Insertions

Bernhard Holzer, CERN

Lattice Design II
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1.) Reminder: 5

equation of motion

x"+K(s)*x=0

K=—k+%o2

single particle trajectory
x(s) _ M Xo
x'(s) x',

e.g. matrix for a quadrupole lens:

<
Il

foc

cos(\/@s \/%Sin(\/ES _ (C S)
_\/@ Sin(\/ms cos(\/@s

- "

APS Light Source



2.) Dispersion

momentum error:

AV;,&() x”_l_x(i_k):A_p.i
p 2

P p P
general solution:

x(s) = 5, (5) + x,(5)

D(s) =218

A}/
p J

x(s) = x4 (s)+ D(s) Ap
p

X cC S D X
x! — C' S' D' %k x!
g 0O 0 1 g




Dispersion

the dispersion function D(s) is (...obviously) defined by the focusing properties of the
lattice and is given by:

I 1
D(s)= S(s)*(’&’)c[i _ C(s)*(E’)dE

! weak dipoles > large bending radius = small dispersion

Example: Drift

1 7 oo 1 - oo 1 ~
MD:(O 1) D(s)=S5(s) f&(i)/C(S)dN_C(S) wa(S)dE
=0 =0

...in similar way for quadrupole matrices,
!1!l'in a quite different way for dipole matrix (see appendix)

O =
_ O O



Dispersion in a FoDo Cell:

- w - 21 —-__-.U ______ —

-

I we have now introduced dipole magnets in the FoDo:
- we still neglect the weak focusing contribution 1/p?
-> but take into account 1/p for the dispersion effect
assume: length of the dipole = 1

Calculate the matrix of the FoDo half cell in thin lens approximation:

A

in analogy to the derivations of p, /3

f=L>>€

* thin lens approximation: Kt 0

1
* length of quad negligible  (,=0,— ([, = EL

* start at half quadrupole 1_

1
fo2f



Matrix of the half cell

MHalfCell M *M *M
2 2

1 O 0

MHaZfCeZl= L 1 O 1 _~1 1
A

c S l_é !

MHalfCell=(C| S')= _/ /

=5 1+—

A A

calculate the dispersion terms D, D’ from the matrix elements

D(s)=S8(s)* f—)C(s




*l*f s g *1*5
D(€)=€ ; f(1—7)dS—(1—7) ; fS ds

0 0

S(s) C(s) C(s) S(s)

2 2 2 3 2 3
D(z)=£ P DR U L S S .
e\ 2f fl e 2 p 2fp 2p 2fp

2
D(0) = £
2p

in full analogy on derives for D ’:

@l
0

7D




and we get the complete matrix including
the dispersion terms D, D’

L0 L
C § D / 2P
Mypca=|C" S D'|= ]_';—f 1"‘% ﬁ(“‘f;)
0 0 1
0 0 1

boundary conditions for the transfer from
the center of the foc. to the center of the
defoc. quadrupole

Tyt = PG00 Wimg fur Tuulhan Ayp_xwuthes, Doulh.wcvc': QALY Someel
T T T T Y T T T

A

VB

— t
_Ml/2

D
0
1
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. . . v 2
Dispersion in a FoDo Cell — D=D(1- ii) i
/o 2p
— 0= —é*ﬁ+£(l+i~)
/ p2f
. P2 1+ 1 sinM v g2 - 1 SinM where vy, denotes the
D=—__% D="_% 2 2 phase
P sin? M P sin’ M advance of the full cell
2

and [/f = sin(y/2)

g 10 \ Nota bene:
8
B () \ A ! small dispersion needs strong focusing
max 6 N\ — large phase advance
D min( M) 4 ' _'
“““ D\ !l there is an optimum phase for small
2 S —
05, ¢ B it S /1] ...do you remember the stability criterion?
0 30 60 90 120 150 180

Y2 trace = cos y <y < 180°

111! ... life is not easy



3.) Lattice Design: Insertions

... the most complicated one: the drift space

Question to the auditorium: what will happen to the beam parameters a, B, y if we
stop focusing for a while ...?

