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BPM Systems Part 2

• Leftover Part 1

– Bunch signals from broadband BPMs

– Cavity & other BPMs

• Low-β beams 

• Beam coupling impedance

• BPM read-out electronics

– Analog & digital systems

– RF signal conditioning and impedance matching

– Digital signal processing

– Long-term drift calibration

– Signal-to-noise and resolution limit

– Performance check applying SVD

• Summary & final remarks
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Bunch Signals from broadband BPMs

𝑣𝑏𝑢𝑡𝑡𝑜𝑛 𝑡 ≈
𝐴𝑏𝑢𝑡𝑡𝑜𝑛𝑅𝑙𝑜𝑎𝑑
𝜋𝑟𝑝𝑖𝑝𝑒𝛽𝑐

𝑑𝑖𝑏𝑒𝑎𝑚 𝑡

𝑑𝑡
=
𝑟𝑏𝑢𝑡𝑡𝑜𝑛
2 𝑅𝑙𝑜𝑎𝑑
2𝑟𝑝𝑖𝑝𝑒𝛽𝑐

𝑒𝑁

2𝜋𝜎3
𝑡𝑒

−
𝑡2

2𝜎2

• Button BPM output signal to a Gaussian bunch

– Only valid for 𝛚 ≪ 𝝎𝟏 (low frequency range)!

• Stripline BPM output signal

– For ℓ ≫ 𝝈𝜷𝒄 the bunch shape can be well reproduced

 Separation: 𝟐 Τℓ 𝒄

 enables e.g. head-tail mode detection

courtesy P. Forck
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Resonant Cavity BPM

• Based on a beam-excited, passive resonator

– Often a cylindrical “pillbox” cavity is used

– Operating on the TM110 dipole-eigenmode offers a higher resolution 

potential than comparable broadband BPMs (button, stripline).

 No common-mode 𝚺 signal, only a difference 𝚫 signal

 High transfer impedance, typically in the kΩ/mm range

TM010

(monopole)

TM110

(dipole)

TM020

(monopole)

𝑣𝑠𝑖𝑔 ∝ 𝑖𝑏𝑒𝑎𝑚 𝑣𝑠𝑖𝑔 ∝ 𝑖𝑏𝑒𝑎𝑚𝒗𝒔𝒊𝒈 ∝ 𝒊𝒃𝒆𝒂𝒎 ∙ 𝒓

courtesy 

D. Lipka
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Towards a Cavity BPM…

• Eigenmodes in a brick-style resonator
– 1st step towards a cavity BPM

– Unfortunately you need to go through the math 
of the modal expansion of the vector potential 𝚿…😰

𝚫𝚿+ 𝒌𝟎
𝟐𝜺𝒓𝝁𝒓𝚿 = 𝟎

𝑘0
2 = 𝜔2𝜀0𝜇0

𝑘0 = ൗ2𝜋
𝜆0

Laplace equation: 𝑘0: free space wave number

𝜆0: free space wave length

𝚿 = 𝑿 𝒙 𝒀 𝒚 𝒁(𝒛)

Product ansatz (Cartesian coordinates):

𝛹 =
𝐴 cos 𝑘𝑥𝑥 + 𝐵 sin 𝑘𝑥𝑥

ሖ𝐴𝑒−𝑗𝑘𝑥𝑥 + ሖ𝐵𝑒−𝑗𝑘𝑥𝑥
𝐶 𝑐𝑜𝑠 𝑘𝑦𝑦 + 𝐷 𝑠𝑖𝑛 𝑘𝑦𝑦

ሖ𝐶𝑒−𝑗𝑘𝑦𝑦 + ሖ𝐷𝑒−𝑗𝑘𝑦𝑦
𝐸 𝑐𝑜𝑠 𝑘𝑧𝑧 + 𝐹 𝑠𝑖𝑛 𝑘𝑧𝑧

ሖ𝐸𝑒−𝑗𝑘𝑧𝑧 + ሖ𝐹𝑒−𝑗𝑘𝑧𝑧

General solution (field components):

standing

waves

travelling

waves
𝒌𝒙
𝟐 + 𝒌𝒚

𝟐 + 𝒌𝒛
𝟐 = 𝒌𝟎

𝟐𝜺𝒓𝝁𝒓

separation condition: 𝑘𝑥 =
𝑚𝜋

𝑎
𝑘𝑦 =

𝑛𝜋

𝑏
𝑘𝑧 =

𝑝𝜋

𝑐

a

b
c

𝒇𝒎𝒏𝒑 =
𝒄𝟎

𝟐𝝅𝜺𝒓𝝁𝒓

𝒎𝝅

𝒂

𝟐

+
𝒏𝝅

𝒃

𝟐

+
𝒑𝝅

𝒄

𝟐
Eigen frequencies:
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Cylindrical “Pillbox” Cavity Resonator

• Same procedure, but now with cylindrical functions 😢😢

𝚿 = 𝑹 𝝆 𝑭 𝝋 𝒁(𝒛)

