Introduction to Optics: basics, components, diffraction

Ten years after the last course on accelerator beam diagnostics in Dourdan (France) the CERN accelerator school will again offer such a course in 2018 – close to Helsinki (Finland). This is intended to be of interest to staff and students in accelerator laboratories, university departments and companies manufacturing accelerator equipment who wish to learn about beam instrumentation technologies, data treatment and accelerator performance diagnostics.

The course is split into morning lectures and afternoon “hands-on” courses. The lectures will focus on the typical instruments used in high and low energy linear and circular accelerators, introducing examples of their application and some elementary background on particle dynamics.

For the “hands-on” courses the participants will be split into groups to work with real equipment on beam position measurements, optical diagnostics, radio frequency measurements and digital signal processing.

Participants will leave the school having acquired a detailed understanding of how beam diagnostic measurements are performed and practical experience of how the instrumentation used is built and operated.

Contact:
CERN Accelerator School
CH – 1211 Geneva 23
cas.web.cern.ch
Accelerator.school@cern.ch

Illustration © Sampo Soveri

Beam Instrumentation
Tuusula, Finland
2 - 15 June 2018

Stephen Gibson
John Adams Institute for Accelerator Science
Royal Holloway, University of London, UK
Introduction to Optics: overview

Outline

- **Motivation:** why study optics?
- **Geometric Optics**
 - Basics of refractive systems
 - Designing components, ray tracing
- **Interference**
 - Principles of Interferometry
 - Michelson, Mach Zehnder & FSI
- **Diffraction:**
 - Fourier optics, convolution theory.
 - Applications in diagnostics

Disclaimer: focus on optics relevant for Beam Diagnostics
Why study optics?

Light matters...

Optics: the study of the behaviour and properties of light, including the transmission and deflection of radiation

underpins

Photonics: the science and technology of generating, controlling, and detecting photons

• Our modern world relies on light-based technologies:
 – Smart phones, laptops, displays and data storage
 – Fast internet, fibre-optic and satellite telecommunications
 – Medical applications, advanced imaging, metrology
 – Media production and broadcasting, 3D cinema
 – Energy from solar power, lighting technology...

Photonics market is €300 billion: double that by 2020.
Why study optics?

Centrality to modern physics...

- Optics is an essential for most research in physics:
 - Astronomy and cosmology
 - Microscopy and crystallography
 - Spectroscopy and atomic theory
 - Quantum theory
 - Quantum optics, quantum computing
 - Relativity theory
 - Ultra-cold atoms
 - Laser nuclear ignition
 - Particle accelerators present and future
 - Holographic imaging

Strontium ion traps for optical frequency standards

Laser cooling in atomic traps:

European Southern Observatory

National Ignition Facility, US
Why study optics?

Beauty of optical phenomena

Optics on display near Tuusula, Finland
Why study optics?

... giant lenses are awesome?!
CAS optics course aims

These 3 lectures aim to equip you with enough knowledge of optics, lasers and practical setups to understand and start to develop your own versatile and precise beam diagnostics.

- **Lecture 1 [Wed 12h]: Introduction to Optics: basics, components, diffraction**
 - Fundamental concepts, how light behaves in different circumstances.
 - How to calculate, and create good optics design.

- **Lecture 2 [Thurs 11h]: Lasers, technologies and setups**
 - How lasers work, different types, understanding their parameters and cost.
 - Including optical fibres for data transmission and readout.

- **Lecture 2 [Fri 12h]: Applications of lasers in beam instrumentation**
 - Examples of some optical and laser based beam diagnostics and what type of precision is achievable.
...and there was light

- Starting from James Clerk Maxwell’s equations (1865) for electric E and magnetic B fields, in the absence of charge ($\rho=0$) and currents ($J=0$):

 Gauss’s law for electricity: $\nabla \cdot E = \frac{\rho}{\epsilon_0} = 0$

 No magnetic monopoles: $\nabla \cdot B = 0$

 Faraday’s law of induction: $\nabla \times E = -\frac{\partial B}{\partial t}$

 Ampère’s law: $\nabla \times B = \mu_0 J + \epsilon_0 \mu_0 \frac{\partial E}{\partial t} = \epsilon_0 \mu_0 \frac{\partial E}{\partial t}$.

