

Beam instabilities (II)

Giovanni Rumolo in CERN Accelerator School, Advanced Level, Trondheim Thursday 22.08.2013

Big thanks to H. Bartosik, G. Iadarola, K. Li, N. Mounet, B. Salvant, R. Tomás, C. Zannini

Acknowledgments: X. Buffat, R. de Maria, A. Huschauer, E. Koukovini-Platia, E. Métral, A. Oeftiger, G. Papotti, R. Wasef

Summary of the first part

- What is a beam instability?
 - A beam becomes unstable when a moment of its distribution exhibits an exponential growth (e.g. mean positions <x>, <y>, <z>, standard deviations σ_x , σ_y , σ_z , etc.) resulting into beam loss or emittance growth!
- Instabilities are caused by the electro-magnetic fields trailing behind charged particles moving at the speed of light
 - Origin: discontinuities, lossy materials
 - Described through wake functions and beam coupling impedances
- ⇒ Longitudinal plane
 - Energy loss and potential well distortion
 - → Synchronous phase shift
 - → Bunch lengthening/shortening, synchrotron tune shift
 - Instabilities
 - Robinson instability (dipole mode)
 - Coupled bunch instabilities
 - Single bunch instabilities

2. The transverse plane

Transverse wake function: definition

- In an axisymmetric structure (or simply with a top-bottom and left-right symmetry) a source particle traveling on axis cannot induce net transverse forces on a witness particle also following on axis
- At the zero-th order, there is no transverse effect
- We need to introduce a breaking of the symmetry to drive transverse effect, but at the first order there are two possibilities, i.e. offset the source or the witness

Transverse **dipolar** wake function: definition

Transverse quadrupolar wake function: definition

Transverse dipolar wake function

$$W_x(z) = -\frac{E_0}{q_1 q_2} \frac{\Delta x'_2}{\Delta x_1} \qquad z \to 0 \qquad W_x(0) = 0$$

- The value of the transverse dipolar wake functions in 0, $W_{x,y}(0)$, vanishes because source and witness particles are traveling parallel and they can only mutually interact through space charge, which is not included in this framework
- $W_{x,y}(0^{-})<0$ since trailing particles are deflected toward the source particle (Δx_1 and $\Delta x'_2$ have the same sign)

$$\Delta x_2' \uparrow \Delta x_1 \qquad \qquad \frac{\Delta x_2'}{\Delta x_1} > 0$$

Transverse dipolar wake function

$$W_x(z) = -\frac{E_0}{q_1 q_2} \frac{\Delta x'_2}{\Delta x_1} \qquad z \to 0 \qquad W_x(0) = 0$$

- The value of the transverse dipolar wake functions in 0, $W_{x,y}(0)$, vanishes because source and witness particles are traveling parallel and they can only mutually interact through space charge, which is not included in this framework
- $W_{x,y}(0^{-}) < 0$ since trailing particles are deflected toward the source particle (Δx_1 and $\Delta x'_2$ have the same sign)
- $W_{x,y}(z)$ has a discontinuous derivative in z=0 and it vanishes for all z>0 because of the ultra-relativistic approximation

Transverse quadrupolar wake function

$$W_{Qx}(z) = -\frac{E_0}{q_1 q_2} \frac{\Delta x'_2}{\Delta x_2} \qquad z \to 0 \qquad W_{Qx}(0) = 0$$

- The value of the transverse quadrupolar wake functions in 0, W_{Qx,y}(0), vanishes because source and witness particles are traveling parallel and they can only mutually interact through space charge, which is not included in this framework
- *W_{Qx,y}(0⁻⁻)* can be of either sign since trailing particles can be either attracted or deflected even more off axis (depends on geometry and boundary conditions)

Transverse quadrupolar wake function

$$W_{Qx}(z) = -\frac{E_0}{q_1 q_2} \frac{\Delta x'_2}{\Delta x_2} \qquad z \to 0 \qquad W_{Qx}(0) = 0$$

