

High Field Accelerator Magnets

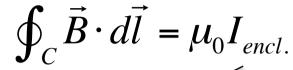
Gijs de Rijk CERN

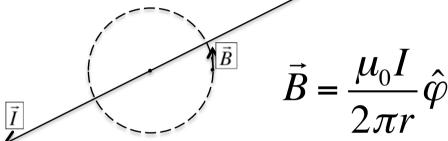
CAS

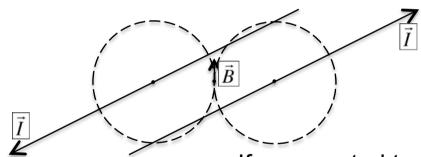
Trondheim, Norway, 27th August 2013

High Field Accelerator Magnets

- Introduction: magnetic field and high field magnets
- How to get high fields in accelerator dipole and quadrupole magnets?
- Superconductors for magnets
- Practical accelerator magnet design
- High field magnets for future accelerators
- Literature on High Field Magnets


CAS Trondheim, 27-Aug-2013, HFM, GdR


y (mm)


Magnetic fields

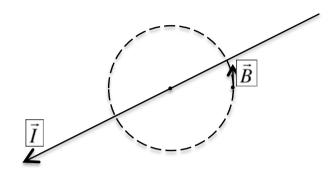
From Ampere's law with no time dependencies (Integral form)

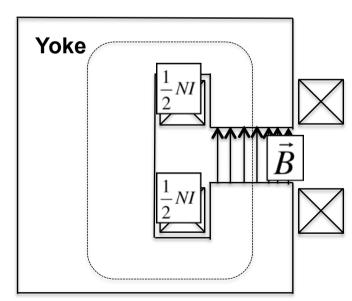
We can derive the law of Biot and Savart

If you wanted to make a B = 8 T magnet with just two infinitely thin wires placed at 50 mm distance one needs : $I = 5 \cdot 10^5$ A

LHC dipole coil 80 turns of 11850 A at 8.3 T = $9.48 \cdot 10^5 \text{ A}$)

→ To get high fields (B > 10 T) one needs very large currents in small volumes

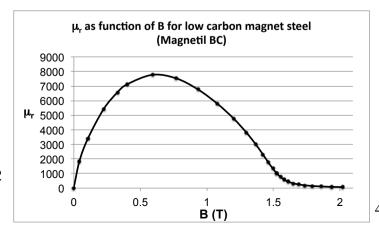

For LHC dipole@8.3 T ~1 MA in 3300 mm² : ~300 A/mm² (overall current density in the coil area)


CAS Trondheim, 27-Aug-2013, HFM, GdR

Iron magnets

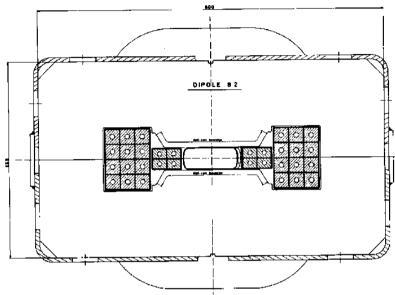
"resistive" or "classical" magnets

Example: C shaped dipole for accelerators


$$\oint_C \vec{H} \cdot d\vec{l} = N \cdot I$$

$$N \cdot I = H_{iron} \cdot l_{iron} + H_{airgap} \cdot l_{airgap} \Rightarrow$$

$$N \cdot I = \frac{B}{\mu_0 \mu_r} \cdot l_{iron} + \frac{B}{\mu_0} \cdot l_{airgap} \Longrightarrow$$


$$N \cdot I = \frac{l_{airgap} \cdot B}{\mu_0}$$
 This is valid as $\mu_r >> \mu_0$ in the iron : limited to B < 2 T

coil

Resistive accelerator magnet example: SPS dipole

H magnet type MBB

B = 2.05 T

CAS Trondheim, 27-Aug-2013, HFM, GdR

Coil: 16 turns

 $I_{max} = 4900 A$

Aperture = $52 \times 92 \text{ mm}^2$

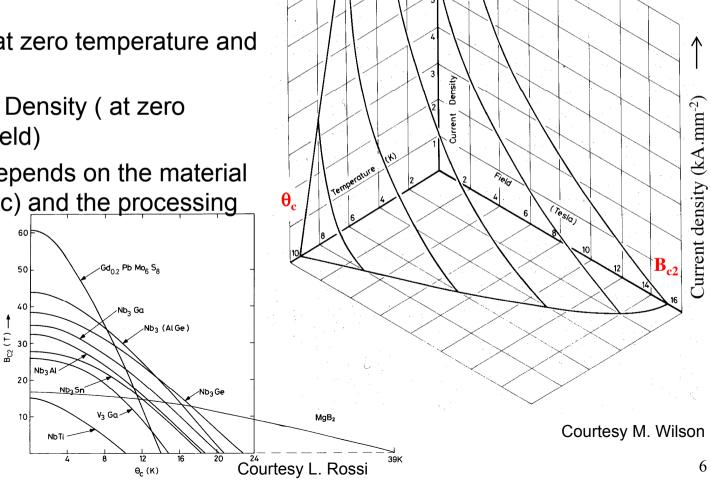
L = 6.26 m

Weight = 17 t

Superconductors

Below a the critical surface the material is "superconducting". Above the surface it is "normal conducting"

 Θ_c Critical Temperature (at zero field and current density)


 B_{c2} Critical Field (at zero temperature and current density)

 J_c Critical Current Density (at zero temperature and field)