- **Take the curl and use vector identity** $\nabla \times (\nabla \times A) = \nabla (\nabla \cdot A) - \nabla^2 A$

 to show:

 - $\nabla^2 E = \epsilon_0 \mu_0 \frac{\partial^2 E}{\partial t^2}$
 - $\nabla^2 B = \epsilon_0 \mu_0 \frac{\partial^2 B}{\partial t^2}$
...and there was light

- Starting from James Clerk *Maxwell’s equations* (1865) for electric E and magnetic B fields, in the absence of charge ($\rho=0$) and currents ($J=0$):
 - Gauss’s law for electricity: $\nabla \cdot E = \frac{\rho}{\epsilon_0} = 0$
 - No magnetic monopoles: $\nabla \cdot B = 0$
 - Faraday’s law of induction: $\nabla \times E = -\frac{\partial B}{\partial t}$
 - Ampère’s law: $\nabla \times B = \mu_0 J + \epsilon_0 \mu_0 \frac{\partial E}{\partial t} = \epsilon_0 \mu_0 \frac{\partial E}{\partial t}$.

- **Take the curl and use vector identity** $\nabla \times (\nabla \times A) = \nabla (\nabla \cdot A) - \nabla^2 A$

 to show:

 $\nabla^2 E = \epsilon_0 \mu_0 \frac{\partial^2 E}{\partial t^2}$

 $\nabla^2 B = \epsilon_0 \mu_0 \frac{\partial^2 B}{\partial t^2}$

 $\nabla^2 \psi = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2}$

- **These are wave equations with velocity:** $v = \frac{1}{\sqrt{\epsilon_0 \mu_0}} = 3 \times 10^8 \text{ m s}^{-1}$

 Light is an electromagnetic wave
Basis of Geometric Optics

- One solution of the 3-dimensional wave equation is plane waves
 \[U(x, y, z, t) = U_0 \exp[i(\mathbf{k} \cdot \mathbf{r} - \omega t)] \]

- In optics, typically consider simplified solution to a 1D wave equation:
 \[U(z, t) = U_0 \cos\left(\frac{2\pi}{\lambda}(z - ct)\right) = U_0 \cos[(kz - \omega t)] \]
 - \(k \) is wave number, \(2\pi/\lambda \)
 - \(z \) is the direction of travel
 - \(\lambda \) the wavelength
 - \(c \), speed of light
 - \(\omega = 2\pi c/\lambda \), the angular frequency
 [Note, no phase offset in this solution]

- In an isotropic media, light travels in straight lines, known as rays.

- Geometric optics is a technique for determining the light path through multiple interfaces between media of different refractive indices.

Stephen Gibson – Introduction to Optics – CAS Beam Instrumentation, 6 June 2018

Two basic assumptions:

1. light travels in straight lines, known as rays, in each uniform medium.
2. light reflects and/or refracts at an interface between different media

• Huygens’ construction can be used to derive Snell’s law of refraction at an interface:

Ray theory and refraction

Light travels slower in medium of higher refractive index, \(v = c/n \)

Valid for isotropic media and apertures much larger than the wavelength of light.

Snell’s Law of refraction

\[
\frac{n_1 \sin \theta_1}{n_2 \sin \theta_2} = \frac{c}{D} \]

\[
\sin \theta_1 = \frac{v_1}{D} \]

\[
\sin \theta_2 = \frac{v_2}{D} \]

Light has different speeds in each medium \(v = c/n \).

Distances travelled are \(v_1 t \) and \(v_2 t \) in same time \(t \).
Basic components: lenses

- A converging lens is basically a stack of prisms, such that paraxial rays converge in the focal plane.
- The location and magnification of an image can be found by ray tracing:

1. A ray passing through \(f_1 \) before refraction, is parallel to the principal axis after refraction.
2. A ray parallel to the principal axis before refraction, travels through \(F_2 \) after refraction.
3. A ray passing through \(P \) is undeviated.

Focal plane

lens focal length, \(f \)

Lateral magnification for a thin lens

\[
\frac{h_2}{h_1} = \frac{x_2}{x_1}
\]

Longitudinal magnification for a thin lens

\[
\frac{m}{x_1} = \frac{1}{x_2} - \frac{1}{2f}
\]

Lens equation (note \(x_1 \) is negative)

\[
\frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{f}
\]
Basic components: Lens types and systems

- **Constructing an optical instrument typically requires multiple lenses.**
- **One can apply the lens equation multiple times, or use the effective focal length of the combination.**
- **However, there is a better way...**

Two thin lenses in contact:

\[
\frac{1}{f_1} + \frac{1}{f_2} = \frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{f_{\text{C}}}
\]

The combined power is the sum of the individual powers for thin lenses in contact.