- The value of the transverse quadrupolar wake functions in 0, W_{Qx,y}(0), vanishes because source and witness particles are traveling parallel and they can only mutually interact through space charge, which is not included in this framework
- *W_{Qx,y}(0⁻⁻)* can be of either sign since trailing particles can be either attracted or deflected even more off axis (depends on geometry and boundary conditions)
- $W_{x,y}(z)$ has a discontinuous derivative in z=0 and it vanishes for all z>0 because of the ultra-relativistic approximation

Transverse impedance

- The transverse wake function of an accelerator component is basically its Green function in time domain (i.e., its response to a pulse excitation)
 - ⇒ Very useful for macroparticle models and simulations, because it relates source perturbations to the associated kicks on trailing particles!
- We can also describe it as a transfer function in frequency domain
- This is the definition of transverse beam coupling impedance of the element under study

* linear terms retained, however coupling terms are neglected ** m⁻¹ refers then to a transverse offset and does not septe in symmetric structures) a normalization per unit length of the structure

Transverse impedance: resonator

- Shape of wake function can be similar to that in longitudinal plane, determined by the oscillations of the trailing electromagnetic fields
- Contrary to longitudinal impedances, $Re[Z_{x,y}]$ is an odd function of frequency, while $Im[Z_{x,y}]$ is an even function

- An example: magnetic kickers are usually large contributors to the transverse impedance of a machine
- It is a broad band contribution
 - No trapped modes
 - Losses both in vacuum chamber and ferrite (kicker heating and outgassing)

Dipolar

- An example: magnetic kickers are usually large contributors to the transverse impedance of a machine
- It is a broad band contribution
 - No trapped modes
 - Losses both in vacuum chamber and ferrite (kicker heating and outgassing)

Quadrupolar

Evolution of the electromagnetic fields (E_y) in the kicker while and after the beam has passed

 Evolution of the electromagnetic fields (H_x) in the kicker while and after the beam has passed

- A conductive pipe (e.g. Cu, t = 4mm)
- Corresponding to the different frequency ranges, the wake field has
 - A medium-long range behavior (coupled bunch and multi-turn) characterized by a sharp decay
 - A short range behavior (single bunch) dominated by the ac conductivity resonance

Single particle equations of the transverse motion in presence of dipolar wake fields

Wake fields

- To illustrate the rigid bunch instability we will use some simplifications:
 - ⇒ The bunch is point-like and feels an external linear force (i.e. it would execute linear betatron oscillations in absence of the wake forces)
 - \Rightarrow Longitudinal motion is neglected
 - \Rightarrow Smooth approximation \rightarrow constant focusing + distributed wake

- In a similar fashion as was done for the Robinson instability in the longitudinal plane we want to
 - \Rightarrow Calculate the betatron tune shift due to the wake
 - \Rightarrow Derive possible conditions for the excitation of an unstable motion

- To illustrate the rigid bunch instability we will use some simplifications:
 - \Rightarrow The bunch is point-like and feels an external linear force (i.e. it would execute linear betatron oscillations in absence of the wake forces)
 - \Rightarrow Longitudinal motion is neglected
 - \Rightarrow Smooth approximation \rightarrow constant focusing + distributed wake

$$\frac{d^2y}{ds^2} + \left(\frac{\omega_\beta}{c}\right)^2 y = -\left(\frac{e^2}{m_0c^2}\right)\frac{N}{\gamma C}\sum_{k=-\infty}^{\infty}y(s-kC)W_y(kC)$$

⇒ We assume a small deviation from the betatron tune ⇒ $\text{Re}(\Omega - \omega_{\beta})$ → Betatron tune shift ⇒ $\text{Im}(\Omega - \omega_{\beta})$ → Growth/damping rate, if it is positive there is an instability!

$$\Omega^{2} - \omega_{\beta}^{2} \approx 2\omega_{\beta} \cdot (\Omega - \omega_{\beta})$$

$$\frac{1}{4\pi} \left[\beta_{y} \frac{eI_{b} \text{Im}(Z_{y}^{\text{eff}})}{E} \right] = \frac{1}{4\pi} \oint \beta_{y}(s) \Delta k(s) ds$$

$$\frac{\text{Re}\left(\Omega - \omega_{\beta}\right)}{\omega_{0}} = \Delta \nu_{y} \approx \frac{Ne^{2}\beta_{y}}{4\pi m_{0}\gamma cC} \sum_{p=-\infty}^{\infty} \text{Im}\left[Z_{y}(p\omega_{0} + \omega_{\beta})\right]$$

