Z^2 e^4}{m_e v^2} n \int_{b_{min}}^{b_{max}} \frac{db}{b} = \frac{4\pi Z^2 e^4}{m_e v^2} n \ln \frac{b_{max}}{b_{min}}$$

• determination of relevant **b** range

$$b_{min}: \text{ for head-on collisions in which kinetic energy transfer is maximum} \qquad W_{max} = 2m_e c^2 \beta^2 \gamma^2$$
$$\Delta E_{max}(b_{min}) = \frac{2Z^2 e^4}{m_e v^2 b_{min}^2} \stackrel{\text{def}}{=} W_{max} \implies b_{min} = \frac{Ze^2}{\gamma m_e v^2}$$

→ b_{max} : principle of adiabatic invarianc → e⁻ bound to atom, circulating nucleus with mean orbital frequency $\bar{\nu}$

$$\rightarrow$$
 energy transfer: time interval of distortion \leq period duration

$$\Delta t = \frac{b}{\gamma v} \leq \tau = \frac{1}{\bar{v}} \implies b_{max} = \frac{\gamma v}{\bar{v}}$$

$$-\frac{dE}{dx} = \frac{4\pi n Z^2 r_e^2 m_e c^2}{\beta^2} \ln\left(\frac{\gamma^2 m_e v^3}{Z e^2 \bar{v}}\right)$$
with $r_e = \frac{e^2}{4\pi \varepsilon_0 m_e c^2} \rightarrow \text{ classical electron radius}, \quad n = N_A \rho \frac{Z_T}{A_T} \rightarrow \text{ electron density}$

Bethe–Bloch (–Sternheimer) Formula

• quantum mechanical based calculation of *collisional* energy loss:

$$-\left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{coll} = 4\pi N_A r_e^2 m_e c^2 \cdot \rho \frac{Z_t}{A_t} \cdot \frac{Z_p^2}{\beta^2} \ln\left(\frac{2m_e c^2 \beta^2 \gamma^2}{I} - \beta^2 - \frac{\delta}{2} - \frac{C}{Z_t}\right)$$

fundamental constants

incident particle

- r_e : classical electron radius
- m_e : mass of electron
- N_A : Avogadro's number
- *c*: speed of light

> absorber medium

- *I*: mean ionization potential
- Z_t : atomic number of absorber
- A: atomic weight of absorber
- ρ : density of absorber
- δ : density correction
- C: shell correction

general form

$$\frac{\mathrm{d}E}{\mathrm{d}x} \propto \frac{{Z_p}^2}{\beta^2} \ln(a\beta^2\gamma^2)$$

- Z_p : charge of incident particle
- β : reduced velocity

$$W_{max} = 2m_e c^2 \beta^2 \gamma^2$$

- max. energy transfer in single collision
- \rightarrow density correction δ :

shielding of distant electrons because of polarization

- shell correction C: (high energies)
 - depends on electron orbital velocities (low energies)

Bethe–Bloch Formula (2)

Bethe–Bloch and Particle Range

- comments
 - instead of energy loss per distance \rightarrow frequently use of $\frac{1}{\rho} \frac{dE}{dx}$ with mass distribution $dx = \rho ds$ *Mass Stopping Power S* with ds in [cm], ρ in [g/cm³]
 - ► $\frac{1}{\rho} \frac{dE}{dx}$ for MIP weakly depends on absorber material \rightarrow typically ~ 2 MeV g⁻¹ cm²
 - > description of mean energy loss due to ionization and excitation for all charged particles → exception: e[±]
 for e[±]: equal particle masses → different impact kinematics
- average distance heavy charged particle will travel \rightarrow range
 - energy loss \rightarrow statistical process
 - heavy charged particles loose only small fraction of their energy in collisions with atomic electrons
 - \rightarrow experience only slight deflection from scattering with electrons
 - \rightarrow travel in nearly straight lines through matter
 - > small gradual amount of energy transferred from beam particle to absorber
 - \rightarrow particle passage treated as *continuous slowing down* process
- mean particle range
 - Continuous Slowing Down Approximation
 - \rightarrow **CSDA**-range

 $R_{CSDA}(T) = \int_0^T \mathrm{d}T \left[-\frac{\mathrm{d}E}{\mathrm{d}x} \right]^{-1}$

Particle Range of Heavy Particles

e⁺ / e⁻ Interaction – Basic Considerations

- e⁺ / e⁻ are "quickly" relativistic
 - > small rest mass energy $E_0 = m_e c^2 = 511 \text{ keV}$
 - \rightarrow relativistic effects have to be taken into account to deduce meaningful results
- large energy transfer possible ٠
 - > simple (non-relativistic) kinematical consideration:
 - maximum energy transfer head-on collision \rightarrow
- $\frac{\Delta E_{max}}{T_{kin}} = 4 \frac{m_e M}{(m_e + M)^2}$ $M=m_e$ T_{kin}
- incident electron and target electron are indistinguishable 0
 - convention:

٠

٥

- electron with higher energy \rightarrow "beam particle"
- > maximum energy transfer \rightarrow T/2

radiative losses

Electron / Positron Interaction with Matter

- interaction modes
 - (1) ionization
 - \rightarrow distant collisions (small transferred energy), same procedure as for Bethe-Bloch equation
 - (2) $M \phi ller (e^{\pm} e^{\pm}) scattering$
 - \rightarrow close collisions (large transferred energy), taking into account relativistic, spin and exchange effect
 - (3) Bhabha $(e^++e^+ \rightarrow e^++e^+)$ scattering
 - \rightarrow similar to Møller scattering
 - (4) electron-positron annihilation
 - (5) Bremsstrahlung

