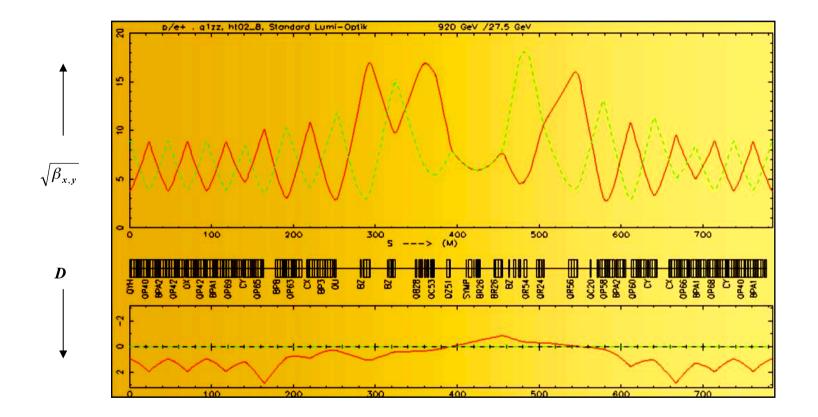
Lattice Design in Particle Accelerators Bernhard Holzer, CERN



1952: Courant, Livingston, Snyder:

Theory of strong focusing in particle beams

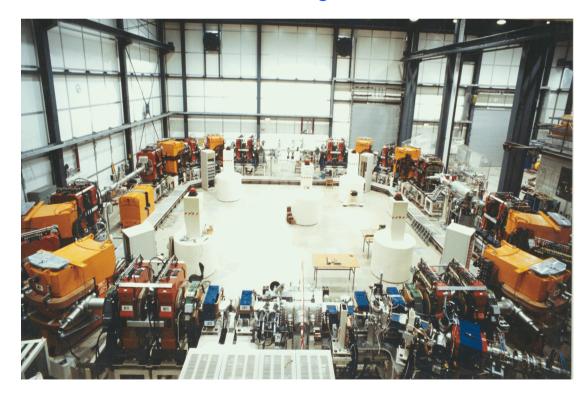
Lattice Design: "... how to build a storage ring"

High energy accelerators \rightarrow circular machines

somewhere in the lattice we need a number of dipole magnets, that are bending the design orbit to a closed ring

Geometry of the ring:

centrifugal force = Lorentz force



Example: heavy ion storage ring TSR 8 dipole magnets of equal bending strength

 $e^*v^*B = \frac{mv^2}{\rho}$

$$\rightarrow e^*B = \frac{mv}{\rho} = p/\rho$$

$$\rightarrow B^* \rho = p/e$$

p = momentum of the particle, $\rho = curvature radius$

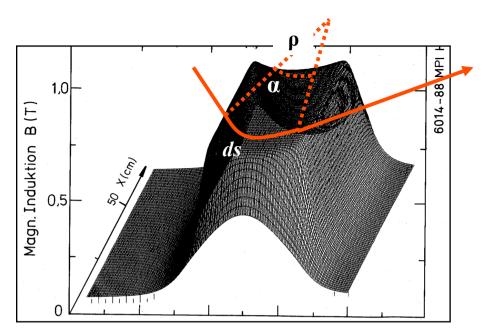
 $B\rho = beam \ rigidity$

1.) Circular Orbit:

"... defining the geometry"

$$\alpha = \frac{ds}{\rho} \approx \frac{dl}{\rho}$$

$$\alpha = \frac{B^* dl}{B^* \rho}$$



field map of a storage ring dipole magnet

The angle swept out in one revolution must be 2π , so

$$\alpha = \frac{\int Bdl}{B*\rho} = 2\pi \qquad \Rightarrow \quad \int Bdl = 2\pi * \frac{p}{q} \qquad \dots \text{ for a full circle}$$

Nota bene: $\frac{\Delta B}{B} \approx 10^{-4}$ *is usually required !!*

7000 GeV Proton storage ring dipole magnets N = 1232l = 15 mq = +1 e

 $\int B \, dl \approx N \, l \, B = 2\pi \, p / e$

$$B \approx \frac{2\pi \ 7000 \ 10^9 eV}{1232 \ 15 \ m} \ 3 \ 10^8 \frac{m}{s} \ e = \frac{8.3 \ Tesla}{1232 \ 15 \ m}$$

"Focusing forces … single particle trajectories"

$$y'' + K * y = 0$$

$$K = -k + 1/\rho^{2} \text{ hor. plane}$$

$$K = k \quad \text{vert. plane}$$
dipole magnet $\frac{1}{\rho} = \frac{B}{p/q}$
quadrupole magnet $k = \frac{g}{p/q}$

$$k = 33.64 * 10^{-3}/m^{2}$$

$$1/\rho^{2} = 2.97 * 10^{-6}/m^{2}$$

For estimates in large accelerators the weak focusing term $1/\rho^2$ can in general be neglected

$$y(s) = y_0 * \cos(\sqrt{K} * s) + \frac{y'_0}{\sqrt{K}} * \sin(\sqrt{K} * s)$$
$$y'(s) = -y_0 * \sqrt{K} * \sin(\sqrt{K} * s) + y'_0 * \cos(\sqrt{K} * s)$$