Product ansatz (cylindrical coordinates):

𝛹 =
𝐴 𝐽𝑚 𝑘𝑟𝜌 + 𝐵 𝑁𝑚(𝑘𝑟𝜌)

ሖ𝐴𝐻𝑚
2
(𝑘𝑟𝜌) + ሖ𝐵𝐻𝑚

2
(𝑘𝑟𝜌)

𝐶 𝑐𝑜𝑠 𝑚𝜑 + 𝐷 𝑠𝑖𝑛 𝑚𝜑
ሖ𝐶𝑒−𝑗𝑚𝜑 + ሖ𝐷𝑒−𝑗𝑚𝜑

𝐸 𝑐𝑜𝑠 𝑘𝑧𝑧 + 𝐹 𝑠𝑖𝑛 𝑘𝑧𝑧
ሖ𝐸𝑒−𝑗𝑘𝑧𝑧 + ሖ𝐹𝑒−𝑗𝑘𝑧𝑧

General solution (field components):

standing

waves

travelling

waves

𝒌𝒓
𝟐 + 𝒌𝒛

𝟐 = 𝒌𝟎
𝟐𝜺𝒓𝝁𝒓

separation condition:

𝐽𝑚, 𝑁𝑚, 𝐻𝑚
(1,2)

: cylindical functions 𝐵𝑒𝑠𝑠𝑒𝑙, 𝐻𝑎𝑛𝑘𝑒𝑙, 𝑁𝑒𝑢𝑚𝑎𝑛𝑛
(1,2)see Abramowitz and Stegun

ℎ𝑅𝜑

𝒇𝑻𝑴𝒎𝒏𝒑 =
𝒄𝟎

𝟐𝝅𝜺𝒓𝝁𝒓

𝒋𝒎𝒏

𝑹

𝟐

+
𝒑𝝅

𝒉

𝟐

𝒇𝑻𝑬𝒎𝒏𝒑 =
𝒄𝟎

𝟐𝝅𝜺𝒓𝝁𝒓

𝒋𝒎𝒏
′

𝑹

𝟐

+
𝒑𝝅

𝒉

𝟐𝑗𝑚𝑛 being the 𝑛
𝑡ℎroot of 𝐽𝑚(𝑥)

𝑗𝑚𝑛
′ being the 𝑛𝑡ℎroot of 𝐽𝑚

′ (𝑥)

Eigen frequencies:
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Cavity BPM

• Beam couples to:

dipole (TM110) and
monopole (TM010) 
& other modes

• Common mode (TM010) 
frequency 
discrimination

• Decaying RF signal 
response

– Position signal: TM110

 Requires 
normalization and a 
phase reference

– Intensity signal: TM010

𝐸𝑧 = 𝐶 𝐽1
𝑗11𝑟

𝑅
𝑒𝑖𝜔𝑡 cos𝜑

𝑟𝑝𝑖𝑝𝑒 = 12.5𝑚𝑚

𝑟𝑐𝑎𝑣 = 100𝑚𝑚
ℓ𝑐𝑎𝑣 = 10𝑚𝑚

time domain

bunch response

𝑓010

𝑓110
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Common-mode free Cavity BPMs

𝑓010 < 𝑓10 =
1

2𝑎 𝜀𝜇
< 𝑓110

• Add slot-coupled waveguide TE01-mode 
high-pass filter

between cavity and coaxial output port.
– Finite Q of TM010 still leaks into TM110!

• The dipole mode has two polarizations
– which will orientate along imperfections, 

or as wanted along the coupling slots
 Requires tight tolerances to minimize 

x-y cross talk

monopole mode dipole mode

courtesy 

D. Lipka
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Examples of Cavity BPMs

Courtesy of D. Lipka & Y. Honda

DESY XFEL

3.3 GHz cavity BPM

Setup of several 15 GHz

cavity BPMs at the

CLIC Test Facility linac

KEK C-Band

Cavity BPM,

resolution <10 nm
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Cavity BPM

+ Pros

– No or minimum common mode signal contribution in the ∆-signal

 Frequency discrimination of dipole (TM110) and monopole (TM010) modes

– High resolution potential

 High shunt (transfer) impedance of the TM110 mode

– Even for lower Q tuning of the TM110 mode

 Sub-μm signal pass resolution potential

- Cons

– High beam coupling impedance

 No free lunch: high impedance may cause beam break-up and/or instabilities

 No or very limited use in ring accelerators

– Requires a reference monopole mode (TM010) resonator

 Beam phase and intensity

– Limited position range

 ~half aperture

– Requires advanced RF read-out electronics

– High-Q resonator may not be suitable for single bunch position 

measurements  
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Other Types of BPM Pickups