By (C  -2sCc ST (B
a| =|-CC' SC'+S'C -8S'|*| &
) et oaser sty ),

. . cC S 1 s
transfer matrix for a drift: M = =

2
§) =, —20,5 + Y,
ﬁ( ) ﬁo 0 Vo » 0 refers to the position of the last
a(s) = Ay —VoS lattice element
»8“ refers to the position in the drift
y(s) =7,



}/“ beam waist: o =0

location of the waist:

1
1
1
1
1

v

v

A
v

given the initial conditions a, f, y,: where is the point of smallest beam
dimension in the drift ... or at which location occurs the beam waist ?

beam waist:

a(s) =0 — oa,=y,*s a,

beam size at that position:

y(0)=v, l+a?(0) 1 B(l)= 1
— ) = =
a(l)=0 } r) B(0) B(0) Ao




B-Function in a Drift:

let‘s assume we are at a symmetry point in the center of a drift.
B(s) = By =205 +7,s°

1+’ 1
as a,=0, — y,= 0 —

By B

and we get for the B function in the neighborhood of the symmetry point

2

/S(s)=/30+;— '

Nota bene:
1.) this is very bad !!!
2.) this is a direct consequence of the
conservation of phase space density
(... in our words: ¢ = const) ... and

there is no way out.
3.) Thank you, Mr. Liouville !!!

Joseph Liouville,
1809-1882




B-Function in a Drift:

If we cannot fight against Liouvuille theorem ... at least we can optimise

Optimisation of the beam dimension:

62
0) =B, +—
p(l) ﬁ+[3’

0

Find the P at the center of the drift that leads to the lowest maximum 3 at the end:

\ : _m
ﬁﬂ_f_z:() By
dp, By

%/3’;:2[9’0

A
\ 4
A
\ 4

NN
U . v,

If we choose i, = { we get the smallest f§ at the end of the drift and the
maximum f is just twice the distance {
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drift spaces
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unfortunately ...
high energy detectors that are
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Luminosity & Minibeta Insertion

p2-Bunch

10 !! particles

pl-Bunch

10 ! particles

Example: Luminosity run at LHC

f, =11.245 kH
n, = 2808

B.,=055m
£., =5%107" rad m

o,,=17um

1,=584mA

L=1.0%10" %mzs

R = L * Zreact
L = 21 % L, 1)
4re” fon, O,0,

production rate of events is determined by the

cross section X, and the luminosity that is
given by the design of the accelerator



Mini—Q Insertions: Betafunctions

A mini-f insertion is always a kind of special symmetric drift space.
—>greetings from Liouville

at a symmetry point f3 is just the ratio of beam dimension and beam divergence.



size of f at the second quadrupole lens (in thin lens approx):
... dfter some transformations and a couple of beer ...

A

B(s) = 1+;—2 */5*+/;* ll+lz+%

1 1

920 GeV /27.5 GeV

o/e+ . otzz. MO2 8. Stondord Lumi—Opilk




Mini—@ Insertions: Phase advance

1
By definition the phase advance is given by: D(s) = f B(s) ds
SZ
Now in a mini B insertion: B(s)=p, (1+ F)
0
L
— ®(s) = 1 f 21 - ds = arctan L
/50 0 1+ S / /50 /30
90
B(s) 10 // . .
50 Consider the drift spaces on both
?8 sides of the IP: the phase advance
-10 of a mini f insertion is
-30 . approximately m,
:;8 J in other words: the tune will increase
9 — by half an integer.

0
=50 =40 -30 20 -10 0 10 20 30 40 50
« LB >



Are there any problems 7

sure there are...

* large f values at the doublet quadrupoles = large contribution to
chromaticity Q° ... and no local correction

-1
0=-—fKpxds [T
4;7-[ ¢ g ' v:
* aperture of mini ff quadrupoles /\ |
limit the luminosity — N A
beam envelope at the first !
mini B quadrupole lens in . 1 13
the HERA proton storage ring L " s

* field quality and magnet stability most critical at the high f sections
effect of a quad error:

L AK (5)B(s)ds
AQ = !; 4

- keep distance ,,s“ to the first mini  quadrupole as small as possible




Mini-f Insertions: some guide lines

* calculate the periodic solution in the arc

* infroduce the drift space needed for the insertion device (detector ...)

* put a quadrupole doublet (triplet ?) as close as possible

*introduce additional quadrupole lenses to match the beam parameters
to the values at the beginning of the arc structure

X D Dx,

x?2

a,, p
parameters to be optimised & matched to the periodic solution: "
a

v B, 0

x? Qy

8 individually TR

powered quad it |

magnets are ,,'" ‘ “ | "'.l

needed to match | "‘| k ! \n

the insertion | / |1
(... at least)

20




5.) Dispersion Suppressors

There are two rules of paramount importance about dispersion:

! it is nasty
!! it is not easy to get rid of it.