ρ

Solution for a focusing magnet

Or written more convenient in $\begin{pmatrix} y \\ y' \end{pmatrix}_s = M * \begin{pmatrix} y \\ y' \end{pmatrix}_0$

Hor. focusing Quadrupole Magnet

$$M_{QF} = \begin{pmatrix} \cos(\sqrt{K} * l) & \frac{1}{\sqrt{K}} \sin(\sqrt{K} * l) \\ -\sqrt{K} \sin(\sqrt{K} * l) & \cos(\sqrt{K} * l) \end{pmatrix}$$

Hor. defocusing Quadrupole Magnet

$$M_{QD} = \begin{pmatrix} \cosh(\sqrt{K} * l) & \frac{1}{\sqrt{K}} \sinh(\sqrt{K} * l) \\ \sqrt{K} \sinh(\sqrt{K} * l) & \cosh(\sqrt{K} * l) \end{pmatrix}$$

Drift space $M_{Drift} = \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}$

$$M_{lattice} = M_{QF1} * M_{D1} * M_{QD} * M_{D1} * M_{QF2} \dots$$

2.) Reminder: Beam Dynamics Language

Transfer Matrix M

describes the transformation of amplitude x and angle x' through $\begin{pmatrix} x \\ x' \end{pmatrix}_{s} = M \begin{pmatrix} x \\ x' \end{pmatrix}_{0}$ a number of lattice elements

... and can be expressed by the optics parameters

$$M = \begin{pmatrix} \sqrt{\frac{\beta_s}{\beta_0}} \left(\cos\psi_s + \alpha_0 \sin\psi_s \right) & \sqrt{\beta_s \beta_0} \sin\psi_s \\ \frac{(\alpha_0 - \alpha_s) \cos\psi_s - (1 + \alpha_0 \alpha_s) \sin\psi_s}{\sqrt{\beta_s \beta_0}} & \sqrt{\frac{\beta_0}{\beta s}} \left(\cos\psi_s - \alpha_s \sin\psi_s \right) \end{pmatrix}$$

* we can calculate the single particle trajectories between two locations in the ring, if we know the $\alpha \beta \gamma$ at these positions. * and nothing but the $\alpha \beta \gamma$ at these positions.

*

Periodic Lattices

In the case of periodic lattices the transfer matrix can be expressed as a function of a set of periodic parameters α , β , γ

$$M(s) = \begin{pmatrix} \cos\psi_{period} + \alpha_s \sin\psi_{period} & \beta_s \sin\psi_{period} \\ -\gamma_s \sin\psi_{period} & \cos\psi_{period} - \alpha_s \sin\psi_{period} \end{pmatrix} \qquad \psi_{period} = \int_{s}^{s+L} \frac{ds}{\beta(s)}$$

 ψ = phase advance per period:

For stability of the motion in periodic lattice structures it is required that

In terms of these new periodic parameters the solution of the equation of motion is

$$y(s) = \sqrt{\varepsilon} * \sqrt{\beta(s)} * \cos(\Phi(s) - \delta)$$
$$y'(s) = \frac{-\sqrt{\varepsilon}}{\sqrt{\beta}} * \left\{ \sin(\Phi(s) - \delta) + \alpha \cos(\Phi(s) - \delta) \right\}$$

Transformation of a, β , γ

consider two positions in the storage ring: s_0 , s

since $\varepsilon = const$:

$$\varepsilon = \beta x'^2 + 2\alpha x x' + \gamma x^2$$

$$\varepsilon = \beta_0 x'^2_0 + 2\alpha_0 x_0 x'_0 + \gamma_0 x_0^2$$

express
$$x_0$$
, x'_0 as a function of x , x' .

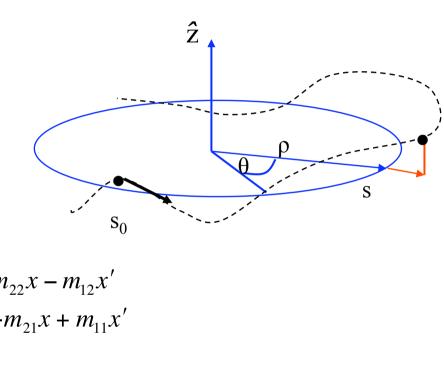
... remember $W = m_{11} m_{22} - m_{12} m_{21} = 1$