Two thin lenses separated by distance d:

\[
\frac{1}{f} = \frac{1}{f_{\text{A}}} + \frac{1}{f_{\text{B}}} - \frac{d}{f_{\text{combination}}}
\]

The power of the combination is less than the sum of the powers.

Converging lenses

- Biconvex
- Plano-convex
- Positive meniscus
- Negative meniscus
- Plano-concave
- Biconcave

Diverging lenses
Matrix method of ray tracing

- **A ray is described by the height** h_1 **from the optical axis and angle** h_1'
- **Optical components described by their transfer matrix:**

Free space drift

$$M_D(x_1) = \begin{pmatrix} 1 & x_1 \\ 0 & 1 \end{pmatrix}$$

Action at thin lens

$$M_L(F) = \begin{pmatrix} 1 & 0 \\ \frac{-1}{f} & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -F & 1 \end{pmatrix}$$

Example of drift-lens-drift:

$$\begin{pmatrix} h_2 \\ h_2' \end{pmatrix} = M_D(x_2)M_L(F)M_D(-x_1) = \begin{pmatrix} h_1 \\ h_1' \end{pmatrix}$$

$$M_D(x_2)M_L(F)M_D(-x_1) = \begin{pmatrix} 1 & x_2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -F & 1 \end{pmatrix} \begin{pmatrix} 1 & -x_1 \\ 0 & 1 \end{pmatrix}$$

$$M_{TR} = \begin{pmatrix} 1 & x_2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -x_1 \\ -F & Fx_1 + 1 \end{pmatrix}$$

$$M_{DR} = \begin{pmatrix} 1 - Fx_2 & -x_1 + Fx_1x_2 + x_2 \\ -F & Fx_1 + 1 \end{pmatrix}$$

- Similar in concept to accelerator optics lattice, note lenses typically focus in both planes simultaneously (unlike quadrupoles)

$$-x_1 + Fx_1x_2 + x_2 = 0 \quad \Rightarrow \quad \frac{1}{x_2} - \frac{1}{x_1} = F = \frac{1}{f}$$

Angle independent image formation:

The lens equation!

Stephen Gibson – Introduction to Optics – CAS Beam Instrumentation, 6 June 2018
Reflection transformations

Leonardo da Vinci famously used mirror writing to obfuscate his notes (he was also left-handed)

A sample of Leonardo’s handwriting

Reflect across \(x=0 \)

\[
(x, y) \rightarrow (-x, y)
\]

\[
\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}
\]

Reflect across \(x=y \)

\[
(x, y) \rightarrow (y, x)
\]

\[
\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}
\]
Optical design with ray tracing software

- Ray tracing divides the real light field into discrete monochromatic rays that are propagated through the system. Can input real light distribution.
- Several professional software suites available, e.g.

OSLO: Optics Software for Layout and Optimization
https://www.lambdares.com/oslo/

ZEMAX
https://www.zemax.com/

WinLens3D - lens design & optimization software
http://www.opticalsoftware.net/index.php/how_to/lens_design_software/winlens3d/
Physical optics: Interference basics

- The wave properties of light give rise to interference between multiple paths, where each path has a phase advance.

\[\delta = \frac{2\pi}{\lambda} d = \frac{2\pi n}{\lambda_0} d \]

- Consider two sinusoidal disturbances at a point at time \(t \), having travelled different distances, \(x_1 \) and \(x_2 \):

\[E_1 = a_1 e^{i(\omega t - kx_1)} = a_1 e^{i(\omega t - \delta_1)} \]
\[E_2 = a_2 e^{i(\omega t - kx_2)} = a_2 e^{i(\omega t - \delta_2)} \]

\[E_1 = a_1 e^{i\phi_1} \text{ and } E_2 = a_2 e^{i\phi_2} \]

- By the principle of superposition the resulting disturbance is the sum of the complex spatial amplitudes \(E = E_1 + E_2 \). We measure the intensity, the square of the sum of \(E \)-fields:

\[I = |E_1 + E_2|^2 \]

\[I = |E|^2 = a_1^2 + a_2^2 + 2a_1a_2 \cos(\delta_2 - \delta_1) \]

Note for identical amplitudes \(a_1 = a_2 \)

\[I = 4a^2 \cos^2\left(\frac{\delta_2 - \delta_1}{2}\right) \]