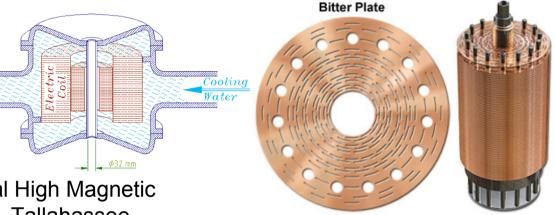
The Critical surface depends on the material type Nb-Ti, Nb₃Sn, etc) and the processing

Superconducting means: R = 0

J: few x 10³ A/mm² inside the superconductor

Temperature (K)

Critical surface


Field (Tesla)

High field magnets example: resistive solenoids

High field resistive solenoids

- Onion shells of coils
- **High power consumption**

Outsert Magnet Cryostat

Superconducting Outsert Magnet

Resistive

Insert Magnet

Electrical Supply for Resistive

Magnet

Cooling Water Pipes

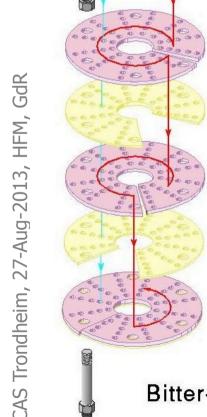
Hybrid Magnet

Cross Section

Electrical and Helium Supply for Superconducting Magnet

cooling water current

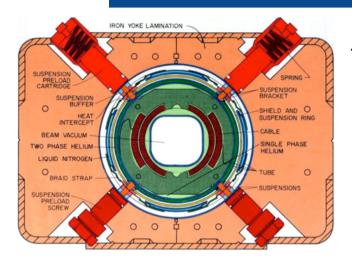
Institutes:


NHFML, National High Magnetic Field Laboratory, Tallahassee, Florida (US)

45 T Hybrid magnet, Ø 32mm, insulato Power: 33 MW

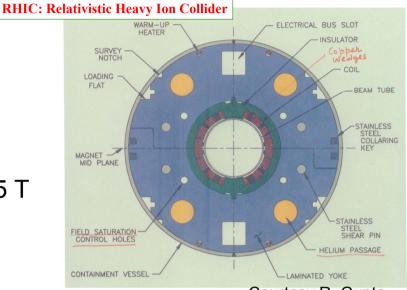
> HFML, High Field Magnet Laboratory, Nijmegen (NL) 33.0 T Bitter magnet , Ø 32mm Power: 17 MW

LNCMI, Laboratoire National des Champs Magnétique Intenses, Grenoble (Fr)

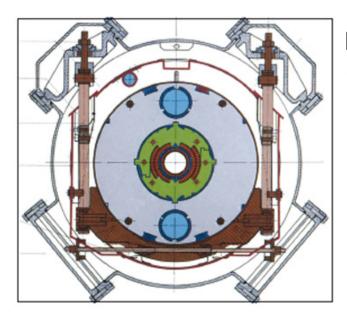

Bitter-magnet 35 T Hybrid magnet, Ø 34mm

CAS Trondheim, 27-Aug-2013, HFM, GdR

Superconducting Accelerator dipole magnets (1)



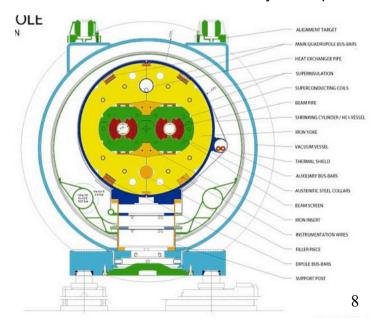
Tevatron: 4.4 T


1983

RHIC: 3.5 T

2000

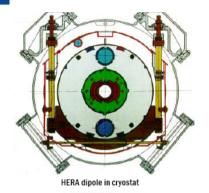
Courtesy R. Gupta



HERA: 5 T

1992

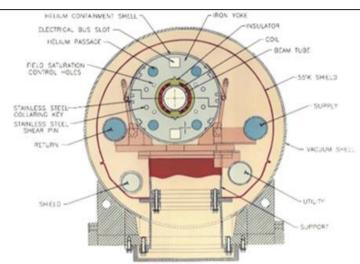
LHC: 8.34 T

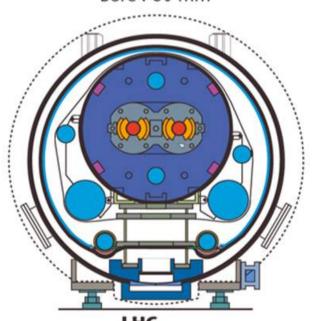

2008

Size overview

HERA

B = 4.7 T


BORE: 75 mm


TEVATRON

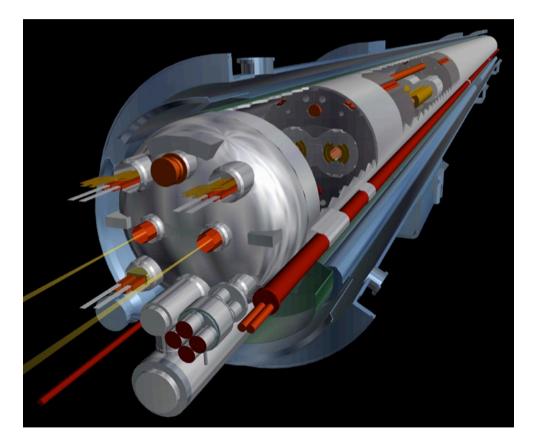
B = 4.5 T

Bore: 76 mm

RHIC B = 3.5 T Bore: 80 mm

LHC B = 8.3 T Bore : 56 mm

9



Superconducting Accelerator dipole magnets (2)