remember: oscillation amplitude for a particle
with momentum deviation

x(s)=x5(s)+D(s)* ap
P

beam size at the IP o =17um
D=15m
dispersion trajectory Ap | 1#10+ X, =165um



Dispersion Suppressors

sl sl

D(s) = S(s) f%C(§)d§ ~ C(s) f%SG)dE
s0 s0

optical functions of a FoDo cell without
dipoles: D=0

SN
S |

> A
=

Remember: Dispersion in a FoDo cell including dipoles

) 14 Lgin Yeer (1—ISinw“”)
1 2 2 D= 2 2

2
L £
P sin” Ve p
2

Siﬂz qjcell



FoDo cell including the effect of \/ﬁ
the bending magnets

~ \

Dispersion Suppressor Schemes

1.) The straight forward one: use additional quadrupole lenses to
match the optical parameters ... including the D(s), D '(s) terms

* Dispersion suppressed by 2 quadrupole lenses,

* B and o restored to the values of the periodic solution by 4
additional quadrupoles

D(s), D'(s)
Bu(s)a(s)
B (s)a,(s)

6 additional quadrupole
lenses required

|




Test-FODO Ring fur Zeuthen
T

iyp_zewihen, zeulhencell, ki=—0.541/mv+2
T T

Dispersion Suppressor l -
- o
Quadrupole Scheme NN X o //\ o/
7l AR T AT LT I P W :
‘ S
D
periodic FoDo matching section dispersion free
structure including 6 additional ~section, regular
quadrupoles FoDo without dipoles
Advantage: Disadvantage:
! easy, ! additional power supplies needed

! flexible: it works for any phase
advance per cell

! does not change the geometry
of the storage ring,

! can be used to match between different lattice
structures (i.e. phase advances)

(— expensive)

! requires stronger quadrupoles

! due to higher f values: more aperture
required



2.) The Missing Bend Dispersion Suppressor

... turn it the other way round:
Start with D(s)=D, D'(s)=0

and create dispersion — using dipoles - in such a way, that it fits exactly the
conditions at the centre of the first regular quadrupoles:

sl sl

D(s) = S(s) f%C(LG)dE ~ C(s) f%S(E)dS*
s0 s0

at the end of the arc: add m cells without
dipoles followed by n regular arc cells.

— horizontal bypass for helium and
superconductor lines

— new (warm) beam pipe



2.) The Missing Bend Dispersion Suppressor

conditions for the (missing) dipole fields:

1
2m+n®c=(2k+l)% 2 2

m = number of cells without dipoles
followed by n regular arc cells.

Example:
- . CRTE TRV E phase advance in the arc .= 60°
et .- number of suppr. cells m =1
...... number of regular cells n =1
= ‘-'




3.)The Half Bend Dispersion Suppressor

n®
o 0 0 0 . 0 N * * o 2 _
condition for vanishing dispersion: 2%8,,, *sin (T") =0,
. . 1 *
so if we require O = B O sin(D)
sin 2(®/2)
n®o
: 2
we get sin”(—<) =1
()
or, which is equivalent sin(n®,) =0 n®, =k*rm, k=13,..
Tesl—"DD? Ring fur Zeu“\elﬂ ; lyp'_zeuﬂ'\eﬂ. zeuihelﬂcel?. kf=-0 54‘:/"'""? ; .
e 7 in the n suppressor cells the phase advance
/’_3 has to accumulate to a odd multiple of

= strength of suppressor dipoles is half as
5 = = > 5 > : strong as that of arc dipoles, o =1/29,,

suppr

> ° _ | *  Example: phase advance in the arc
——i———t— it —— tf Attt s ettt —t—r— :--1-,--?3?-—.-—-.--; ¢C'_ 60
: . . : number of suppr. cells n =3




6.) Resume"

1.) Dispersion in a FoDo cell: .2 _ 7 2
small dispersion <> large bending radius P =—" LU D= ; LY,
short cells P sin” < st

strong focusing

2.) Chromaticity of a cell:
small Q’ <> weak focusing
small 3

3.) Position of a waist at the cell end:
0, Bo= values at the end of the cell

4.) p function in a drift

5.) Mini P insertion
small B« short drift space required
phase advance =~ 180 °

0. = %gﬁ{K(s) _ mD(s)}B(s)ds

_% _ 1
¢ = . B(0) A
B(s) =By =205 +7,5°

2

S
B(s) =, + B,






Appendix [ Dispersion:
Solution of the Inhomogenious Equation of Motion

the dispersion function is given by

D(s) = S(s)*fﬁC(S’)df - C(s)*fﬁS(’E’)df

proof:  D'(s)=S'(s)* fﬁ CF)d5 +S(s) % - C(s)* fp(lg) S(F)d5 - C(s) ‘; g
D(s)= S'(s)* f%di —C(9)* f%ds“
D'(s) = 5"(s) *f%d?+ s'%- C"'(s) *f%dE—C'%
D"(s)=S"(s)* f%ds“ _C"(s)* +%)(CS‘— SC")
— det(M) =1