• Less popular, but sometimes better suited 

for a specific application

– Stripline BPM with shorted downstream ports

– Exponentially tapered stripline BPM

– Re-entrant cavity BPM

– Resonant stripline of button BPM

– Inductive BPM, …

 In common: based on symmetry

exponential

stripline BPM

(CERN)

re-entrant

cavity BPM (KEK)

inductive

wall-current BPM

(CERN)
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Effects of Low-β Beams

• At 𝜷 ≪ 𝟏 the EM-field of a point charge develops longitudinal 

field components (non-TEM field)

– Point charge in a cylindrical beam pipe of radius 𝒓𝒑𝒊𝒑𝒆 = 𝒂

at rest and at 𝜸 = 𝟒 𝜷 ≈ 𝟎. 𝟗𝟕

– The longitudinal image charge distribution −𝒅𝒒𝒘/𝒅𝒔 follows a 

complicated expression from a Bessel-Fourier series expansion 

 Fortunately the RMS value is simply:

𝛾 =
1

1 − 𝛽2

𝛽 =
𝑣

𝑐

𝝈𝒔 =
𝒓𝒑𝒊𝒑𝒆

𝟐𝜸

courtesy A. Hofmann



Page 13June, 2018 – BI CAS 2018 – M. Wendt

Position Monitoring of Low-β Beams

• For an off-center beam in a cylindrical beam pipe:

– Image charges integrated on the right, horizontal electrode A

 Some simplifications could be applied for 𝒈𝒓 < 𝒈𝑹 ≪ 𝟏

• Result:

– The position characteristic of a broadband BPM for low-β beams 

is frequency depending!

𝑠𝐴 𝑟, 𝜑, 𝛼, 𝑔(𝜔) = 𝛼
𝐽0(𝑔𝑟)

𝐽0(𝑔𝑅)
+ 4 ෍

𝑚=1

∞
1

𝑚

𝐽𝑚(𝑔𝑟)

𝐽𝑚(𝑔𝑅)
sin 𝑚

𝛼

2
− 𝜑

with: 𝑔 𝜔 =
𝜔

𝛽𝛾𝑐
, 𝐽𝑚 𝑎𝑟𝑔 :mod. Bessel function of 𝑚𝑡ℎ order

𝐼𝐴 = −
𝐼𝑏𝑒𝑎𝑚
2𝜋

𝑠𝐴 𝑟, 𝜑, 𝛼, 𝑔(𝜔)

E-field for an

off-center beam

moving at:

courtesy R. Shafer
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Numerical Analysis of Low-β Beam Effects

• Button BPM analysis
– Beam pipe 𝑹 = 𝟑𝟎𝒎𝒎
– Gaussian bunch 𝝈 = 𝟎. 𝟏𝟓 𝒏𝒔
– Beam velocity 𝟎. 𝟏 < 𝜷 < 𝟎. 𝟑
– Operating frequencies 𝒇 = 𝟑𝟐𝟓, 𝟔𝟓𝟎, 𝟗𝟕𝟓𝑴𝑯𝒛

• Discussion of the results
– BPM electrode signals, i.e. the waveform and 

frequency spectrum are position dependent
 Therefore the BPM position characteristic is 

frequency dependent for low 𝜷 beams

 The position sensitivity is reduced at low 𝜷, 
particular when operating at high frequencies

courtesy P. Kowina
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Beam Coupling Impedance

• The wake potential

– Lorenz force on 𝒒𝟐 by the

wake field of 𝒒𝟏:

– Wake potential of a structure, 

e.g. a discontinuity driven by 𝒒𝟏

 Longitudinal and transverse components of the wake 

potential are related (Panofski-Wenzel theorem)

 The beam coupling impedance is the frequency 

domain representation of the wake potential

– For resonant structures the wake potential can be described 

by a multipole expansion of the eigenmodes (HOMs), e.g.:

𝑊⊥
𝑛

𝑠 = 𝑐෍

𝑖

𝑅(𝑛)

𝑄
𝑖

sin
𝜔𝑖𝑠

𝑐
𝑒𝑥𝑝 −

𝜔𝑖𝑠

2 𝑄𝑒𝑥𝑡 𝑖𝑐

𝑭 =
𝒅𝒑

𝒅𝒕
= 𝒒𝟐 𝑬 + 𝒄𝒆𝒛 × 𝑩

𝑾 𝒙𝟐, 𝒚𝟐, 𝒙𝟏, 𝒚𝟏, 𝒔 =
𝟏

𝒒𝟏
න

𝟎

𝑳

𝒅𝒛 𝑬 + 𝒄𝒆𝒛 × 𝑩
𝒕= 𝒔+𝒛 /𝒄
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Button BPM Beam Coupling Impedance