Tevatron dipoles: 4.2 T single aperture, warm yoke

Tevatron

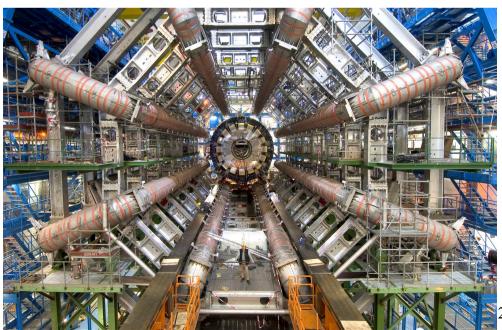
LHC

Superconducting Accelerator dipole magnets (2)

	Machine	place	Туре	Energy (GeV)	Peak Dipole field (T)	# dipoles	Dipole Length (m)	Ring circ. (km)	Year
013, HFM, GdR	Tevatron	FNAL (USA)	p-pbar FT/coll.	1000 x 1000	4.4	774	6.12	6.28	1983/ 1987
	HERA	DESY (D)	e ^{-/+} - p collider	40x920	5	416	8.82	6.34	1992
	RHIC	BNL (USA)	p-p, Au- Au, Cu- Cu, d-Au	100/n	3.5	2x192+12	9.45	3.83	2000
'-Aug-2013,	LHC	CERN (Eu)	p-p, Pb-Pb	7000 x 7000	8.34	1232	14.3	26.66	2008

20 years were needed to go from 4 T to 8 T!

Detector magnets


CMS Solenoid

- Inner Bore 6.3 m
- Length 12.5 m
- Central field 4 T
- Nominal current 19 kA
- Stored Energy 2.65 GJ
- Cold mass 220 t

ATLAS barrel toroid

- Outer diameter 21 m
- Length 26 m
- B_{peak} 4.1 T
- Stored Energy 1500 MJ

NMR and research magnets

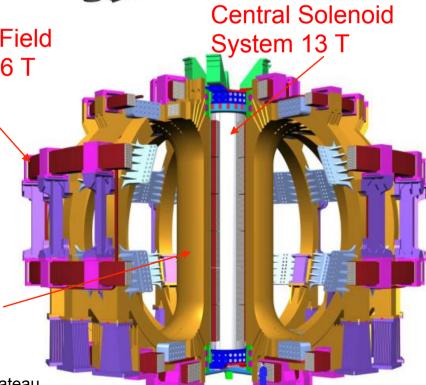
Solenoids up to 21 T and with a bore of 50 mm (max 89 mm) are available off the shelf of many firms: Bruker, Agilent, Oxford, Cryogenic, Varian, etc

As an example from Cryogenic: solenoid 20 T, 2.2 K, 52 mm Ø bore, I = 285 mm, Ø 500 mm

Fusion Tokamak: ITER

The Tokamak has several magnet systems to confine

- the plasma (TF),
- control it (PF and correction coils),
- and heat it up (CS)


Large amounts of conductor are needed:

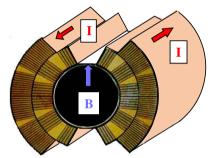
TF system: 376 tonnes Nb₃Sn

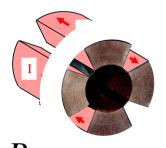
CS system: 132 tonnes Nb₃Sn

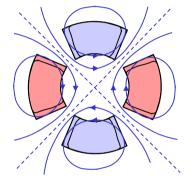
PF system : 244 tonnes Nb-Ti

Poloidal Field System 6 T

Toroidal Field System 11.8 T

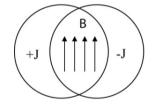

Courtesy J-L. Duchateau





What is specific about accelerator magnets?

- Cylindrical volume with perpendicular field
- Dipoles, quadrupoles, etc



Artist view of a dipole, from M. N. Wilson « Superconducting Magnets »

• Field quality:

$$\frac{\Delta B_z}{|B|} \le few \cdot 10^{-4}$$

CosΘ coil : $J = J_0 cosΘ$

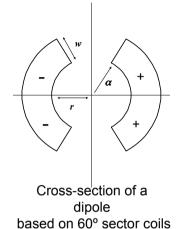
Field quality formulated and measured in a multipole expansion,

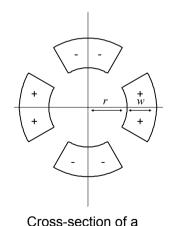
$$B_{y} + iB_{x} = 10^{-4} B_{1} \sum_{n=1}^{\infty} \left(b_{n} + ia_{n}\right) \left(\frac{x + iy}{R_{ref}}\right)^{n-1} \qquad b_{n}, a_{n} \leq few \cdot units$$

- Long magnets: dipoles from 6 m (Tevatron) to 15 m (LHC)
- Often magnets are bend (9.14 mm sagitta for the LHC dipoles)

How to get high fields in accelerator dipole and quadrupole magnets?