D" (s) = S"(s)*f%d?—C"(s)*f%ﬁ+%

now the principal trajectories S and C fulfill the homogeneous equation

S"(s)=-K*S , C"(s)=-K*C



and so we get: D"(s)=—K*S(s)*fga‘s“+K*C(s)>*<f£a‘s“+i
1% p P

D'"(s) = —K * D(s) + -
Jo,

D"(s)+ K *D(s) =~
0

qed.



Appendix II: Dispersion Suppressors

... the calculation of the half bend scheme in full detail (for purists only)

1.) the lattice is split into 3 parts: (Gallia divisa est in partes tres)

* periodic solution of the arc

* section of the dispersion suppressor

* FoDo cells without dispersion

periodic B, periodic dispersion D
periodic B, dispersion vanishes
periodic B, D=D"=0

TP ———

2I0 2.5 3.0 3.5
—_—— (M)

o I o o e o e e e e s e I s o e e e A o sy Y o 6 e Y 5 e O e o () vy O o I 1 2 e
1 P I I N o I R I R 7 I ) ) 7 )y I P ) R 7 ) ) 7 Y o S ) I Y R o) e S 3 o SO Y 5 o e ) 5 | e [
P T B P B P g @ ®g @ g 0,08 O 585 55 235 858fF 85 X
e "L‘H o -, y -
-‘__"‘-.______,. R ._______ = ettt e s — m,___.____ - fﬂl\h"-&__ﬁ___f"—'ﬂx__ -

‘H__\_H-_ |
F+——-—— ===t ——— -t — - —i—— — ==+ — = —i— = ———t — = -1«-«»——-1-—-'-r—i-——'—'—f———-—r——r-f-—-:—'-1_—'-70-—-:——_
= Cra] ™ o] 10 =




2.) calculate the dispersion D in the periodic part of the lattice

transfer matrix of a periodic cell:

J%T(cos¢+ao sin ¢) \Bs B, sing

0—>s = (o, —axg)cosp —(1+a,a,)sing \/E(cosgb—a sin @)
By S

N Bs By

for the transformation from one symmetriy point to the next (i.e. one cell) we have:
®. = phase advance of the cell, a = 0 at a symmetry point. The index “c” refers to the periodic
solution of one cell.

cos P . Besin® . D(/)

¢ § D |
M.,=|C" S§'" D'|[= /;—sinCIDC cos®. D'())
0 0 1 c
0 0 1

The matrix elements D and D¢ are given by the C and S elements in the usual way:

1
P(s)

1

D) =S* [ C(5)d5 —C(I)* f% S(3)d5

. A DA B
D'())=S"') {p(g)C(s)ds C'() [0(5) S(3)d3




here the values C(/) and S(/) refer to the symmetry point of the cell (middle of the quadrupole) and the
integral 1s to be taken over the dipole magnet where p # 0. For p = const the integral over C(s) and S(s) 1s
approximated by the values in the middle of the dipole magnet.

Transformation of C(s) from the symmetry point to the center of the dipole:

_ [|Bu = (B o De s _ in( e .
Cm—\/;cosA(D \/;cos(z +@, ) S ﬂmﬁC81n(2 +Q )

where B 1s the periodic  function at the beginning and end of the cell, 3, its value at the middle of
the dipole and ¢, the phase advance from the quadrupole lens to the dipole center.

Now we can solve the intergal for D and D’:

wp L b
D(I) = S() [—p(i) C(3)ds - C(1) »{p(§) S(3)ds

i o . D
D(l)=/3Csm(1)C*£>x< &*COS(TCi¢m)—COSCDC*£ /ﬁmﬁC*SIn(TCi(pm)
P P

C



D()=056pB, B {sin@c [cos(%+q0m) + cos(%_(pm)] _

. D . D
—cosd,. [sm(TC +@, )+ sm(TC — gom)”
I have put 6 = L/p for the strength of the dipole

X+y*COSX—y

remember the relations  cosx+cosy =2cos

x+y*COSx_y

sin x +sin y = 2sin
: D . D,
D()=6pB,B- {sindD,. *2cos7*cosq0m —cos D *2sm7*cosq0m