• Longitudinal coupling impedance of a button BPM electrode

– Related to the transfer impedance 𝒁𝒃𝒖𝒕𝒕𝒐𝒏(𝝎) and scales with 𝒓𝒃𝒖𝒕𝒕𝒐𝒏
𝟒

– The gap between button and pipe acts as slot resonator:

– Thickness and shape 

of the button have 

significant influence 

on the coupling impedance 

𝒁∥𝒃𝒖𝒕𝒕𝒐𝒏 𝝎 = 𝝓
𝝎𝟏

𝝎𝟐
𝒁𝒃𝒖𝒕𝒕𝒐𝒏(𝝎)

𝑍∥𝑔𝑎𝑝(𝜔) ≈ 𝑗
𝑍0𝜔 𝑟𝑏𝑢𝑡𝑡𝑜𝑛 + 𝑤𝑔𝑎𝑝

3

8𝑐𝑟𝑝𝑖𝑝𝑒
2 ln 32 𝑟𝑏𝑢𝑡𝑡𝑜𝑛 + 𝑤𝑔𝑎𝑝 /𝑤𝑔𝑎𝑝 − 2

courtesy H. Duarte
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Coupling Impedance Studies for Sirius

22

1 2

2

1





























chpr

pHm
r

t

p

rr

mc
f





hb

Hm
c

rr

mc
f






1

•εr: dielectric permittivity

•m: azimuthal index and 

•p: longitudinal mode number

•rp: insulator pin radius

•rh: housing radius

•rb: button radius

•tc: ceramics thickness

Trapped H-modes in the 

insulator dielectric

Trapped H-modes in the button

• Frequencies of 

trapped modes in the 

button electrode:

courtesy H. Duarte
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The Ideal BPM Read-out Electronics!?

• Time multiplexing of the BPM electrode signals:

– Interleaving BPM electrode signals by different cable delays

– Requires only a single read-out channel!

Beam

A

D

C
A

D

C
A

D

C
A

D

C

FPGA
Fiber

Link
DAQ

PSCLK

BPM pickup 

(e.g. button, stripline)
Digital BPM electronics 

(rad-hard, of course!)

Very short

coaxial cables

“Super” ADCs “Monster” FPGA
“Ultra” low 

jitter clock!

TB/s

link
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BPM Building Blocks

• BPM pickup

– RF device, EM field detection, 

center of charge

– Symmetrically arranged electrodes, 

or resonant structure

• Read-out electronics

– Analog signal conditioning

– Signal sampling (ADC)

– Digital signal processing

Analog 
Signal 

Conditioning

Digital Signal 
Processing

Data 
Acquisition

Trigger &
Timing
Control

Power 
Supply & 

Misc.

BPM Pickup

position

data

control

system

(LAN)

timing,

trigger

signals

feedback bus

(if applicable)

– Data acquisition and control 

system interface

– Trigger, CLK & timing signals

– Provides calibration signals or 

other drift compensation methods

C
A
L

A
D
C

CLK

Minimize?!
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Bunched Beam BPM Signals

• Bunched beam signals from a broadband BPM are short in time

– Single bunch responses convert to nsec or sub-nsec pulse signals

– The beam position information is amplitude modulated (AM) on a large 
(common mode) beam intensity signal!

• In ring accelerators, the beam position varies turn-by-turn

– The position signal spectrum is related to some machine parameters 

– Dipole moment spectrum of a single Gaussian bunch (simplistic case):

courtesy 

M. Gasior

courtesy R. Siemann𝑍𝑏𝑝𝑚 𝜔 𝐼𝑏𝑒𝑎𝑚 𝜔 =

𝐷 𝜔 = 𝜔𝑟𝑒𝑣𝐴0𝑄 ෍

𝑛=−∞

+∞

𝛿 𝜔 − 𝑛𝜔𝑟𝑒𝑣 +𝝎𝜷 𝑒𝑥𝑝 −
𝜔 −𝝎𝜷 −𝝎𝝃

2
𝜎2

2

betatron

frequency

chromatic

frequency
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Bunched Beam BPM Signals (cont.)

• Bunch length and beam formatting define the signal spectrum

– E.g. 𝒇𝒓𝒆𝒗, 𝒇𝒃𝒖𝒏𝒄𝒉 in circular or linear accelerators

• Basically, the position information of a broadband BPM 

is available at any frequency

– and is independent of the frequency for relativistic beams 𝒗 ≈ 𝒄

– the broad spectral response of the BPM can be band limited 

without compromising the position detection:

Apply appropriate analog signal conditioning!

button BPM spectrum

with harmonics at 

𝒇𝒓𝒆𝒗 or 𝒇𝒃𝒖𝒏𝒄𝒉
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Signal Processing & Normalization

• Extract the beam position information from the electrode signals: 
Normalization

– Analog using Δ-Σ or 900-hybrids, followed by filters, amplifiers mixers and 
other elements, or logarithmic amplifiers.