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{0} = M^{-1} \cdot \begin{pmatrix} x \\ x' \end{pmatrix}_{s}$$

$$M^{-1} = \begin{pmatrix} m_{22} & -m_{12} \\ -m_{21} & m_{11} \end{pmatrix}$$

inserting into $\varepsilon = \beta x'^2 + 2\alpha x x' + \gamma x^2$ $\varepsilon = \beta_0 (m_{11}x' - m_{21}x)^2 + 2\alpha_0 (m_{22}x - m_{12}x')(m_{11}x' - m_{21}x) + \gamma_0 (m_{22}x - m_{12}x')^2$

sort via x, x'and compare the coefficients to get



 $\begin{pmatrix} x \\ x' \end{pmatrix}_{s} = M \cdot \begin{pmatrix} x \\ x' \end{pmatrix}_{s}$

The new parameters α , β , γ can be transformed through the lattice via the lattice matrix elements defined above.

$$\begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{s2} = \begin{pmatrix} m_{11}^2 & -2m_{11}m_{12} & m_{12}^2 \\ -m_{11}m_{21} & m_{12}m_{21} + m_{22}m_{11} & -m_{12}m_{22} \\ m_{12}^2 & -2m_{22}m_{21} & m_{22}^2 \end{pmatrix} * \begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{s1}$$

the optical parameters depend on the focusing properties of the lattice, ... and can be optimised accordingly !!!

... and here starts the lattice design !!!

Most simple example: drift space

$$M_{drift} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} = \begin{pmatrix} 1 & \ell \\ 0 & 1 \end{pmatrix}$$

particle coordinates

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{l} = \begin{pmatrix} 1 & l \\ 0 & 1 \end{pmatrix} * \begin{pmatrix} x \\ x' \end{pmatrix}_{0}$$

$$x(l) = x_0 + l * x_0'$$

 $x'(l) = x_0'$

transformation of twiss parameters:

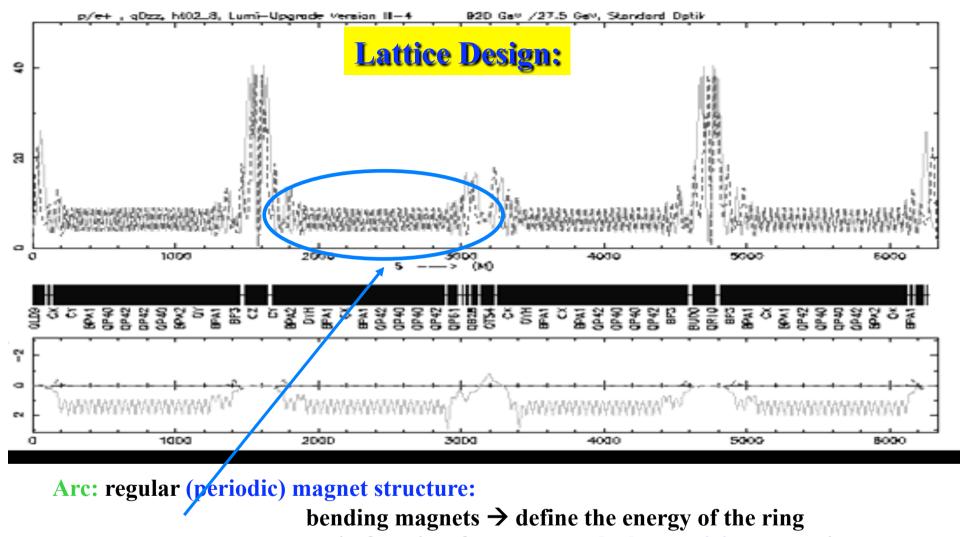
$$\begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{l} = \begin{pmatrix} 1 & -2l & l^{2} \\ 0 & 1 & -l \\ 0 & 0 & 1 \end{pmatrix} * \begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{0}$$

$$\beta(s) = \beta_0 - 2l * \alpha_0 + l^2 * \gamma_0$$

Stability ...?

$$trace(M) = 1 + 1 = 2$$

 → A periodic solution doesn't exist in a lattice built exclusively out of drift spaces.



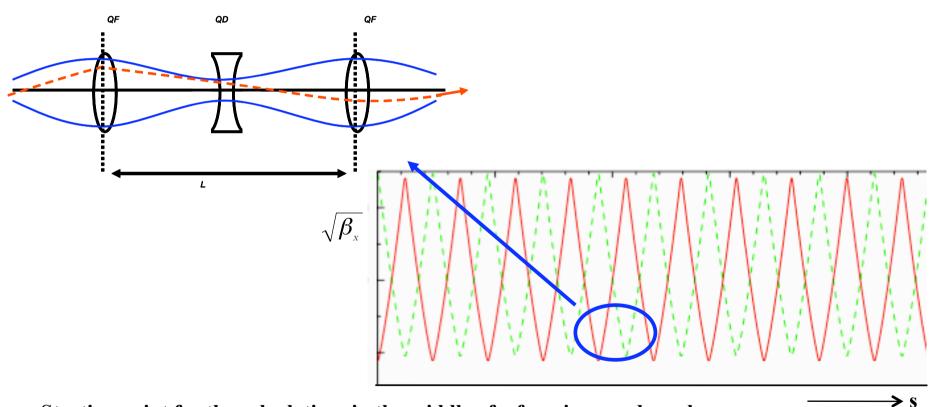
main focusing & tune control, chromaticity correction, multipoles for higher order corrections

Straight sections: drift spaces for injection, dispersion suppressors, low beta insertions, RF cavities, etc.... ... and the high energy experiments if they cannot be avoided

3.) The FoDo-Lattice

A magnet structure consisting of focusing and defocusing quadrupole lenses in alternating order with nothing in between.