Constructive o.p.d. = \(m\lambda \)

Destructive o.p.d. = \((m+1/2) \lambda \)
Physical optics: Phasors

- Reminder of phasors, visualisation of the superposition principle,

\[E_1 = a_1 e^{i(\omega t - kx_1)} = a_1 e^{i(\omega t - \delta_1)} = a_1 [\cos(\phi_1) + i \sin(\phi_1)] \]

\[E_2 = a_2 e^{i(\omega t - kx_2)} = a_2 e^{i(\omega t - \delta_2)} = a_2 [\cos(\phi_2) + i \sin(\phi_2)] \]

- \(E = E_1 + E_2 \)
Physical optics: double slit interference

- For infinitesimal slit size, see interference fringes in far field:

\[d \sin \theta = \text{extra path length} = m\lambda = \Delta \delta / k \]

\[I_p = 4 \left(\frac{U_0}{r} \right)^2 \cos^2 \left(\frac{1}{2} k d \sin \theta \right) \]
Physical optics: 2 source interference

- Where should Hermann sit to maximize the volume?
Michelson Interferometer

- **Interferometers are used widely for accurate distance measurements:**
 - If the length of each interferometer arm is fixed we observe some phase Φ at the detector, due to the optical path difference, $L = l_1 - l_2$
 - If one mirror is moved some distance x, we observe a phase change at the detector:

\[
\Delta \Phi = \frac{2\pi}{\lambda} \Delta L
\]

\[
\Phi = \frac{2\pi}{\lambda} (l_1 - l_2) = \frac{2\pi}{\lambda} L
\]

- **Interference fringe counting:**
 - change in phase proportional to change in optical path length

Essentially we count fringes as the path difference is changed.

Φ is the detected phase

L is the optical path difference (n=1)
Interferometer Types

- **The interferometer is an amazingly versatile instrument**
- **Various configurations to create interference by division of amplitude, e.g.**:

 Check surface quality of a lens or optical flat can be tested with interference fringes.
Direct detection of Gravitational Waves

- **Exquisite sensitivity:** gravitational wave typically lengthens and contracts each arm of the interferometer by length of $10^{-21} \times \text{arm length}$

First signal from a binary black-hole

Quadrupole oscillation of space-time

Barry Barish (LIGO) CERN seminar 11/2/16

www.ligo.caltech.edu/video/ligo20160211v10
Finnish Diffraction

- What happens when waves meet an aperture or obstacle in Finland?

 The calm before the storm in Tuusula...
What happens when waves meet an aperture or obstacle in Finland?
Finnish Diffraction

- What happens when waves meet an aperture or obstacle in Finland?
Wave Diffraction

- Diffraction occurs wherever there is an obstacle or aperture

From Teaching waves with Google Earth
doi:10.1088/0031-9120/47/1/73
Light on the edge

- Diffraction fringes at a razor’s straight edge:
Light on the edge

- **Diffraction fringes at a razor’s straight edge:**

 We see similar fringes at the corner...

 ...and at the curved cut out in the centre of the razor:

 - Diffraction at a pinhead

 - Diffraction effects may be helpful or problematic when constructing optical instruments
Light on the edge

- Diffraction fringes: circular, triangular and rectangular apertures:

Fresnel diffraction at a straight edge

- **Consider plane waves incident on a straight-edged obstacle:**
- **We aim to evaluate the intensity at P, by summing all contributions that pass the obstacle**

Consider the intensity at P due to contributions from infinitesimal strip, dh, at height, h:

1) Compared to the phase of a wave from O, the extra phase of the wave from W is

\[\phi(h) = \frac{2\pi}{\lambda} \left[\left(s^2 + h^2 \right)^{1/2} - s \right] \approx \frac{\pi h^2}{\lambda s} \]

Approximation valid for \(h^2 \ll s^2 \)

2) Construct a phasor, \(dx + idy = dh[\exp(i\phi(h))] \), due to infinitesimal strips of height \(dh \) at \(h \):

\[dx = dh \cos \frac{\pi h^2}{\lambda s} \quad \text{and} \quad dy = dh \sin \frac{\pi h^2}{\lambda s} \]
Fresnel diffraction at a straight edge

A thing of beauty: the Cornu spiral

- The phasor will trace out a spiral (with tangent at phase angle $\phi \sim h^2$)