– Digital, performing the math on individual digitized electrode signals.

• Decimation / processing of broadband signals

– BPM data often is not required on a bunch-by-bunch basis

 Exception: Fast feedback processors

 Default: Turn-by-turn and “narrowband” beam positions

– Filters, amplifiers, mixers and demodulators in analog and digital to 
decimate broadband signals to the necessary level.

• Other aspects

– Generate calibration / test signals

– Correct for non-linearities of the beam position response of the BPM 

– Synchronization of turn-by-turn and /or bunch-by-bunch data

– Optimization on the BPM system level to minimize cable expenses.

– BPM signals keep other very useful information
other than that based on the beam displacement, e.g.

 Beam intensity, beam phase (timing) 
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Analog Signal Processing Options

Legend:

/ Single channel

Wide Band

Narrow band

Normalizer
Processor

Active
Circuitry

Heterodyne POS = (A-B) 
Synchronous
Detection

AGC
on S

MPX

Electrodes
A, B

Passive

Normaliz.

POS = [log(A/B)] 
= [log(A)-log(B)]

Differential

Amplifier

Logarithm. 

Amplifiers
Individual

Treatment

Limiter,

Dt to Ampl.
Amplitude

to Time
POS = [A/B] 

POS = [ATN(A/B)] 
Amplitude

to Phase

.Limiter,
f to Ampl.

POS = D / SHeterodyneHybrid
D / S

Homodyne
Detection

POS = D / S or
= (A-B)/(A+B)

Sample,Track,
Integr. & Hold

Switch. gain
Amplifier

courtesy G. Vismara
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Examples: RF Analog BPM Processors

• 𝚫/𝚺 broadband

– Hybrid performance

– Phase-matched cables

– Gain switching

• LogAmps: log𝟏𝟎( Τ
𝑨

𝑩)

– Dynamic compression

 Reduced position 

sensitivity

– Limited bandwidth

 TbT: yes, BbB: maybe?!

• Τ𝝅 𝟐-hybrid: arctan( Τ𝑨 𝑩)

– Broadband: BbB

– Phase-matching

– ~40 dB dynamic range

courtesy M. Bozzolan
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Digital BPM Signal Processing

• Why digital signal processing?

– Better reproducibility of the beam position measurement

 Robust to environmental conditions, 
e.g. temperature, humidity, (radiation?)

 No slow aging and/or drift effects of components

 Deterministic, no noise or statistical effects on the position information

– Flexibility

 Modification of FPGA firmware, control registers or DAQ software to 
adapt to different beam conditions or operation requirements

– Performance

 Often better performance, 
e.g. higher resolution and stability compared to analog solutions

 No analog equivalent of digital filters and signal processing elements.

• BUT: Digital is not automatically better than analog!

– Latency of pipeline ADCs (FB applications)

– Quantization and CLK jitter effects, dynamic range & bandwidth limits

– Digital BPM solutions tend to be much more complex than some analog 
signal processing BPM systems

 Manpower, costs, development time, firmware / software maintenance 
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Typical BPM Read-out Electronics

• Typical BPM read-out scheme

– Pipeline ADC & FPGA

 14-16 bit, >300 MSPS, >60 dB S/N

– Separate analog signal 

processing for the channels

AB

C

D

BPF Att

A-Electrode Analog Conditioning

B, C, D Analog same as A

Ctrl

A
D
C 900

CIC FIR

Σ

M

E

M

O

R

Y

NCO

I-Channel

Q-Channel same as I

NB

WB

raw

AB

C

D

BPF Att

C
o

o
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in
ate

Tran
sfo
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atio

n

A-Electrode Analog Conditioning

B, C, D Analog same as A

Ctrl LO

CLK & 
Timing

A Data

• Choices:

– Analog 

downconverter?!

– RF locked (sync) 

CLK & LO signals?!

 No I-Q required

AB

C

D

BPF Att

A-Electrode Analog Conditioning

B, C, D Analog same as A

Ctrl
with analog downconverter

A
D
C 900

CIC FIR

Σ
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E
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Q-Channel same as I
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WB
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D

BPF Att BPF LPF
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o
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in
ate

Tran
sfo
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n

A-Electrode Analog Conditioning

B, C, D Analog same as A

Ctrl LO

CLK & 
Timing

A Data
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“Ringing” Bandpass-Filter (BPF)

Single Bunch Responses:
Stripline BPM: 

Bessel

Button BPM: 

Bessel

Stripline BPM: 

Butterworth

fcenter: 500 MHz

BW: 25 MHz

• BPM electrode signal energy 

is highly time compressed

– Most of the time: “0 volt”!

• A “ringing” bandpass filter 

“stretches” the signal

– Passive RF BPF

Matched pairs!