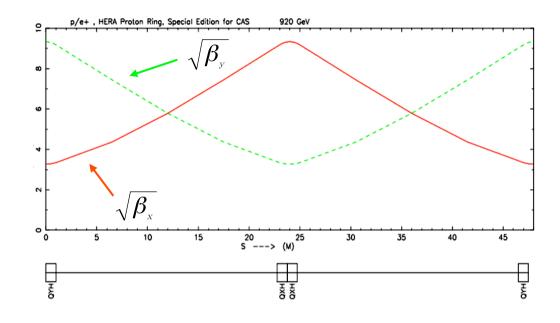
(Nothing = elements that can be neglected on first sight: drift, bending magnets, RF structures ... and especially experiments...)



Starting point for the calculation: in the middle of a focusing quadrupole Phase advance per cell $\mu = 45^{\circ}$,

 \rightarrow calculate the twiss parameters for a periodic solution

Periodic Solution of a FoDo Cell



Output of the optics program:

Nr	Туре	Length	Strength	β_x	α_x	φ_x	$\boldsymbol{\beta}_{z}$	α_z	φ_z
		т	1/m2	m		1/2π	m		1/2π
0	IP	0,000	0,000	11,611	0,000	0,000	5,295	0,000	0,000
1	QFH	0,250	-0,541	11,228	1,514	0,004	5,488	-0,781	0,007
2	QD	3,251	0,541	5,488	-0,781	0,070	11,228	1,514	0,066
3	QFH	6,002	-0,541	11,611	0,000	0,125	5,295	0,000	0,125
4	IP	6,002	0,000	11,611	0,000	0,125	5,295	0,000	0,125
4	IP	6,002	0,000	11,611	0,000	0,125	5,295	0,000	

QX= *0,125*

QZ= 0,125

> ---

 $0.125 * 2\pi = 45^{\circ}$

Can we understand what the optics code is doing ?

matrices
$$M_{QF} = \begin{pmatrix} \cos(\sqrt{K} * l_q) & \frac{1}{\sqrt{K}} \sin(\sqrt{K} * l_q) \\ -\sqrt{K} \sin(\sqrt{K} * l_q) & \cos(\sqrt{K} * l_q) \end{pmatrix}, \qquad M_{Drift} = \begin{pmatrix} 1 & l \\ 0 & 1_d \end{pmatrix}$$

strength and length of the FoDo elements

 $K = +/- 0.54102 \text{ m}^{-2}$ lq = 0.5 mld = 2.5 m

The matrix for the complete cell is obtained by multiplication of the element matrices

$$M_{FoDo} = M_{qfh}^* M_{ld}^* M_{qd}^* M_{ld}^* M_{qf}$$

Putting the numbers in and multiplying out ...

$$M_{FoDo} = \begin{pmatrix} 0.707 & 8.206 \\ -0.061 & 0.707 \end{pmatrix}$$

The transfer matrix for 1 period gives us all the information that we need !

3.) hor β-function

$$\beta = \frac{m_{12}}{\sin\psi_{cell}} = 11.611 \, m$$

$$\alpha = \frac{m_{11} - \cos\psi_{cell}}{\sin\psi_{cell}} = 0$$

Can we do a bit easier ? We can ... in thin lens approximation !

Matrix of a focusing quadrupole magnet:

$$M_{QF} = \begin{pmatrix} \cos(\sqrt{K}*l) & \frac{1}{\sqrt{K}}\sin(\sqrt{K}*l) \\ -\sqrt{K}\sin(\sqrt{K}*l) & \cos(\sqrt{K}*l) \end{pmatrix}$$