From Ampere's law one can derive the field resulting from the current in a line conductor and integrate this over the surface of a coil


- Dipole 60° sector coil [see ref 10, 14]
 - The field is proportional to the current density j
 - The field is proportional to coil width
 - The field is independent of aperture


$$B_1 = -4 \frac{j\mu_0}{2\pi} \int_0^{\pi/3} \int_r^{r+w} \frac{\cos\theta}{\rho} \rho d\rho d\theta = -\frac{\sqrt{3}\mu_0}{\pi} jw \qquad \text{with: } r : \text{inner radius coil} \\ w : \text{coil width} \\ \rho : \text{radial coordinate} \\ J : \text{current density}$$

- Quadrupole 30° sector coil [see ref 11, 14]
 - The gradient is proportional to the current density j
 - The gradient depends on w/r

$$G = -8\frac{j\mu_0}{2\pi} \int_{0}^{\pi/6} \int_{r}^{r+w} \frac{\cos\theta}{\rho} \rho d\rho d\theta = -\frac{\sqrt{3}\mu_0}{\pi} j \ln\left(1 + \frac{w}{r}\right)$$

→ by having very high current density close to the beam pipe See: E. Todesco et al. ref[10] and indirectly: N. Wilson ref[1], K-H Mess et al. ref[2] For a in depth study of magnetic field calculations: S. Russenschuck ref[4]

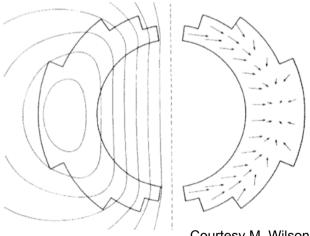
quadrupole based on 30° sector coils

The forces with high field dipole and quadrupole magnets

One can derive the maximum stress in the midplane for a sector dipole coil

• Dipole 60° sector coil [see ref 1, 12]

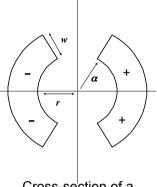
 $\sigma \approx j^2 \frac{\mu_0 \sqrt{3}}{6\pi} Max_{\rho \in [r, r+w]} \left[2\rho^2 + \frac{r^3}{\rho} - 3\rho(r+w) \right]$

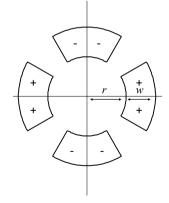

(Typically: for 8T: 40 MPa, for 13 T 130 MPa)

with: r: inner radius coil

 ρ : radial coordinate

w: coil width


J: current density


Courtesy M. Wilson

Quadrupole 30° sector coil [see ref 1, 13]

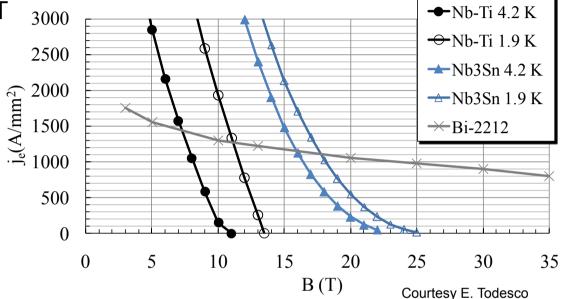
$$\sigma \approx j^2 \frac{\mu_0 \sqrt{3}}{16\pi} Max_{\rho \in [r, r+w]} \left[2\rho^2 + \frac{r^4}{\rho^2} + 4\rho^2 \ln\left(\frac{r+w}{\rho}\right) \right]$$

Cross-section of a dipole based on 60° sector coils

Cross-section of a quadrupole based on 30° sector coils

Superconductors

Nb-Ti is the workhorse for 4 to 10 T


Up to ~2500 A/mm² at 6 T and

4.2 K or at 9 T and 1.9 K

Well known industrial process, good mechanical properties

Thousands of accelerator magnets have been built

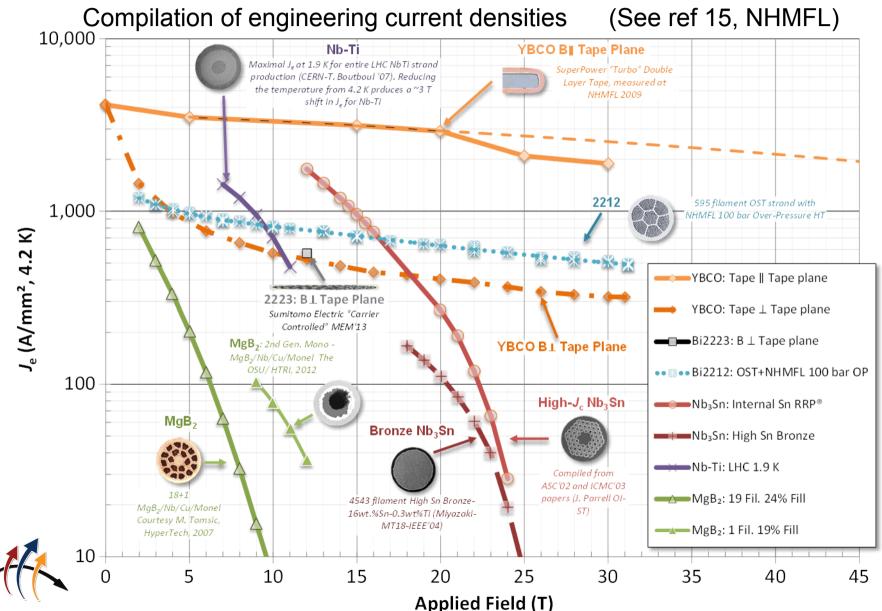
10 T field in the coil is the practical limit at 1.9 K