– fcenter matched to frev or fbunch

Quasi sinusoidal waveform

– Reduces output signal level

Narrow BW: longer ringing, 

lower signal level

– Linear group delay designs

Minimize envelope ringing

Bessel, Gaussian, time 

domain designs
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Time Domain BPF Optimization

• Delay-line “comb” or analog FIR BPF

– 500 MHz BPF R&D for LHC iBPMs

• Rectangular impulse response approximation

– 375 MHz lumped element BPF, BW ~10 MHz

System ADC sampling 
freq: 3.2 GHz
Nyquist: 1.6 GHz

Beam measurement: Time domain Beam measurement: Frequency domain

2·10
-8

4·10
-8

6·10
-8

8·10
-8

1·10
-7

time

-1

-0.5

0

0.5

1

a
m
p
l
i
t
u
d
e

Impulse response

theory

Impulse response

measurement
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“Ringing” BPF & Multi-Bunches

• Bunch spacing < BPF ringing time:

– Superposition of single bunch BPF responses

– More continuous “ringing”, smearing of SB responses

• Bunch spacing < BPF rise time

– Constructive signal pile-up effect

Output signal level increases linear 

with decreasing bunch spacing 
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Fighting Reflections!

• Impedance matching

of a button BPM

– Broadband with 

dual network!

long coaxial cable

𝒁𝟎
Sig.

Proc.

BPM

Pickup

(capacitive)

beam

filter network

matched to 𝒁𝟎
(reflective, loss-less)

accelerator

tunnel

equipment

building
𝒗𝒄 𝒗𝒄

BPM signal reflected signal
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Analog Digital Converter

• Quantization of the continuous 

input waveform at equidistant 

spaced time samples

– Digital data is discrete in 

amplitude and time

• LSB voltage (resolution)

– E.g. 61 μV (14-bit), 

15 μV (16-bit) @ 1 volt VFSR

• Quantization error 

(dynamic range)

– E.g. 84 dB (14-bit), 96 dB (16 bit)

• SNR limit due to 

aperture jitter

– E.g. 62 dB@500 MHz, 0.25 psec

(equivalent to EOB=10.3)

Q =
VFSR

2M

SQNR = 20log10(2M )

SNR = -20log10(2p f ta )

M=3-bit ADC
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14-16 bit ADC Technology (2018)

Type Res.

[bit]

Ch. Power

[W]

fs (max)

[GSPS]

BW

[GHz]

SNR @ fin

[dB @ GHz]

AD AD9208 14 2 3.3 3 9 59.5 @ 2.6

TI ADC32RF45 14 2 6.4 3 3.2 56.8 @ 2.6

TI ADS54J60 16 2 2.7 1 1.2 67.5 @ 0.35

• Dual Channel

– I-Q sampling with 

separate ADCs

• Pipeline architecture

– Continuous CLK

– Data latency

• Signal post-processing

– Mixers, NCO, CIC, etc.

TI AD9208 Simplified Block Diagram
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Sampling Theory

• A band limited signal x(t)  with B=fmax

can be reconstructed if

– Nyquist-Shannon theorem

– The exact reconstruction of x(t) by xn=x(nT):

• Aliasing of a sampled sin-function

– Samples can be interpreted by 

x(t) = xn
sinp (2 fmaxt -n)

p (2 fmaxt -n)
n=-¥

+¥

å = xn sinc
n=-¥

+¥

å
t -nT

T

fs ³ 2 fmax

falias(N) = f -N fs

to be avoided!

courtesy Wikipedia
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Bandpass or Undersampling

2 fhi

n
£ fs £

2 flo

n-1

with: 1£ n £
fhi

fhi - flo

• A bandpass signal flo=A, 

fhi=A+B is down-converted 

to baseband

– The sampling frequency 

has to satisfy:

• Digital down-conversion 

(DDC) of BPM signals

– BPM -> BPF (Bessel)

 fcenter: ~500 MHz

BW (3 dB): 25 MHz

 T=4 ns, fs=200 MHz

(fhi/flo=550/450 MHz, n=5.5)

courtesy Wikipedia

samples perfectly aligned

with the phase of the signal

samples wrong aligned

with the phase of the signal
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I-Q Sampling

• Vector representation of sinusoidal signals:

– Phasor rotating counter-clockwise (pos. freq.)
Q

I

A

I

Q
φ0

I: in-phase

component

Q: quadrature-phase

componenty(t) = I sinwt +Q coswt

I = A cosj0 A = I 2 +Q2

Q = A sinj0 j0 = arctan
Q

I

æ

è
ç

ö

ø
÷

• I-Q sampling at: fs = 4 f

y(t) =1.33sin 2p +p / 5( )

Q(t0)
I(t1)

An+1 = Qn
2 + In+1

2

A=1.33
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I-Q Demodulation of BPM Signals

• Digitized sinusoidal waveform data is 

sampled, or undersampled at fs/n = 4xfin

– Also called digital down-converter (DDC)

– Gives amplitude and phase of the input signal

 Phase reference cold be fs (CLK), 

of a separate reference signal

• “Crawling” phase issue

– Downconvert to fbb ≠ 0

– For TbT BPM measurements ensure fbb=i frevn=2
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Digital Down-Converter

• Goals

– Convert the band limited

RF-signal to baseband

(demodulation)

– Data reduction (decimation)

• DDC Building blocks:

– ADC

 Single fast ADC

(oversampling)

– Local oscillator

Numerically controlled oscillator (NCO)

based on a direct digital frequency synthesizer (DDS)

– Digital mixers (“ideal” multipliers)

– Decimating low pass (anti alias) filters

 Filtering and data decimation.