If the focal length f is much larger than the length of the quadrupole magnet,

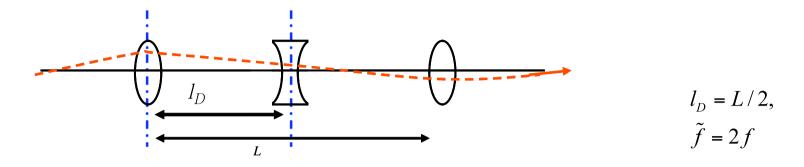
$$f = \frac{1}{kl_{Q}} >> l_{Q}$$

the transfer matrix can be approximated using \triangleright

$$kl_q = const, \ l_q \rightarrow 0$$

$$M = \begin{pmatrix} 1 & 0 \\ 1/f & 1 \end{pmatrix}$$

4.) FoDo in thin lens approximation



Calculate the matrix for a half cell, starting in the middle of a foc. quadrupole:

$$M_{half \ Cell} = M_{QD2} * M_{ID} * M_{QF2}$$

$$M_{half \ Cell} = \begin{pmatrix} 1 & 0 \\ 1/\tilde{f} & 1 \end{pmatrix} * \begin{pmatrix} 1 & l_D \\ 0 & 1 \end{pmatrix} * \begin{pmatrix} 1 & 0 \\ -1/\tilde{f} & 1 \end{pmatrix}$$
note: \tilde{f} denotes the focusing strength of half a quadrupole, so $\tilde{f} = 2f$

$$M_{half \ Cell} = \begin{pmatrix} 1 - \frac{l_D}{\tilde{f}} & l_D \\ -l_D/\tilde{f}^2 & 1 + \frac{l_D}{\tilde{f}} \end{pmatrix}$$
for the second half cell set $f \Rightarrow -f$

= 2 f

FoDo in thin lens approximation

Matrix for the complete FoDo cell

$$M = \begin{pmatrix} 1 + \frac{l_D}{\tilde{f}} & l_D \\ -\frac{l_D}{\tilde{f}^2} & 1 - \frac{l_D}{\tilde{f}} \end{pmatrix} * \begin{pmatrix} 1 - \frac{l_D}{\tilde{f}} & l_D \\ -\frac{l_D}{\tilde{f}^2} & 1 + \frac{l_D}{\tilde{f}} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 - \frac{2l_D^2}{\tilde{f}^2} & 2l_D(1 + \frac{l_D}{\tilde{f}}) \\ 2(\frac{l_D^2}{\tilde{f}^3} - \frac{l_D}{\tilde{f}^2}) & 1 - 2\frac{l_D^2}{\tilde{f}^2} \end{pmatrix}$$

Now we know, that the phase advance is related to the transfer matrix by

$$\cos\psi_{cell} = \frac{1}{2} trace(M) = \frac{1}{2} * (2 - \frac{4l_d^2}{\tilde{f}^2}) = 1 - \frac{2l_d^2}{\tilde{f}^2}$$

After some beer and with a little bit of trigonometric gymnastics

$$\cos(x) = \cos^2(\frac{x}{2}) - \sin^2(x/2) = 1 - 2\sin^2(\frac{x}{2})$$

we can calculate the phase advance as a function of the FoDo parameter ...

$$\cos\psi_{cell} = 1 - 2\sin^2(\psi_{cell}/2) = 1 - \frac{2l_d^2}{\tilde{f}^2}$$
$$\sin(\psi_{cell}/2) = l_d/\tilde{f} = \frac{L_{cell}}{2\tilde{f}}$$
$$\sin(\psi_{cell}/2) = \frac{L_{cell}}{4f}$$

Example: L 45-degree Cell

$$L_{Cell} = l_{QF} + l_D + l_{QD} + l_D = 0.5m + 2.5m + 0.5m + 2.5m = 6m$$
$$1/f = k^* l_Q = 0.5m^* 0.541 \ m^{-2} = 0.27 \ m^{-1}$$

$$\sin(\psi_{cell}/2) = \frac{L_{cell}}{4f} = 0.405$$
$$\rightarrow \psi_{cell} = 47.8^{\circ}$$
$$\rightarrow \beta = 11.4 m$$

Remember: Exact calculation yields: $\rightarrow \psi_{cell} = 45^{\circ}$ $\rightarrow \beta = 11.6 m$

Stability in a FoDo structure

$$M_{FoDo} = \begin{pmatrix} 1 - \frac{2l_D^2}{\tilde{f}^2} & 2l_D(1 + \frac{l_D}{\tilde{f}}) \\ 2(\frac{l_D^2}{\tilde{f}^3} - \frac{l_D}{\tilde{f}^2}) & 1 - 2\frac{l_D^2}{\tilde{f}^2} \end{pmatrix}$$

Stability requires:

|Trace(M)| < 2

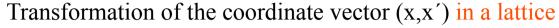
SPS Lattice

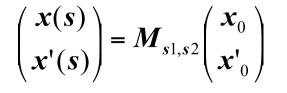
$$\left| Trace(M) \right| = \left| 2 - \frac{4l_d^2}{\tilde{f}^2} \right| < 2$$

 $\rightarrow f > \frac{L_{cell}}{4}$

For stability the focal length has to be larger than a quarter of the cell length ... don't focus to strong !