Nb₃Sn: towards 20 T

Can reach up to ~3000 A/mm² at 12 T and 4.2 K

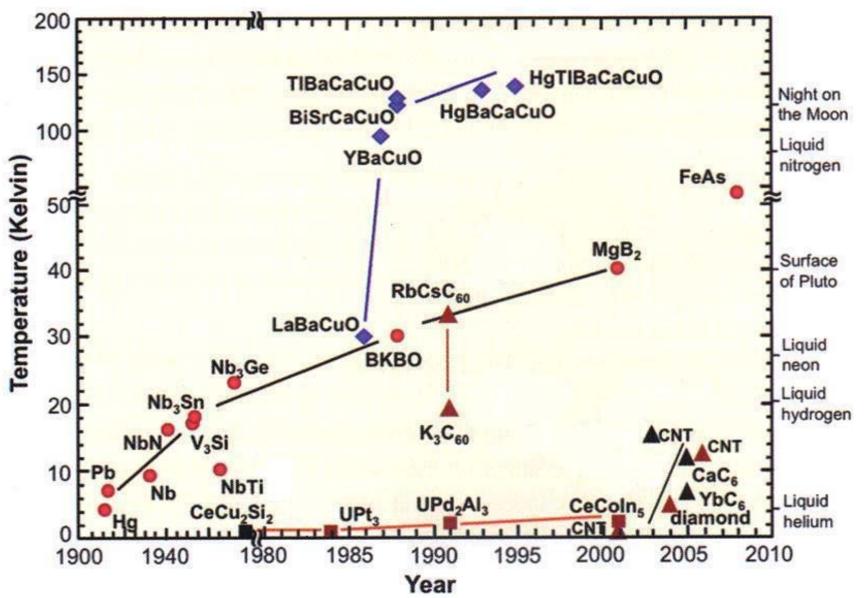
Complex industrial process, higher cost, brittle and strain sensitive

- ~25 short models for accelerator magnets have been built
- ~20 T field in the coil is the practical limit at 1.9 K

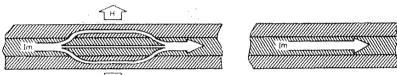

HTS materials: dreaming 40 T (Bi-2212, YBCO)

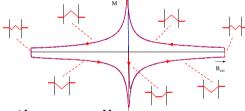
- -Current density is low, but very little dependence on the magnetic field
- Used in solenoids, used in power lines no accelerator magnets (only 1 model)
 have been built small racetracks have been built

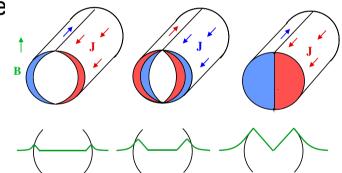
CAS Trondheim, 27-Aug-2013, HFM, GdR


Superconductors

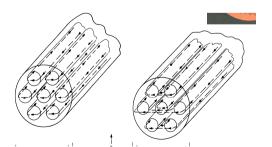
High temperature superconductor zoo

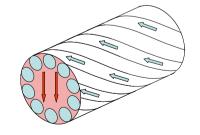



Conductor stability and AC behaviour


- Pure massive superconductor is not stable as they (Nb-Ti, Nb₃Sn) are poor normal conductors
- To 'cryogenically stabilize' the conductor one surrounds it in Cu:
 - good electrical conductivity
 - good heat transfer to the He

• During current ramping the filaments will magnetize

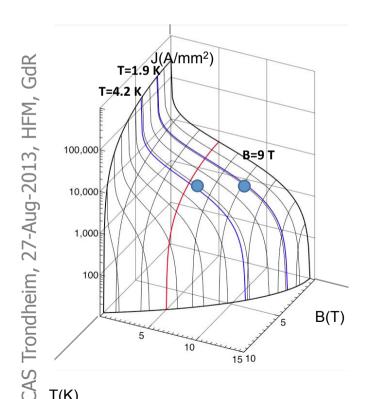

→ make them thinner



Filaments will have magnetic coupling

→ twist the strand

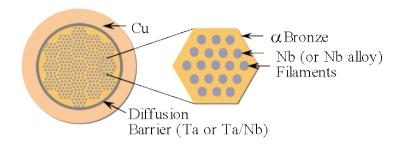
Courtesy M. Wilson


• Practical low temperature superconductors are made as thin (5 μm – 100 $\mu m)$ superconducting filaments in a Cu matrix , which is twisted

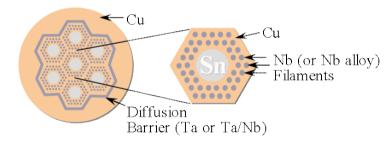
Superconducting strands: Nb-Ti

Nb-Ti is the workhorse for present accelerators, medical magnets, cyclotrons, etc

Strands and Cables for LHC Dipole Magnets Performance specification STRAND Type 01 Type 02 Diameter (mm) 1.065 0.825 $1.6 - 1.7 \pm 0.03$ Cu/NbTi ratio $1.9 - 2.0 \pm 0.03$ Filament diameter (µm) 6 8800 Number of filaments 6425 2100 @ 7 T Jc (A/mm²) @1.9 K 1530 @ 10 T $\mu_0 M (mT) @ 1.9 K, 0.5 T$ 30 ± 4.5 23 ± 4.5 **CABLE** Type 01 Type 02 Number of strands 28 36 15.1 Width (mm) 15.1 1.480 ±0.006 Mid-thickness (mm) 1.900 ±0.006 1.25 ± 0.05 0.90 ± 0.05 Keystone angle (degrees) Cable Ic (A) @ 1.9 K 13750 @ 10T 12960 @ 7T 10-50 Interstrand resistance ($\mu\Omega$) 20-80 Cable compaction ~ 91 %