Im
$$(\Omega - \omega_{\beta}) = \tau_y^{-1} \approx -\frac{Ne^2\beta_y}{2m_0\gamma C^2} \sum_{p=-\infty}^{\infty} \operatorname{Re}\left[Z_y(p\omega_0 + \omega_{\beta})\right]$$

Im
$$(\Omega - \omega_{\beta}) = \tau_y^{-1} \approx -\frac{Ne^2\beta_y}{2m_0\gamma C^2} \sum_{p=-\infty}^{\infty} \operatorname{Re}\left[Z_y(p\omega_0 + \omega_{\beta})\right]$$

⇒ We assume the impedance to be peaked at a frequency ω_r close to $h\omega_0$ (e.g. RF cavity fundamental mode or HOM)

Im
$$(\Omega - \omega_{\beta}) = \tau_y^{-1} \approx -\frac{Ne^2\beta_y}{2m_0\gamma C^2} \sum_{p=-\infty}^{\infty} \operatorname{Re}\left[Z_y(p\omega_0 + \omega_{\beta})\right]$$

- ⇒ We assume the impedance to be peaked at a frequency ω_r close to $h\omega_0$ (e.g. RF cavity fundamental mode or HOM)
- ⇒ Defining the tune $v_y = n_y + \Delta_{\beta y}$ with -0.5< $\Delta_{\beta y}$ <0.5, we can easily express the only two leading terms left in the summation at the RHS of the equation for the growth rate

$$\tau_y^{-1} \approx -\frac{Ne^2\beta_y}{2m_0\gamma C^2} \left(\operatorname{Re}\left[Z_y(h\omega_0 + \Delta_{\beta y}\omega_0) \right] - \operatorname{Re}\left[Z_y(h\omega_0 - \Delta_{\beta y}\omega_0) \right] \right)$$

$$\tau_y^{-1} \approx -\frac{Ne^2\beta_y}{2m_0\gamma C^2} \left(\operatorname{Re}\left[Z_y(h\omega_0 + \Delta_{\beta y}\omega_0) \right] - \operatorname{Re}\left[Z_y(h\omega_0 - \Delta_{\beta y}\omega_0) \right] \right)$$

	$ω_r < hω_0$	ω _r > hω ₀
Tune above integer (Δ _{βγ} >0)	unstable	stable
Tune below integer (Δ _{βy} <0)	stable	unstable

Im
$$(\Omega - \omega_{\beta}) = \tau_y^{-1} \approx -\frac{Ne^2\beta_y}{2m_0\gamma C^2} \sum_{p=-\infty}^{\infty} \operatorname{Re}\left[Z_y(p\omega_0 + \omega_{\beta})\right]$$

- ⇒ We assume the impedance to be of resistive wall type, i.e. strongly peaked in the very low frequency range ($\rightarrow 0$)
- ⇒ Using the same definitions for the tune as before, we can easily express the only two leading terms left in the summation at the RHS of the equation for the growth rate

⇒ Using the same definitions for the tune as before, we can easily express the only two leading terms left in the summation at the RHS of the equation for the growth rate

⇒ Using the same definitions for the tune as before, we can easily express the only two leading terms left in the summation at the RHS of the equation for the growth rate

⇒ Using the same definitions for the tune as before, we can easily express the only two leading terms left in the summation at the RHS of the equation for the growth rate

- To illustrate TMCI we will need to make use of some simplifications:
 - ⇒ The bunch is represented through two particles carrying half the total bunch charge and placed in opposite phase in the longitudinal phase space
 - ⇒ They both feel external linear focusing in all three directions (i.e. linear betatron focusing + linear synchrotron focusing).
 - \Rightarrow Zero chromaticity (Q'_{x,y}=0)
 - ⇒ Constant transverse wake left behind by the leading particle
 - \Rightarrow Smooth approximation \rightarrow constant focusing + distributed wake

- We will
 - ⇒ Calculate a stability condition (threshold) for the transverse motion
 - \Rightarrow Have a look at the excited oscillation modes of the centroid

- To illustrate TMCI we will need to make use of some simplifications:

- ⇒ The bunch is represented through two particles carrying half the total bunch charge and placed in opposite phase in the longitudinal phase space
- ⇒ They both feel external linear focusing in all three directions (i.e. linear betatron focusing + linear synchrotron focusing)
- \Rightarrow Zero chromaticity (Q'_{x,y}=0)
- ⇒ Constant transverse wake left behind by the leading particle
- \Rightarrow Smooth approximation \rightarrow constant focusing + distributed wake

- To illustrate TMCI we will need to make use of some simplifications:

- ⇒ The bunch is represented through two particles carrying half the total bunch charge and placed in opposite phase in the longitudinal phase space
- ⇒ They both feel external linear focusing in all three directions (i.e. linear betatron focusing + linear synchrotron focusing)
- \Rightarrow Zero chromaticity (Q'_{x,y}=0)
- ⇒ Constant transverse wake left behind by the leading particle
- \Rightarrow Smooth approximation \rightarrow constant focusing + distributed wake

⇒ During the first half of the synchrotron motion, particle 1 is leading and executes free betatron oscillations, while particle 2 is trailing and feels the defocusing wake of particle 1

$$\begin{cases} \frac{d^2 y_1}{ds^2} + \left(\frac{\omega_\beta}{c}\right)^2 y_1 = 0 & 0 < s < \frac{\pi c}{\omega_s} \\ \frac{d^2 y_2}{ds^2} + \left(\frac{\omega_\beta}{c}\right)^2 y_2 = \left(\frac{e^2}{m_0 c^2}\right) \frac{NW_0}{2\gamma C} y_1(s) \end{cases}$$

- ⇒ During the first half of the synchrotron motion, particle 1 is leading and executes free betatron oscillations, while particle 2 is trailing and feels the defocusing wake of particle 1
- ⇒ During the second half of the synchrotron period, the situation is reversed

$$\begin{cases} \frac{d^2 y_1}{ds^2} + \left(\frac{\omega_\beta}{c}\right)^2 y_1 = \left(\frac{e^2}{m_0 c^2}\right) \frac{NW_0}{2\gamma C} y_2(s) \\ \frac{d^2 y_2}{ds^2} + \left(\frac{\omega_\beta}{c}\right)^2 y_2 = 0 \end{cases} \qquad \frac{\pi c}{\omega_s} < s < \frac{2\pi c}{\omega_s} \end{cases}$$

- ⇒ We solve with respect to the complex variables defined below during the first half of synchrotron period
- \Rightarrow y₁(s) is a free betatron oscillation
- \Rightarrow y₂(s) is the sum of a free betatron oscillation plus a driven oscillation with y₁(s) being its driving term

$$\tilde{y}_{1,2}(s) = y_{1,2}(s) + i\frac{c}{\omega_{\beta}}y'_{1,2}(s)$$
$$\tilde{y}_{1}(s) = \tilde{y}_{1}(0)\exp\left(\frac{-i\omega_{\beta}s}{c}\right)$$
$$\tilde{y}_{2}(s) = \tilde{y}_{2}(0)\exp\left(-\frac{i\omega_{\beta}s}{c}\right) + i\frac{Ne^{2}W_{0}}{4m_{0}\gamma cC\omega_{\beta}}\left[\frac{c}{\omega_{\beta}}\tilde{y}_{1}^{*}(0)\sin\left(\frac{\omega_{\beta}s}{c}\right) + \tilde{y}_{1}(0)s\exp\left(-\frac{i\omega_{\beta}s}{c}\right)\right]$$

The Strong Head Tail Instability Transfer map

$$\begin{split} \tilde{y_1}\left(\frac{\pi c}{\omega_s}\right) &= \tilde{y_1}(0) \exp\left(-\frac{i\pi\omega_\beta}{\omega_s}\right) \\ \tilde{y_2}\left(\frac{\pi c}{\omega_s}\right) &= \tilde{y_2}(0) \exp\left(-\frac{i\pi\omega_\beta}{\omega_s}\right) + \\ &+ i\frac{Ne^2W_0}{4m_0\gamma cC\omega_\beta} \left[\frac{c}{\omega_\beta}\tilde{y}_1^*(0) \sin\left(\frac{\pi\omega_\beta}{\omega_s}\right) + \tilde{y_1}(0)\left(\frac{\pi c}{\omega_s}\right) \exp\left(-\frac{i\pi\omega_\beta}{\omega_s}\right)\right] \end{split}$$