 Usually define a dimensionless variable which represents the distance along the spiral,

 $$v = h \left(\frac{2}{\lambda s} \right)^{1/2}$$

- The spiral coordinates are given by the Fresnel integrals

 $$x = \int_0^v \cos \frac{\pi v'^2}{2} dv'$$

 $$y = \int_0^v \sin \frac{\pi v'^2}{2} dv'$$

Note if phase were linear in h we would have a circle
Fresnel diffraction at a straight edge

A thing of beauty: the Cornu spiral

The arrow length traces out the straight edge pattern, with resultant normalized intensity

\[I = \frac{x^2 + y^2}{2} \]

\[x = \int_0^y \cos \frac{\pi v'^2}{2} dv' \]

\[y = \int_0^y \sin \frac{\pi v'^2}{2} dv' \]

In geometric shadow

Not in geometric shadow

Start in geometric shadow...

length of arrow grows as we move within the shadow
Fresnel diffraction at a straight edge

A thing of beauty: the Cornu spiral

The arrow length traces out the straight edge pattern, with resultant normalized intensity

\[I = \frac{x^2 + y^2}{2} \]

\[x = \int_0^y \cos \frac{\pi v'^2}{2} \, dv' \]

\[y = \int_0^y \sin \frac{\pi v'^2}{2} \, dv' \]

Intensity

- Straight edge
- In geometric shadow
- Not in geometric shadow

Start in geometric shadow...

length of arrow grows as we move within the shadow
Fresnel diffraction at a straight edge

A thing of beauty: the Cornu spiral

The arrow length traces out the straight edge pattern, with resultant normalized intensity

\[I = \frac{x^2+y^2}{2} \]

Predicts that the intensity at \(P \), in line the straight edge is \(\frac{1}{2}(AZ)^2 = 0.25 \), or one quarter of that when no obstacle is present.

\[x = \int_0^v \cos \frac{\pi v'^2}{2} \, dv' \]
\[y = \int_0^v \sin \frac{\pi v'^2}{2} \, dv' \]
Fresnel diffraction at a straight edge

A thing of beauty: the Cornu spiral

The arrow length traces out the straight edge pattern, with resultant normalized intensity

\[I = \frac{x^2 + y^2}{2} \]

\[x = \int_0^y \cos \left(\frac{\pi v'^2}{2} \right) dv' \]

\[y = \int_0^y \sin \left(\frac{\pi v'^2}{2} \right) dv' \]

- In geometric shadow
- Not in geometric shadow
- Reach first maximum:
 Note it is larger than if the obstacle were not present!
A thing of beauty: the Cornu spiral

The arrow length traces out the straight edge pattern, with resultant normalized intensity

\[I = \frac{x^2 + y^2}{2} \]

\[x = \int_0^\gamma \cos \frac{\pi v'^2}{2} dv' \]

\[y = \int_0^\gamma \sin \frac{\pi v'^2}{2} dv' \]
Fresnel diffraction at a straight edge

A thing of beauty: the Cornu spiral

The arrow length traces out the straight edge pattern, with resultant normalized intensity

\[I = \frac{x^2 + y^2}{2} \]

\[x = \int_0^y \cos \left(\frac{\pi v'^2}{2} \right) dv' \]

\[y = \int_0^y \sin \left(\frac{\pi v'^2}{2} \right) dv' \]

In geometric shadow

Not in geometric shadow

Reach first minimum
A thing of beauty: the Cornu spiral

The arrow length traces out the straight edge pattern, with resultant normalized intensity

\[I = \left(\frac{x^2 + y^2}{2} \right) \]

Integrals:

\[x = \int_0^v \cos \left(\frac{\pi v'^2}{2} \right) dv' \]

\[y = \int_0^v \sin \left(\frac{\pi v'^2}{2} \right) dv' \]
Fresnel diffraction at a straight edge

A thing of beauty: the Cornu spiral

The arrow length traces out the straight edge pattern, with resultant normalized intensity

\[I = \frac{x^2 + y^2}{2} \]

In geometric shadow

Not in geometric shadow

Tends to the centre of the spiral, where the intensity = 1.

\[x = \int_0^{v} \cos \left(\frac{\pi v'^2}{2} \right) dv' \]

\[y = \int_0^{v} \sin \left(\frac{\pi v'^2}{2} \right) dv' \]
Far field intensity for a widening slit:

Fraunhofer diffraction, \((\sin^2 \beta)/\beta^2 \)