C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

Collisional Stopping Power

- > not only includes inelastic impact ionization process
 - \rightarrow also scattering mechanisms such as Møller or Bhabha scattering

$$S_{coll} = -\left(\frac{1}{\rho}\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{coll} = 4\pi N_A r_e^2 m_e c^2 \cdot \frac{Z_t}{A_t} \cdot \frac{1}{\beta^2} \left[\ln\left(\frac{T}{I}\right) + \frac{1}{2}\ln\left(1 + \frac{\tau}{2}\right)^{1/2} + F^{\mp}(\tau) - \frac{\delta}{2}\right]$$

with T: kinetic energy of electron / positron $\tau = \frac{T}{m_0 c^2}$

electrons:

$$F^{-}(\tau) = \frac{1-\beta^2}{2} \left[1 + \frac{\tau^2}{8} - (2\tau+1) \ln 2 \right]$$

> positrons:

Gero Kube, DESY / MDI

$$F^{+}(\tau) = \ln 2 - \frac{\beta^2}{24} \left[23 + \frac{14}{\tau+2} + \frac{10}{(\tau+2)^2} + \frac{4}{(\tau+2)^3} \right]$$

• free codes / tables available

- \blacktriangleright collisional, radiative, nuclear stopping power and more for e, p, α particles
 - → https://physics.nist.gov/PhysRefData/Star/Text/intro.html

estar* astar* psta

Radiative Stopping Power

- Bremsstrahlung
 - > photon emission by charged particles, accelerated in Coulomb field of nucleus
 - → QED process (Fermi 1924, Weizsäcker-Williams 1938)
- energy loss / stopping power
 - > screening of nucleus due to atomic electrons not taken into account
 - \rightarrow only valid for large particle energies *E*

Gero Kube, DESY / MDI

Beam Instrumentation CAS, Tuusula (Finland), 2-15 June 2018

e.g.: T. Tabata et al., NIM B119 (1996) 463

Gero Kube, DESY / MDI

Total Stopping Power and Range

- range
 - > notion ... range of electrons" not so clear than for heavy particles
 - penetration depth / trajectory length
 - CSDA range:
 - several alternative range definitions
 - \rightarrow

Quintessence

- particle interaction in matter difficult to treat analytically
 - > approximative expressions and parametrizations exists
 - \rightarrow good for first insight \rightarrow have a feeling what's going on...
- typical domain of simulation toolkits
 - depending on task / lab strategy / personal interest...
 - \rightarrow different codes with different pros and cons
 - Geant
 Image: Seant Sea

Particle Interaction with external Electro-Magnetic Field

- Bunch Length Measurements
- transverse Beam Profile Diagnostics (Laser Wire)

Tuusula (Finland), 2-15 June 2018

•

Interaction with external EM Fields

- external electromagnetic field acting as
 - > signal source: photon scattered at beam particles
 - \rightarrow probing beam shape with external laser (laser wire)
 - beam manipulator
 - \rightarrow atomic excitations of ion beams
 - \rightarrow force acting on charged particle beam
- scattering of photons on charged particles
 - *Compton effect:* photon scattered on a ,,quasi free" electron
 - \rightarrow *photon energy large* compared to binding energy of electron
 - \rightarrow photon is deflected and wavelength λ changes due to energy transfer \rightarrow photon loses energy

 $\gamma + \text{Atom} \rightarrow \gamma + e^- + \text{Ion}^+$

Inverse Compton Scattering

- electron / positron accelerator
 - target particles not at rest
 - \rightarrow application of Klein-Nishina only in particle rest frame \rightarrow Lorentz boost to LAB frame
- inverse situation at accelerator
 - high energy e[±] (beam particles)
 - Iow energy photons (optical laser)

• inverse Compton scattering

cross section

$$\frac{\mathrm{d}\sigma_{ic}}{\mathrm{d}\varpi} = \frac{3}{8}\frac{\sigma_T}{\epsilon_1} \left[\frac{1}{1-\varpi} + 1 - \varpi + \left\{\frac{\varpi}{\epsilon_1(1-\varpi)}\right\}^2 - \frac{2\varpi}{\epsilon_1(1-\varpi)}\right]$$

T. Shintake, Nucl. Instrum. Meth. A311 (1992) 453

with

$$\sigma_T = \frac{8\pi r_e^3}{3}$$
: Thomson cross section
 $\epsilon_1 = \frac{\gamma \hbar \omega_0}{m_e c^2}$: normalized energy of laser photons
 $\varpi = \frac{\hbar \omega_\gamma}{E}$: normalized energy of emitted photons

photon energy / MeV

Beam Manipulation with EM Fields

- no direct beam diagnostics
 - preparation for beam diagnostics measurement
 - beam current (difference), beam profile, ...
- laser based photoejection of H⁻ beams ٥
 - \rightarrow proton accelerator \rightarrow H⁻ gun
 - > stripping for *p* generation \rightarrow charge exchange via *foil*
 - *laser* (2 electron photoejection)
 - laser photo neutralization for beam diagnostics
 - e.g. difference in bunch charge before / after neutralization
- Transverse Deflecting Structure (TDS) ٥
 - iris loaded RF waveguide structure
 - designed to provide hybrid deflecting modes $(HEM_{1,1})$
 - linear combination of TM_{11} and TE_{11} dipole modes
 - resulting in transverse force that act on

synchronously moving relativistic particle beam

used as RF deflector \rightarrow intra-beam streak camera

(bunch length diagnostics)

slice