 Implemented as CIC and/or FIR filters

courtesy T. Schilcher
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Cascaded Integrator Comb Filter (CIC)

H (z) = H I

N (z)HC

N (z)

=
1

1- z-1( )
N

1- z-RM( )
N

= z-k

k=0

RM-1

å
æ

è
ç

ö

ø
÷

N

• Decimating CIC

– Boxcar filter (anti aliasing) 

 non-recursive 

moving average filter

– Decimator

Data rate reduction

– Comb filter

Recursive running-sum

• Economical implementation

– No multiplier, minimum storage requirements

FIR filter

(stable)

Z-1

Σ
+ +

Z-1

Σ
+ +

R

Z-M

Σ
+ -

Z-M

Σ
+ -

N integrators N combsdecimator

fin/Rfin fout=fin/R
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CIC Filter (cont.)

• CIC frequency response

– With respect to the 

output frequency:

– M: differential delay,

determines the location

of the zeros:

– N: number of CIC stages

– R: decimation ratio

 Has little influence on the 

filter response

• CIC plus FIR compensation filter

– Compensate CIC passband drop

H ( f ) =

sinpM
f

fout

sin
p

R

f

fout

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

N

fout =
fin

R

f0 = k
fout

M

courtesy 

T. Schilcher

M=2

R=4
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CIC Aliasing – Imaging

• CIC aliasing / imaging bands are around: (i- fc ) £ f £ (i+ fc )

N = 4

M = 1

R = 7

fc = 1/8

CIC Aliasing / Imaging

Bands

fc

2fc 2fc 2fc

CIC Passband

courtesy 

E. Hogenauer
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Example: ATF DR BPM Signal Processing

ADC Input
14 Bits

71.4 MHz

NB Filter
1.4kHz output

16 Bits/ch

32 ch
/

NB Gate

WB Gate(s)

DDR RAM

NB Data
TBT Data
Raw Data

Σ
50Hz

VME
NB Data

VME
Raw Data

TBT Filter

VME
TBT Data

8 ch
/

Trigger
DAQ SM

Ch delays (clocks)
Gates in Turns

WB Gate(s)

NB Gate

VME
NB Sums

VME
IRQ

reset latch

reset

latch

8 ch
/

32 Registers

average NB data

with 𝒏/𝒇𝒑𝒐𝒘𝒆𝒓
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ATF BPM Narrowband Signal Processing

• Process 8 ADC channels in parallel up to FIR filter

• Digitally downconvert each channel into I,Q then filter I,Q independently

• CIC Filters operating in parallel at 71.4MHz

 Decimate by 17KSPS to 4.2KSPS output rate

• 1 Serial FIR Filter processes all 32 CIC Filter outputs

 80 tap FIR (400 Hz BW, 500 Hz Stop, -100 db stopband) -> 1KHz effective BW

 Decimate by 3 to 1.4 KSPS output rate -> ability to easily filter 50Hz

• Calculate Magnitude from I,Q at 1.4KHz 

 Both Magnitude and I,Q are written to RAM

 Also able to write I,Q output from CIC to RAM upon request

ADC Input

14 Bits

69 MHz

X

NCO (sin, cos)

24 Bits Phase

(~1 Hz)

I

Q
16 Bits

CIC
5 Stages
R=17001

DDC
24 Bits

4.2 KSPS

FIR (80 taps)
LPF 500Hz

Decimate 3

Bit
Shift

Select

Significant

Bits

20 Bits

4.2 KSPS

16 Bits

1.4 KSPS

I

Q

- Denotes Peak Detectors to optimize scaling
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Long-Term Drift Compensation

• Libera crossbar switching technique

– <100 nm stability over 14 hours

• Calibration tone 

technique (only in 

narrowband 

operation) 

ATF (KEK)

courtesy N. Eddy

courtesy P. Leban
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Time-multiplexed BPM Read-out

25 ns

Beam

25 ns

Stripline

pick-up

Delay 

12.5 ns

Delay 2 

ns

Filter 

output
Electronic rackTunnel

LP 

filter



Page 45June, 2018 – BI CAS 2018 – M. Wendt

Prototyping Time-multiplexed BPM

• Target: LHC interlock BPMs

– Typical one-turn acquisition (first 100 ns):

• Hardware:

– LHC stripline BPM with delay-lines and in-house comb BPF

– Commercial FMC digitizer Vadatech FMC225 (12-bit, 4 GSPS)

– CERN VME FMC carrier

• Raw data analysis

– Python scripts, bunch-by-bunch RMS algorithm

1st bunch 2nd bunch 3rd bunch
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Compensated Diode Detector for BOM

Sub-micrometre resolution can be achieved with relatively simple 
hardware and signals from any position pick-up.