Transition to Fresnel diffraction

Effectively two knife edges
General Fraunhofer Diffraction in 1D

- To calculate the far field diffraction pattern take the **Fourier Transform** of the transmission function of the diffracting aperture:

\[
I(\theta_x) = \left| E_{\text{res}}(\theta_x) \right|^2 = \left| \int_{-\alpha/2}^{\alpha/2} A(x_s) \exp(-ikx_s \sin \theta_x) \, dx_s \right|^2
\]

Common examples

<table>
<thead>
<tr>
<th>Intensity integral, FT of aperture function</th>
<th>Solution</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single slit:</td>
<td>$I = A_0^2 \frac{\sin^2 \alpha}{\alpha^2}$</td>
<td>$\alpha = \frac{\pi}{\lambda} a \sin \theta_x$</td>
</tr>
<tr>
<td>$I(\theta_x) = \left</td>
<td>E_{\text{res}}(\theta_x) \right</td>
<td>^2 = \left</td>
</tr>
<tr>
<td>Double slit:</td>
<td>$I = A_0^2 \frac{\sin^2 \alpha}{\alpha^2} \cos^2 \frac{\delta}{2}$</td>
<td>$\alpha = \frac{\pi}{\lambda} a \sin \theta_x$, and $\delta = \frac{2\pi}{\lambda} (a + b) \sin \theta_x$</td>
</tr>
<tr>
<td>$I(\theta_x) = \left</td>
<td>\int_{-b/2}^{b/2} \int_{-b/2-a}^{b/2+a} A(x_s) \exp(-ikx_s \sin \theta_x) , dx_s , dx_{x_s} + \int_{b/2}^{b/2} A(x_s) \exp(-ikx_s \sin \theta_x) , dx_s \right</td>
<td>^2$</td>
</tr>
<tr>
<td>N-slit grating</td>
<td>$I = A_0^2 \frac{\sin^2 \alpha \sin^2 N\beta}{\alpha^2 \sin^2 \beta}$</td>
<td>$\alpha = \frac{\pi}{\lambda} a \sin \theta$ and $\beta = \frac{\delta}{2} = \frac{\pi}{\lambda} d \sin \theta$</td>
</tr>
<tr>
<td>$I(\theta_x) = \left</td>
<td>\int_{d/2}^{N d/2} \int_{d/2}^{N d/2} A e^{-ikx_s \sin \theta_x} , dx_s + \int_{d/2}^{N d/2} A e^{-ikx_s \sin \theta_x} , dx_s + \int_{2d/2}^{N d/2} A e^{-ikx_s \sin \theta_x} , dx_s + \cdots + \int_{(N-1)d/2}^{(N-1)d/2} A e^{-ikx_s \sin \theta_x} , dx_s \right</td>
<td>^2$</td>
</tr>
</tbody>
</table>
Diffraction in 2D

- **Rectangular slit:**

\[
I(\theta_x) = \left| \int_{-a/2}^{a/2} \int_{-b/2}^{b/2} A(x_s) \exp(-ikx_s \sin \theta_x) \exp(-iky_s \sin \theta_y) \, dx_s \, dy_s \right|^2
\]

\[
I = A_0^2 \frac{\sin^2 \alpha \sin^2 \beta}{\alpha^2 \beta^2}, \quad \text{where} \quad \alpha = \frac{\pi}{\lambda} a \sin \theta_x \quad \text{and} \quad \beta = \frac{\pi}{\lambda} b \sin \theta_y
\]

- **Circular aperture:**

\[
E_{\text{res}}(\rho_d, \theta_d) = \int_0^{2\pi} \int_0^{\rho_d} A(x_s) \rho_s \exp\left[-\frac{ik}{L} \rho_s \cdot \rho_d \cdot \cos(\theta_s - \theta_d)\right] \, d\rho_s \, d\theta_s
\]

\[
E_{\text{res}} = A_0^2 \frac{J_1^2(\alpha)}{\alpha^2}, \quad \text{where} \quad \alpha = \frac{ka \rho_d}{L}
\]

\[
\theta = \frac{1.22 \cdot \lambda}{\rho_d}
\]
Convolution visualized

• The convolution function:

\[h(x) = f(x) \otimes g(x) = \int_{-\infty}^{\infty} f(x')g(x' - x) \, dx' \]