Transformation Matrix in Terms of the Twiss Parameters



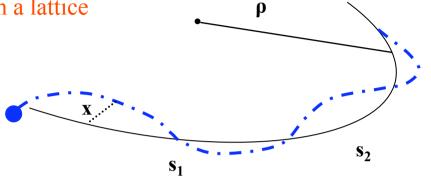


General solution of the equation of motion

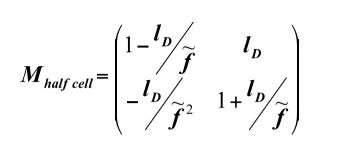
$$x(s) = \sqrt{\varepsilon * \beta(s)} * \cos(\psi(s) + \varphi)$$
$$x'(s) = \sqrt{\frac{\varepsilon}{\beta(s)}} * \{\alpha(s)\cos(\psi(s) + \varphi) + \sin(\psi(s) + \varphi)\}$$

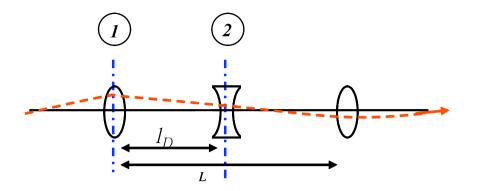
Transformation of the coordinate vector (x,x') expressed as a function of the twiss parameters

$$\boldsymbol{M}_{1 \to 2} = \begin{pmatrix} \sqrt{\frac{\beta_2}{\beta_1}} (\cos \psi_{12} + \alpha_1 \sin \psi_{12}) & \sqrt{\beta_1 \beta_2} \sin \psi_{12} \\ \frac{(\alpha_1 - \alpha_2) \cos \psi_{12} - (1 + \alpha_1 \alpha_2) \sin \psi_{12}}{\sqrt{\beta_1 \beta_2}} & \sqrt{\frac{\beta_1}{\beta_2}} (\cos \psi_{12} - \alpha_2 \sin \psi_{12}) \end{pmatrix}$$



Transfer Matrix for half a FoDo cell:





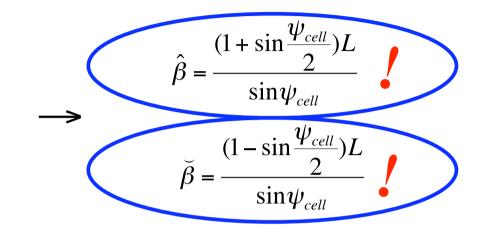
Compare to the twiss
parameter form of M
$$M_{1 \rightarrow 2} = \begin{pmatrix} \sqrt{\frac{\beta_2}{\beta_1}} (\cos \psi_{12} + \alpha_1 \sin \psi_{12}) & \sqrt{\beta_1 \beta_2} \sin \psi_{12} \\ \frac{(\alpha_1 - \alpha_2) \cos \psi_{12} - (1 + \alpha_1 \alpha_2) \sin \psi_{12}}{\sqrt{\beta_1 \beta_2}} & \sqrt{\frac{\beta_1}{\beta_2}} (\cos \psi_{12} - \alpha_2 \sin \psi_{12}) \end{pmatrix}$$

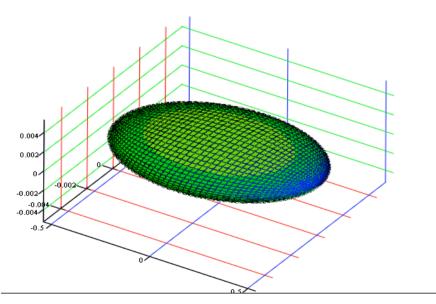
In the middle of a foc (defoc) quadrupole of the FoDo we allways have $\alpha = 0$, and the half cell will lead us from β_{max} to β_{min}

$$M = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} = \begin{pmatrix} \sqrt{\frac{\beta}{\beta}} \cos \frac{\psi_{cell}}{2} & \sqrt{\frac{\beta}{\beta}} \sin \frac{\psi_{cell}}{2} \\ \frac{-1}{\sqrt{\frac{\beta}{\beta}} \frac{\psi_{cell}}{\beta}} \sin \frac{\psi_{cell}}{2} & \sqrt{\frac{\beta}{\beta}} \cos \frac{\psi_{cell}}{2} \end{pmatrix}$$

Solving for β_{max} and β_{min} and remembering that $\sin \frac{\psi_{cell}}{2} = \frac{l_d}{\tilde{f}} = \frac{L}{4f}$

$$\frac{m_{22}}{m_{11}} = \frac{\hat{\beta}}{\check{\beta}} = \frac{1 + l_d / \tilde{f}}{1 - l_d / \tilde{f}} = \frac{1 + \sin(\psi_{cell} / 2)}{1 - \sin(\psi_{cell} / 2)}$$
$$\frac{m_{12}}{m_{21}} = \hat{\beta}\check{\beta} = \tilde{f}^2 = \frac{l_d^2}{\sin^2(\psi_{cell} / 2)}$$





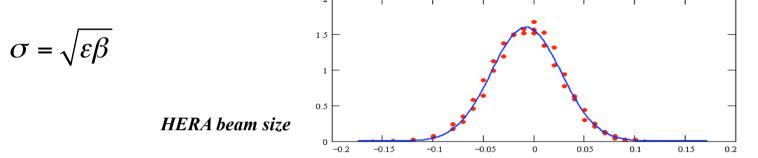
The maximum and minimum values of the β -function are solely determined by the phase advance and the length of the cell.