Superconducting strands: Nb₃Sn

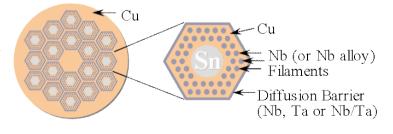
Nb₃Sn for High Field Magnets examples

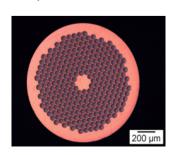

• OST (US)

-Restacked Rod Process (RRP) for High Energy Physics (r= 0.7 mm or 0.8 mm, J_c up to 3000 A/mm²@12T, 4.2 K, filaments~50 μm, Cu-nonCu=0.9)

Bronze Process

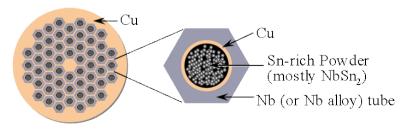
Internal Sn (Single Barrier)




• EAS-Bruker (De)

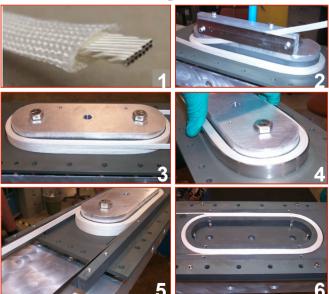
–Powder in Tube (PIT) for HEP and others (r=1 mm, J_c up to 2400 A/mm²@12T , 4.2 K, filaments ~50 μm, Cu-nonCu=1.25)

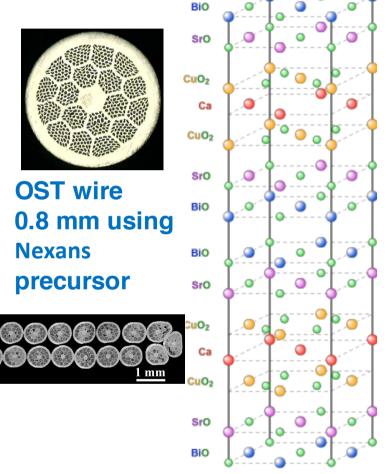
Internal Sn (Distributed Barrier)



To be reacted at 650°C for ~120 hr

Powder in Tube (PIT)

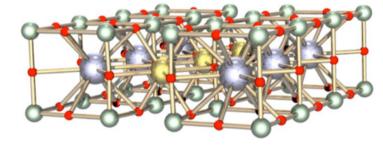


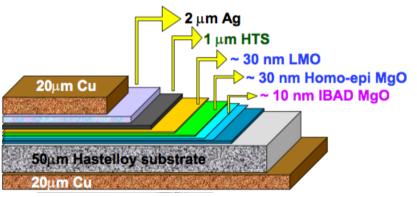


Superconducting strands and tapes: BSCO

BSCO: Bismuth strontium calcium copper oxide

- Available in strands (OST)
- Can reach 400 A/mm² (overall)
- Is fragile under stress and strain
- Powder in a silver tube
- Has to be reacted at 850°C with a temperature precision of 1°C in an oxygen atmosphere
- Can be cabled in high current Rutherford cables




Superconducting tapes: YBCO

YBCO: Yttrium barium copper oxide

- Available in tapes: YBCO deposited on a substrate to impose the texture (1-2 μm)
- Can reach > 600 A/mm² (overall)
- Is strong under axial stress and strain
- Limited cabling possibilities:

Difficult technology but could be promising

for high field magnets in >20 T region.

YBCO SUPERPOWER Record field (25 T), adding 3 T NHMFL - Florida

Superconducting cables for magnets

We need multi-strand cables

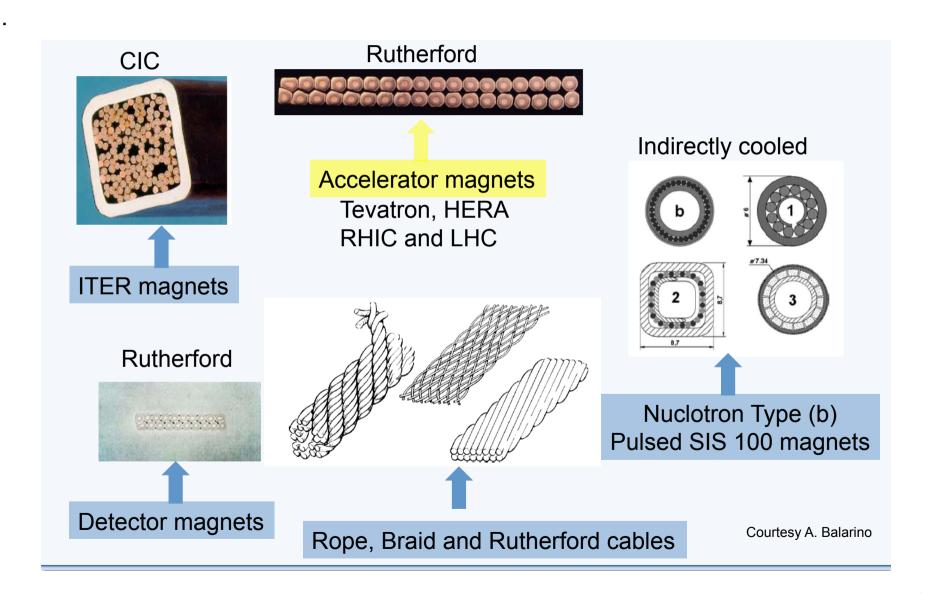
- Superconducting accelerators are ramped up in time spans 100 s to 1000 s
- Coils are designed for voltages to ground of around 1000 V
- With the number of turns and the current the inductance is to be limited to keep the voltage below 1000 V

$$V = -L\frac{dI}{dt}$$
$$L \approx N^2$$

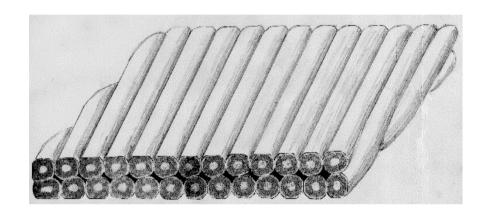
Dipoles and Current:

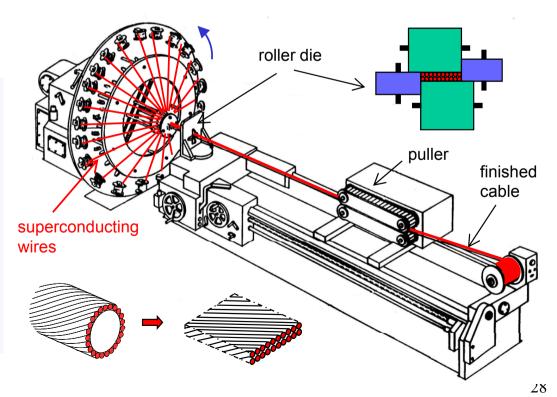
$$L \approx N^2$$

• Hera
$$B = 5 T$$
; $I \sim 6000 A$


• LHC B =
$$8.3 \text{ T}$$
; I $\sim 12000 \text{ A}$

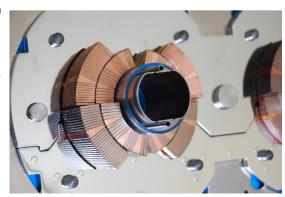
- For magnets 10 T < B < 15 T the current has to be 10kA < I < 15 kA
- For stability reasons strands are
 0.6 mm < strand diameter < 1 mm
- With a Cu-nonCu ratio (stability) around 1 and a Jc ~ 1000 A/mm²
 - → a 1 mm diameter strand can carry ~400 A
 - → need a 30 strand cable to get up to 12 kA


Cable types

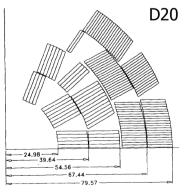


Rutherford cables

- Compact cables giving high over current density
- Can be wound relatively easy
- Easy rectangular geometry



Practical accelerator magnet design: Dipoles


Two types of coils are in use for high field magnets: $Cos(\Theta)$ coil and Block coil

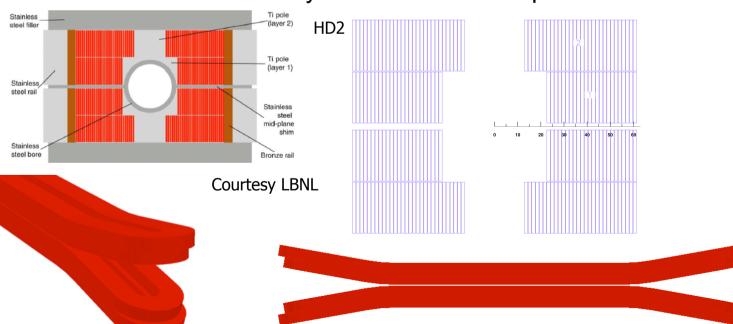
- Cos(Θ) coil
 - Allows a very good field quality ($b_n < 1.10^{-4}$) in thin coils
 - all (but one) existing accelerators use this type of coil
 - Is very efficient wrt the quantity of superconductor used
 - The EM forces cause a stress buildup at the midplane where also high fields are located
 - Wedges are needed in the straight part ('Keystoned' cable)
 - The ends are short, special geometry for which there is a large experience

but not it is easy

'saddle' coils make

Courtesy M. Wilson Co

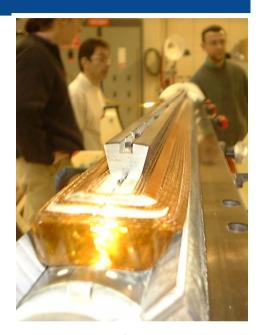
simplest winding

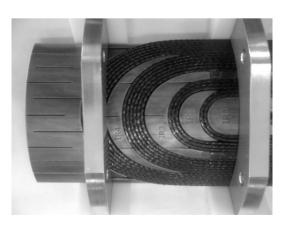

uses racetrack

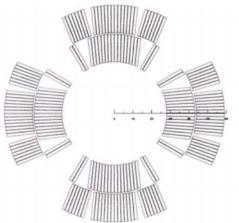
Courtesy LBNL

Practical accelerator magnet design: Dipoles

- Block coil
 - Used with thick coils the field quality is good
 - Not yet used in accelerators
 - Is less efficient (\sim 10%) wrt to $\cos(\Theta)$ for quantity of superconductor used
 - The EM forces cause a stress buildup at the outside edge of the coil where the fields are lower
 - The straight part is very easy: rectangular cable and wedges (field quality)
 - 'flared ends' look easy but there is little experience exists to make them

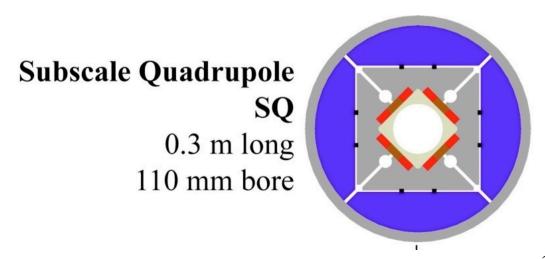





Quadrupole coil geometries

- Cos(Θ) coil
 - Allows a very good field quality ($b_n < 1.10^{-4}$)
 - all (but one) existing accelerators use this type of coil
 - Is very efficient wrt the quantity of superconductor used
 - The EM forces cause a stress buildup at the midplane where also high fields are located, (but are limited)
 - Wedges are needed in the straight part ('Keystoned' cable)
 - The ends are short, special geometry for which there is a large experience but not it is easy