■ The convolution theorem:
 – F(k) is the Fourier Transform of f(x)
 – G(k) is the Fourier Transform of g(x)
 – H(k) is the Fourier Transform of h(x)
 – Then:

\[H(k) = F(k) \cdot G(k) \]

– The Fourier transform of a convolution of f and g is the product of the Fourier transforms of f and g
Convolution theorem

Spatial domain 1 Fourier transform 1 Spatial domain 2 Fourier transform 2

Spatial domain

multiplication convolution

Fourier transform (frequency domain)
Spatial filtering

The 4F system (telescope with finite conjugates one focal distance to the left of the objective and one focal distance to the right of the collector, respectively) consists of a cascade of two Fourier transforms

\[\mathcal{F} \{ \mathcal{F} \{ g(x, y) \} \} = g(-x, -y) \]

Objective lens

- Plane wave illumination
- Thin transparency

Fourier plane (pupil plane)

- Collector lens
- Image plane

\[y'' = \lambda f v \]
\[x'' = \lambda f u \]
Pin hole as a low pass filter

- A pinhole aperture placed at the focus of the lens acts in the Fourier plane:
 - This eliminates structure with higher spatial frequencies, which produce light furthest from the central position.
 - A microscope objective and pinhole is typically used to remove aberrations and improve the quality of a Gaussian laser beam.
Spatial filtering in image processing

Fourier plane

<table>
<thead>
<tr>
<th>Unfiltered</th>
<th>Low pass</th>
<th>High pass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Image plane

<table>
<thead>
<tr>
<th>Unfiltered</th>
<th>Low pass</th>
<th>High pass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Sun’s chromosphere is 4 orders of magnitude less dense than the photosphere (which itself is three to four orders less dense than air at sea level).

The chromosphere becomes directly visible during an eclipse.

J. Egberts, et al., JINST 5 P04010 (2010)
Application: Coronagraph for LHC beam halo

A. Goldbatt et al. MOPG74m IBIC2016

Observe synchrotron light form LHC:

- Opaque disk blocks the beam core.
- However, the limited diameter of the object lens creates unwanted diffraction, which overlays the halo.
- By adding the field lens to image the objective lens, the unwanted diffraction moves radially out.
- A Lyot stop is then used to block the diffraction, allowing only the LHC halo to be imaged.

![Diagram of the Lyot coronagraph](image1.png)

Figure 2: Sketch of diffraction pattern at the objective lens

![Diagram of the LHC beam halo monitor](image2.png)

Figure 4: 3D drawing of the LHC halo monitor.

Authors:

G. Trad, T. Mitsuhashi, E. Bravin, A. Godblatt, F. Roncarolo

First Observation of the LHC Beam Halo Using a Synchrotron Radiation Coronagraph

http://inspirehep.net/record/1626217/files/tuoab2.pdf

References:

[1–4]

Keywords: LHC, Beam Halo, Coronagraph, Synchrotron Light

Abstract:

Lyot's solution consisted of adding a field lens, which from the limited aperture of the objective lens, which images the objective lens and thus shifts the diffraction pattern at the objective lens image plane in order to place the mask. The coronagraph is designed to be used both at injection and collimation system is 3.5x4.5mm. This implies that at top energy, the aperture available for beam imposed by the background noise, which has mainly two sources: reflection and Mie scattering. The Fig. 6 shows an image obtained during this test. A light spot of intensity 10^{-4} is clearly visible on the right side of the mask only, with respect to the core intensity at image plane. It is limited by the background level. The same procedure as the one described in the test bench leads to a uniform increase of the background level. The prototype beam halo monitor installed in the LHC leads to a uniform increase of the background level. The performance of the coronagraph is defined by its ability to resolve the halo-core contrast, that is to say the ratio of the halo intensity with respect to the beam halo,
Summary of ‘Introduction to Optics’

- The simple **refractive nature** of electromagnetic waves enables complex optical instruments to be designed from multiple elements:
 - Light propagation is typically calculated by dedicated ray tracing software, based on matrix methods.

- **Interference** is a powerful tool for precise displacement measurements with sensitivities at a fraction of the wavelength of light
 - We explore some relevant examples in the following lectures.

- **Diffraction** effects must be considered when designing instruments, with numerical calculations based on the Fourier Transform of the transmission function of the aperture.
 - Spurious effects can typically be spatially filtered in the Fourier plane, or by applying a mask on the Fourier Transform in software to reconstruct only the image of interest.

- Next time: lasers, fibre optics and applications.