: D . D
D(l)=26./B,B; *cosgp, {sm D *COSTC*—COS(I)C *smTC}

remember:  sin2x =2sin x *cosx

2 . 2
COS2X =COS"  x—SIn" x

D(l)=26./B,B. *cosqp, {2 smTC*cos2 TC —(cos’ TC —sin? TC)*sm TC}



. D D D ., D
D(l)=284B,,B. *cosg,, *51n7c{2 cos” TC_ cos” TC + sin” 7‘7}

D(l) =25-JB_B.. *cosq, *sin%

in full analogy one derives the expression for D*:

D'(l)=28,p,, /B, *cosg,, *cos cI;c

As we refer the expression for D and D¢ to a periodic struture, namly a FoDo cell we require
periodicity conditons:

DC DC
D¢ | =M. *| D
1 1
and by symmetry: D'.=0

With these boundary conditions the Dispersion in the FoDo is determined:

. D
D, *cos®. +0./f, P *cosp, *251n7c =D,



. D
(41) D, =06.pB,B.*cosqp, /smTC

This is the value of the periodic dispersion in the cell evaluated at the position of the dipole magnets.

3.) Calculate the dispersion in the suppressor part:

We will now move to the second part of the dispersion suppressor: The section where ... starting
from D=D‘=0 the dispesion is generated ... or turning it around where the Dispersion of the arc is
reduced to zero.

The goal will be to generate the dispersion in this section in a way that the values of the periodic cell
that have been calculated above are obtained.

The relation for D, generated in a cell still holds in the same way:

D) =S()* fﬁ CE)ds -C(D* [ 2~) S(3)d5

o(s




as the dispersion is generated in a number of n cells the matrix for these n cells is

cosn®. B.sinn®. D,
M, =M!=|—sinnd®,. cosnd. D'
c
0 0 1

” 1
D =p.sinn®, *6 Ecos(iCIDC——CI)Ci(p )* P _

supr m
i=1 2 [))C

—COS nq)C >l<(Ssupr * E \/ /)JmﬂC *Sin(iq)c _%(I)C i(pm)
i=l1

B, Bc *sinn®.*6,  * Ecos((Zz 1)—+q0 )=+/B.Bc * by, *cosn® Esin((Zi—l)%ifpm)

i=1

X+Y, X-Y

X+, xX—y
COS

COS
2

remember: sin x +sin y = 2sin COS X + COS y = 2COS

D, =0y, *\|B,Bc *sinnd_ *Ecos((Zz ~1) C)*2coscpm

i=1

—0, ¥\ BB * cos n® E sin((2i - 1) it ) *2cosp,

i=1



n ¢ . n . @
D, =20, *\B,Bc*cosq, {E cos((2i —1) TC) *sinnd . — E sin((2i — 1) TC) *cosn®,. }
i=1 i=1

. nP D : :
sin ¢ *cog € sin P 4 sin b
D, =24, *\B,Bc *cosg, {sinn®,. 2 D 2 —cosn® . * 2 D 2
sin —& sin —<
2 2
20, %/ *cos D P
D =—* Pl Pn Isin nd,. *5in ——C * cos ——C — cos nd,. *sinZ&
n e 2 2

set for more convenience x = nd/2

D 255upr * \Y, ﬁmﬁC *COS(pm

= o in2x*sinx*cosx—cos2x*sin2x}
sin —<
2

D 255upr * \Y, ﬁm[jC *COS (pm

= 5 sin x cos x * cos x sin x — (cos” x —sin” x)sin’ x}
sin—%
2




sin &
2

(AZ) D = 26supr * \ ﬁmﬁc *cos CDm *Sinz nCI)C
2

and in similar calculations:

D' 26,,,, *\/B,Bc *cosg,
" . D
sin —=

sin n® .

This expression gives the dispersion generated in a certain number of # cells as a function of the dipole

kick & in these cells.
At the end of the dispersion generating section the value obtained for D(s) and D‘(s) has to be equal

to the value of the periodic solution:

—>equating (A1) and (A2) gives the conditions for the matching of the periodic dispersion in the arc
to the values D = D‘= 0 afte the suppressor.

D - 20,,,, *\ BB *cos g, w2 NP P . COSQ,
n S — Yarc ﬁmﬁC
D, 2 D,

sin— = sin —=
2



. o D
— 2(Ssupr SIn ( 2C)=5arc 6 =16

— sin(n®,.) =0

and at the same time the phase advance in the arc cell has to obey the relation:

nd, =k*x, k=13, ..