Longer cells lead to larger β

typical shape of a proton bunch in a FoDo Cell

5.) Beam dimension: Optimisation of the FoDo Phase advance:

In both planes a gaussian particle distribution is assumed, given by the beam emittance ϵ and the β -function

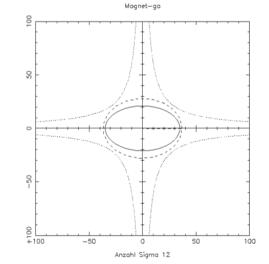


In general proton beams are *"round"* in the sense that

$$\mathcal{E}_x \approx \mathcal{E}_y$$

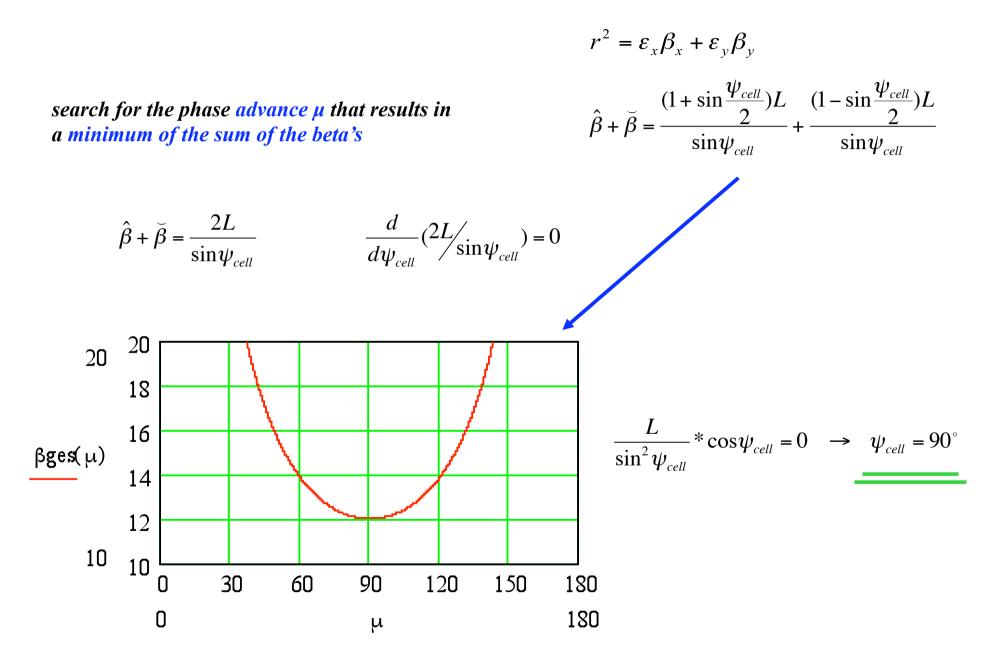
So for highest aperture we have to minimise the β -function in both planes:

$$r^2 = \varepsilon_x \beta_x + \varepsilon_y \beta_y$$



typical beam envelope, vacuum chamber and pole shape in a foc. Quadrupole lens in HERA