⇒ Second term in RHS equation for $y_2(s)$ negligible if $\omega_s << \omega_\beta$ ⇒ We can now transform these equations into linear mapping across half synchrotron period

$$\begin{pmatrix} \tilde{y}_1 \\ \tilde{y}_2 \end{pmatrix}_{s=\pi c/\omega_s} = \exp\left(-\frac{i\pi\omega_\beta}{\omega_s}\right) \cdot \begin{pmatrix} 1 & 0 \\ i\Upsilon & 1 \end{pmatrix} \cdot \begin{pmatrix} \tilde{y}_1 \\ \tilde{y}_2 \end{pmatrix}_{s=0}$$
$$\Upsilon = \frac{\pi N e^2 W_0}{4m_0 \gamma C \omega_\beta \omega_s}$$

The Strong Head Tail Instability Transfer map

- ⇒ In the second half of synchrotron period, particles 1 and 2 exchange their roles
- ⇒ We can therefore find the transfer matrix over the full synchrotron period for both particles
- ⇒ We can analyze the eigenvalues of the two particle system

$$\Upsilon = \frac{\pi N e^2 W_0}{4m_0 \gamma C \omega_\beta \omega_s}$$

$$\begin{pmatrix} \tilde{y}_1 \\ \tilde{y}_2 \end{pmatrix}_{s=2\pi c/\omega_s} = \exp\left(-\frac{i2\pi\omega_\beta}{\omega_s}\right) \cdot \begin{pmatrix} 1 & i\Upsilon \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ i\Upsilon & 1 \end{pmatrix} \cdot \begin{pmatrix} \tilde{y}_1 \\ \tilde{y}_2 \end{pmatrix}_{s=0}$$

$$\begin{pmatrix} \tilde{y}_1 \\ \tilde{y}_2 \end{pmatrix}_{s=2\pi c/\omega_s} = \exp\left(-\frac{i2\pi\omega_\beta}{\omega_s}\right) \cdot \begin{pmatrix} 1-\Upsilon^2 & i\Upsilon \\ i\Upsilon & 1 \end{pmatrix} \cdot \begin{pmatrix} \tilde{y}_1 \\ \tilde{y}_2 \end{pmatrix}_{s=0}$$

The Strong Head Tail Instability Stability condition

- ⇒ Since the product of the eigenvalues is 1, the only condition for stability is that they both be purely imaginary exponentials
- ⇒ From the second equation for the eigenvalues, it is clear that this is true only when $sin(\phi/2) < 1$
- \Rightarrow This translates into a condition on the beam/wake parameters

$$\lambda_1 \cdot \lambda_2 = 1 \quad \Rightarrow \quad \lambda_{1,2} = \exp(\pm i\phi)$$

 $\lambda_1 + \lambda_2 = 2 - \Upsilon^2 \quad \Rightarrow \quad \sin\left(\frac{\phi}{2}\right) = \frac{\Upsilon}{2}$

$$\Upsilon = \frac{\pi N e^2 W_0}{4m_0 \gamma C \omega_\beta \omega_s} \le 2$$

The Strong Head Tail Instability Stability condition

The Strong Head Tail Instability Mode frequencies

The evolution of the eigenstates follows:

$$\begin{pmatrix} \tilde{V}_{+n} \\ \tilde{V}_{-n} \end{pmatrix} = \exp\left(-i\frac{2\pi\omega_{\beta}}{\omega_{s}}n\right) \cdot \begin{pmatrix} \exp\left[-2i\arcsin\left(\frac{\Upsilon}{2}\right)\cdot n\right] & 0 \\ 0 & \exp\left[2i\arcsin\left(\frac{\Upsilon}{2}\right)\cdot n\right] \end{pmatrix} \begin{pmatrix} \tilde{V}_{+0} \\ \tilde{V}_{-0} \end{pmatrix}$$

Eigenfrequencies:

They shift with increasing intensity

The Strong Head Tail Instability Mode frequencies

The evolution of the eigenstates follows:

$$\begin{pmatrix} \tilde{V}_{+n} \\ \tilde{V}_{-n} \end{pmatrix} = \exp\left(-i\frac{2\pi\omega_{\beta}}{\omega_{s}}n\right) \cdot \begin{pmatrix} \exp\left[-2i\arcsin\left(\frac{\Upsilon}{2}\right)\cdot n\right] & 0 \\ 0 & \exp\left[2i\arcsin\left(\frac{\Upsilon}{2}\right)\cdot n\right] \end{pmatrix} \begin{pmatrix} \tilde{V}_{+0} \\ \tilde{V}_{-0} \end{pmatrix}$$

Eigenfrequencies:

They shift with increasing intensity

The Strong Head Tail Instability Why TMCI?

BEAMS

- ⇒ For a real bunch, modes exhibit a more complicated shift pattern
- ⇒ The shift of the modes can be calculated via Vlasov equation or can be found through macroparticle simulations

The Strong Head Tail Instability Experimental observation

The Strong Head Tail Instability Experimental observation

The Head Tail Instability

- To illustrate the head-tail instability we will need to make use of some simplifications:
 - ⇒ The bunch is represented through two particles carrying half the total bunch charge and placed in opposite phase in the longitudinal phase space
 - ⇒ They both feel external linear focusing in all three directions (i.e. linear betatron focusing + linear synchrotron focusing).
 - ⇒ Chromaticity is different from zero ($Q'_{x,y} \neq 0$)
 - ⇒ Constant transverse wake left behind by the leading particle
 - \Rightarrow Smooth approximation \rightarrow constant focusing + distributed wake

- We can
 - \Rightarrow Show that this system is intrinsically unstable
 - \Rightarrow Calculate the growth time of the excited oscillation modes

The Head Tail Instability Equations of motion

- ⇒ As for the TMCI, during the first half of the synchrotron motion, particle 1 is leading and executes free betatron oscillations, while particle 2 is trailing and feels the defocusing wake of particle 1
- ⇒ During the second half of the synchrotron period, the situation is reversed

The Head Tail Instability Oscillation modes

⇒ Similarly to the solution for the Strong Head Tail Instability, we obtain the transport map

$$\begin{pmatrix} \tilde{y}_1 \\ \tilde{y}_2 \end{pmatrix}_{s=2\pi c/\omega_s} = \begin{pmatrix} i\Upsilon & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \tilde{y}_1 \\ \tilde{y}_2 \end{pmatrix}_{s=\pi c/\omega_s} = \begin{pmatrix} 1-\Upsilon^2 & i\Upsilon \\ i\Upsilon & 1 \end{pmatrix} \cdot \begin{pmatrix} \tilde{y}_1 \\ \tilde{y}_2 \end{pmatrix}_{s=0}$$

$$\Upsilon = \frac{\pi N e^2 W_0}{4m_0 \gamma C \omega_\beta \omega_s} \left(1 + i \frac{4\xi_y \omega_\beta \hat{z}}{\pi c \eta} \right)$$

Complex number!

Weak beam intensity:

$$|\Upsilon| \ll 1$$

 $\lambda_{\pm} \approx \exp(\pm i\Upsilon)$

+ mode is "in-phase" mode \rightarrow the two particles oscillate in phase (ω_{β})

- mode is "out-phase" mode → the two particles oscillate in opposition of phase $(ω_β ± ω_s)$

The Head Tail Instability Growth/damping time

⇒ Proportional to the wake per unit length along the ring, W_0/C → a large integrated wake (impedance) gives a stronger effect

The Head Tail Instability Growth/damping time

$$\tau^{-1} = \operatorname{Im}\left(\pm \Upsilon \cdot \frac{\omega_s}{2\pi}\right) = \mp \frac{e^2}{2\pi} \cdot \frac{N\xi_y \hat{z}}{p_0 \eta} \left(\frac{W_0}{C}\right)$$

Mode 0 (+)

	ξ _γ >0	ξ _γ <0	
Above transition (η >0)	damped	unstable	
Below transition (η <0)	unstable	damped	
Mode 1 (–)			
	ξ _γ >0	ξ _γ <0	
Above transition (η >0)	unstable	damped	
Below transition (η <0)	damped	unstable	