To be used for the future LHC collimators with embedded BPMs.

courtesy M. Gasior
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Signal/Noise & 

Theoretical Resolution Limit

• Minimum noise voltage at the 1st gain stage:

– With the stripline BPM and Bessel BPF example:

R = 50 Ω, Δf = 25 MHz  vnoise = 4.55 μV (-93.83 dBm)

• Signal-to-noise ratio:

– Where Δv is the change of the voltage signal

at the 1st gain stage due to the change 

of the beam position (Δx, Δy).

– Consider a signal level v ≈ 22.3 mV (-20 dBm)

Bessel BPF output signal of the stripline BPM example

– 22.3 mV / 4.55 μV ≈ 4900 (73.8 dB) would be the required dynamic 

range to resolve the theoretical resolution limit of the BPM

Under the given beam conditions, 

e.g. n=1e10, σ=25mm, single bunch, etc.

 The equivalent BPM resolution limit would be: Δx=Δy=0.66μm

(assuming a sensitivity of ~2.7dB/mm)

vnoise = 4kBT RDf

S / N =
Dv

vnoise
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S/N & BPM Resolution (cont.)

• Factors which reduce the S/N

– Insertion  losses of cables, connectors, filters, couplers, etc.

 Typically sum to 3…6 dB

– Noise figure of the 1st amplifier, typically 1…2 dB

– The usable S/N needs to be >0 dB, 

e.g. 2.3 dB is sometimes used as lowest limit. (HP SA definition)

– For the given example the single bunch / single turn resolution 

limit reduces by ~10 dB (~3x): 2…3 μm

• Factors to improve the BPM resolution

– Increase the signal level

 Increase BPM electrode-to-beam coupling, 

e.g. larger electrodes

Higher beam intensity

– Increase the measurement time, apply statistics

Reduce the filter bandwidth (S/N improves with 1/√BW)

 Increase the number of samples (S/N improves with √n)



Page 49June, 2018 – BI CAS 2018 – M. Wendt

Singular Value Decomposition (SVD)

B1s1 B2s2 ... BMs1

B1s2 B2s2 ... BMs2

B1s3 B2s3 ... BMs3

B1s4 B2s4 ... BMs4

... ... ... ...

B1sP B2sP ... BMsP
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• SVD:          B = U S VT

• The BPM matrix B is decomposed into 3 matrices, U, S, V.

– BPM numbers B1…BM, shot numbers s1…sP

• The values of the diagonal of the S matrix expresses the level of 

correlation between U (temporal) and V (spatial) orthogonal matrices

– Correlation appears, e.g. due to beam motion effects (x, x’, phase, 

energy,…) or common systematics (CLK jitter,…) in all BPMs.

– The SVD algorithm assumes an over constrained system

 # of BPMs >> degrees of freedom of correlated data, e.g. beam motion

– We can set some high value Snn = 0 (with great care!) to estimate the 

uncorrelated noise of the individual BPMs (resolution).
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CERN Linac 2: BPM Analysis

• SVD analysis of a new 

BPM read-out electronics

– Could identify new electronics

– Removed beam motion using 

SVD, modes 1…3

 Alternative: Split BPM electrode 

signal to both inputs

Standard deviation of BPM 1…20

(raw BPM data)

blue: horizontal

red: vertical

Singular values,

normalized: mm scale

blue: horizontal

red: vertical

Low correlation values

(“noise floor”, <50μm values)

High correlation values

(>100μm values)

Standard deviation of BPM 1…20

(After SVD, reducing modes 1…3)

blue: horizontal

red: vertical

Resolution BPM #19:

3.7μm horizontal

6.2μm vertical
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Summary & Final Remarks

• An introduction in the technology of BPMs was presented

– Basics on BPM pickups and beam signals

– Some technical aspects on read-out electronics

• Many interesting details cold not be covered

– BPM pickup design and optimization

 Including the minimization of the beam coupling impedance

– Details on RF feedthroughs

– BPM system aspects

 Infrastructure, trigger and timing signals, commissioning

– In-house design vs. industry solutions

– Testing and calibration

• BPMs are complex instrumentation systems

– Teamwork, teamwork, teamwork!!!

• Refinements, improvements, corrections, and a few additional 

aspects on BPMs in the BI CAS proceedings