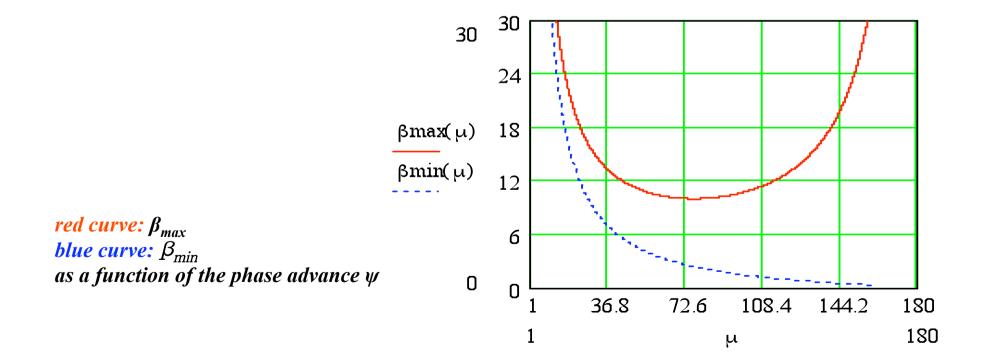
Optimising the FoDo phase advance

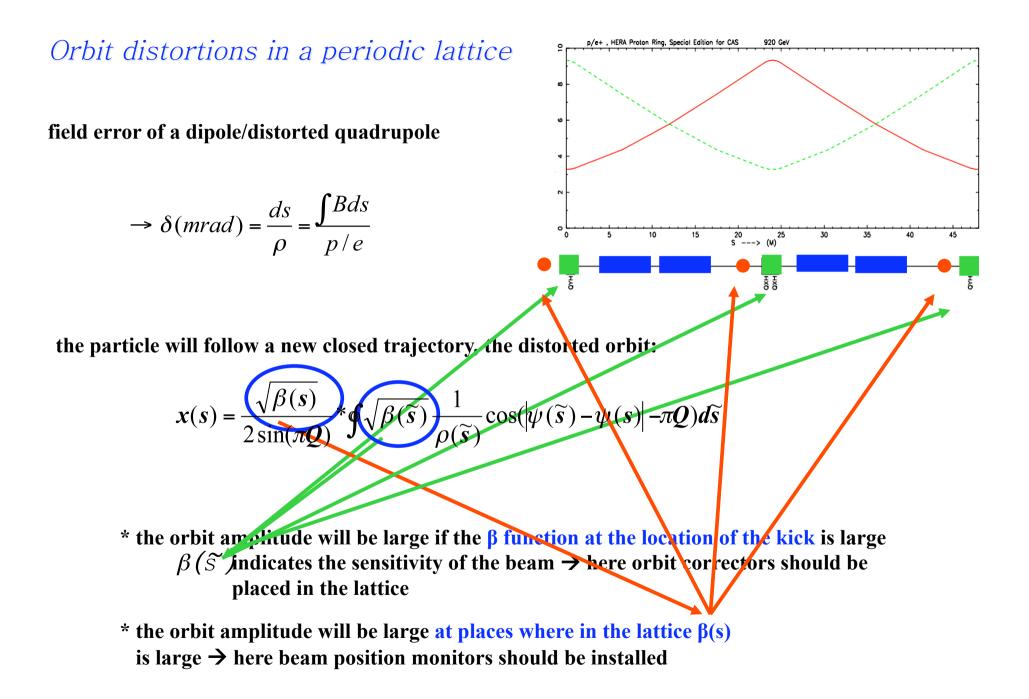


Electrons are different

electron beams are usually flat, $\varepsilon_y \approx 2 - 10 \% \varepsilon_x$ \rightarrow optimise only β_{hor}

$$\frac{d}{d\psi_{cell}}(\hat{\beta}) = \frac{d}{d\psi_{cell}} \frac{L(1 + \sin\frac{\psi_{cell}}{2})}{\sin\psi_{cell}} = 0 \quad \Rightarrow \quad \psi_{cell} = 76^{\circ}$$





Orbit Correction and Beam Instrumentation in a storage ring

Elsa ring, Bonn

Resumé:

1.) Dipole strength

$$\int Bds = N * B_0 * l_{eff} = 2\pi \frac{p}{q}$$

l_{eff} effective magnet length, N number of magnets

2.) Stability condition

Trace(M) < 2

for periodic structures within the lattice / at least for the transfer matrix of the complete circular machine

3.) Transfer matrix for periodic cell
$$M(s) = \begin{pmatrix} \cos\psi_{cell} + \alpha_s \sin\psi_{cell} & \beta_s \sin\psi_{cell} \\ -\gamma_s \sin\psi_{cell} & \cos\psi_{cell} - \alpha_s \sin\psi_{cell} \end{pmatrix}$$

 α,β,γ depend on the position s in the ring, μ (phase advance) is independent of s

4.) Thin lens approximation

$$M_{QF} = \begin{pmatrix} 1 & 0\\ \frac{1}{f_Q} & 1 \end{pmatrix} \qquad f_Q = \frac{1}{k_Q l_Q}$$

focal length of the quadrupole magnet $f_Q = 1/(k_Q l_{Q)} >> l_Q$

5.) Tune (rough estimate)

$$\psi_{period} = \int_{s}^{s+L} \frac{ds}{\beta(s)}$$

Tune = *phase advance in units of* 2π

 $\overline{R}, \overline{\beta}$ average radius and β -function

$$Q = N * \frac{\psi_{period}}{2\pi} = \frac{1}{2\pi} * \oint \frac{ds}{\beta(s)} \approx \frac{1}{2\pi} * \frac{2\pi\overline{R}}{\overline{\beta}} = \frac{\overline{R}}{\overline{\beta}}$$
$$Q \approx \frac{\overline{R}}{\overline{\beta}}$$

6.) Phase advance per FoDo cell (thin lens appro

$$\sin\frac{\psi_{cell}}{2} = \frac{l_d}{\tilde{f}} = \frac{L_{cell}}{4f_Q}$$

 L_{Cell} length of the complete FoDo cell, f_Q focal length of the quadrupole, μ phase advance per cell

- 7.) Stability in a FoDo cell *(thin lens approx)*
- 8.) Beta functions in a FoDo cell *(thin lens approx)*

$$f_Q > \frac{L_{Cell}}{4}$$

 L_{Cell} length of the complete FoDo cell, μ phase advance per cell