The Head Tail Instability

- The head-tail instability is unavoidable in the two-particle model
 - Either mode 0 or mode 1 is unstable
 - Growth/damping times are in all cases identical
- Fortunately, the situation is less dramatic in reality
 - The number of modes increases with the number of particles we consider in the model (and becomes infinite in the limit of a continuous bunch)
 - The instability conditions for mode 0 remain unchanged, but all the other modes become unstable with much longer rise times when mode 0 is stable

	ξ _γ >0	ξ _ι	_v <0	$\sum_{n=1}^{\infty} \frac{1}{n} = 0$				
Above transition (η>0)	damped	uns	table	$\sum_{l=-\infty} \tau_l = 0$				
Below transition (η <0)	unstable	damped						
	All modes >	·0						
			ξ _γ >0	ξ _γ <0				
	Above transiti	on (໗>0)	unstable	damped				
	Below transition (η<0)		damped	unstable				

Mode 0

The Head Tail Instability

- The head-tail instability is unavoidable in the two-particle model
 - Either mode 0 or mode 1 is unstable
 - Growth/damping times are in all cases identical
- Fortunately, the situation is less dramatic in reality
 - The number of modes increases with the number of particles we consider in the model (and becomes infinite in the limit of a continuous bunch)
 - The instability conditions for mode 0 remain unchanged, but all the other modes become unstable with much longer rise times when mode 0 is stable
 - Therefore, the bunch can be in practice stabilized by using the settings that make mode 0 stable (ξ<0 below transition and ξ>0 above transition) and relying on feedback or Landau damping (refer to W. Herr's lectures) for the other modes
- To be able to study these effects we would need to resort to a more detailed description of the bunch
 - Vlasov equation (kinetic model)
 - Macroparticle simulations

A glance into the head-tail modes

- Different transverse head-tail modes correspond to different parts of the bunch oscillating with relative phase differences. E.g.
 - Mode 0 is a rigid bunch mode
 - Mode 1 has head and tail oscillating in counter-phase
 - Mode 2 has head and tail oscillating in phase and the bunch center in opposition

A glance into the head-tail modes (as seen at a wide-band BPM)

A glance into the head-tail modes (experimental observations)

Observation in the CERN PSB in ~1974 (J. Gareyte and F. Sacherer)

Observation in the CERN PS in 1999

- The mode that gets first excited in the machine depends on
 - The spectrum of the exciting impedance
 - The chromaticity setting
- Head-tail instabilities are a good diagnostics tool to identify and quantify the main impedance sources in a machine

Macroparticle simulation

- We have simulated the evolution of a long PS bunch under the effect of a transverse resistive wall impedance lumped in one point of the ring
- We have used parameters at injection (below transition!) and three different chromaticity values: $\xi_{x,y}$ = ±0.15, -0.3

60

Macroparticle simulation

- We have simulated the evolution of a long PS bunch under the effect of a transverse resistive wall impedance lumped in one point of the ring
- We have used parameters at injection (below transition!) a chromaticity values: $\xi_{x,y}$ = 0.15

Signal: - Number of Protons: 1.60e+12

61

Macroparticle simulation

- We have simulated the evolution of a long PS bunch under the effect of a transverse resistive wall impedance lumped in one point of the ring
- We have used parameters at injection (below transition!) a chromaticity values: $\xi_{x,y}$ = -0.15

Signal: - Chromaticities: -1.00e+00

62

Macroparticle simulation

- We have simulated the evolution of a long PS bunch under the effect of a transverse resistive wall impedance lumped in one point of the ring
- We have used parameters at injection (below transition!) a chromaticity values: $\xi_{x,y}$ = -0.3

Signal: - Chromaticities: -2.00e+00

Conclusions

- A particle beam can be driven unstable by its interaction with its own induced EM fields
 - Longitudinal, transverse
 - Multi-bunch, single bunch
- Simplified models within the **wake/impedance framework** can be adopted to explain the mechanism of the instability
 - Stability criteria involving beam/machine parameters
 - Growth/damping times
- More sophisticated tools are necessary to describe in deeper detail the beam instabilities (kinetic theory, macroparticle simulations)

Fortunately

- ⇒ In real life beam stability is eased by some mechanisms so far not included in our linearized models
 - Spreads and nonlinearities stabilize (Landau damping, refer to W. Herr's lecture)
 - → Longitudinal: momentum spread, synchrotron frequency spread
 - → Transverse: chromaticity, betatron tune spreads (e.g from machine nonlinearities)
 - Active feedback systems are routinely employed to control/ suppress instabilities
 - Coherent motion is detected (pick-up) and damped (kicker) before it can degrade the beam
 - Sometimes bandwidth/power requirements can be very stringent
 - Impedance localization and reduction techniques are applied to old accelerators as well as for the design of new accelerators to extend their performance reach!

Thank you for your attention

Again many thanks to H. Bartosik, G. Iadarola, K. Li, N. Mounet, B. Salvant, R. Tomás, C. Zannini for material, discussions, suggestions, help & support and to A. Chao for his book!

The Head Tail Instability Equations of motion

- ⇒ Let's first write the solution without wake field assuming a linear synchrotron motion and particles in opposite phase $(z_1=-z_2)$
- ⇒ It is already clear that head and tail of the bunch exhibit a phase difference given by the chromatic term

$$\tilde{y}_1(0) \exp\left[-i\omega_\beta \frac{s}{c} + i\frac{\xi_y \omega_\beta}{c\eta} \hat{z} \sin\left(\frac{\omega_s s}{c}\right)\right]$$

$$\tilde{y}_2(0) \exp\left[-i\omega_\beta \frac{s}{c} - i\frac{\xi_y \omega_\beta}{c\eta} \hat{z} \sin\left(\frac{\omega_s s}{c}\right)\right]$$

The Head Tail Instability Equations of motion

- ⇒ The free oscillation is the correct solution for y₁(s) in the first half synchrotron period
- ⇒ For y₂(s) we assume a similar type of solution, allowing for a slowly time varying coefficient
- \Rightarrow Substituting into the equation of motion this yields

$$\tilde{y}_1(0) \exp\left[-i\omega_\beta \frac{s}{c} + i\frac{\xi_y \omega_\beta}{c\eta} \hat{z} \sin\left(\frac{\omega_s s}{c}\right)\right]$$

$$\tilde{y}_2(s) \exp\left[-i\omega_\beta \frac{s}{c} + i\frac{\xi_y\omega_\beta}{c\eta}\hat{z}\sin\left(\frac{\omega_s s}{c}\right)\right]$$

$$\tilde{y}_2'(s) \approx \left(\frac{e^2}{m_0 c}\right) \frac{NW_0}{4\gamma C\omega_\beta} \tilde{y}_1(0) \exp\left[2i\frac{\xi_y \omega_\beta}{c\eta} \hat{z} \sin\left(\frac{\omega_s s}{c}\right)\right]$$

- ⇒ For small head-tail shifts, we can expand the exponential in Taylor series and find an expression for y₂(s)
- ⇒ We can write a transfer map over the first half of synchrotron period in the same form as was done for the study of the TMCI
- \Rightarrow This time Υ is a complex parameter!

$$\tilde{y}_{2}(s) \approx \tilde{y}_{2}(0) + \left(\frac{e^{2}}{m_{0}c}\right) \frac{NW_{0}}{4\gamma C\omega_{\beta}} \tilde{y}_{1}(0) \left[s + i\frac{2\xi_{y}\omega_{\beta}\hat{z}}{\eta\omega_{s}}\left(1 - \cos\frac{\omega_{s}s}{c}\right)\right]$$
$$\left(\begin{array}{c}\tilde{y}_{1}\\\tilde{y}_{2}\end{array}\right)_{s=\pi c/\omega_{s}} = \left(\begin{array}{c}1 & 0\\i\Upsilon & 1\end{array}\right) \cdot \left(\begin{array}{c}\tilde{y}_{1}\\\tilde{y}_{2}\end{array}\right)_{s=0}$$

$$\Upsilon = \frac{\pi N e^2 W_0}{4m_0 \gamma C \omega_\beta \omega_s} \left(1 + i \frac{4\xi_y \omega_\beta \hat{z}}{\pi c \eta} \right)$$