Courtesy M. Wilson



Quadrupole coil geometries

- Block coil
 - Used with thick coils the field quality is good
 - Not yet used in accelerators
 - Is less efficient (~10%) wrt to cos(Θ) for quantity of superconductor used
 - The EM forces cause a stress buildup at the outside edge of the coil where the fields are lower
 - The straight part is very easy: rectangular cable and wedges (field quality)
 - Model with racetrack coils were built but is not pursued

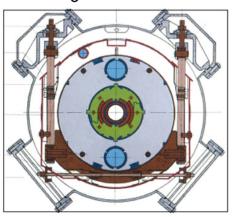
Prestress

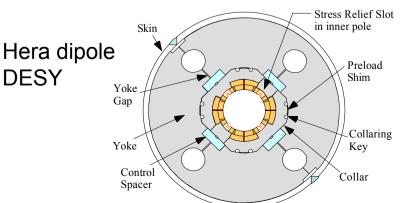
- Why prestress?
 - Field quality is determined by the cable positions (be precise to ~0.02 mm)
 - Under the MN forces the coils will move
 - → Apply prestress to fix the positioning
 - Very small amounts of heat can quench the coil: limit the movement (avoid stick-slip effects on ~10 μm movements)
 - → Apply prestress to fix the positioning
- How to put prestress?

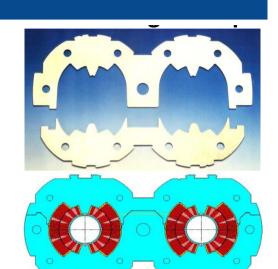
Three methods:

- 1. Compress at room temperature: collar system
- 2. Use room temperature prestress plus differential shrinkage at cooldown: Al or stainless steel shrinking cylinder and/or a (shrinking) key
- 3. Compress a bit at room temperature and use differential shrinkage at cooldown: Al shrinking cylinder + bladder and key system
- Order of magnitudes: LHC 8.34 T: 70 MPa warm, 30 MPa cold

Fresca2 13 T: 60 MPa warm, 130 MPa cold



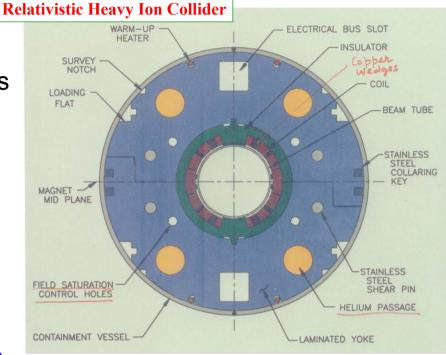


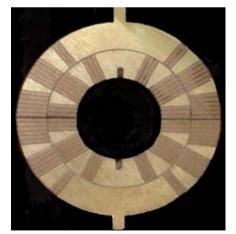

Prestress: collars

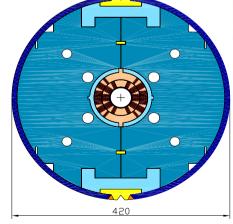
"The classical solution"

- Thin collars put around the coil
- The coil is well contained in a fixed cavity
- Pressed together and locked with pins or keys
- At 300K apply a prestress 2-3 times of what is needed as part of the stress is lost during cooldown: for very high field tends to be too high (LHC:70 MPa at 300 K and 40 MPa at cold)
- Field quality is in good part determined by collar shape
- If the coils size is not so well controlled, the stress can be too high or too low
- Nb₃Sn is stress sensitive and this could be a problem

LHC dipole CERN


TQC quadrupole LARP-FNAL





Prestress: shrinking cylinder and/or prestress key

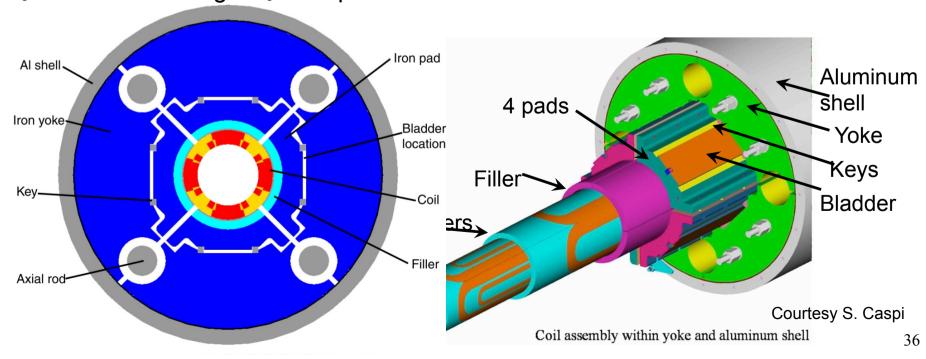
- The differential shrinking and room temperature prestress between a (thick) shell or key and the Fe (split) yoke provides prestress
- Pre-stress completely depends on dimensioning of the components and the materials

HFDA FNAL

Figure 1: HFDA coil and magnet cross-sections.

Courtesy A. Zlobin

Prestress: Al shrinking cylinder + bladder and keys


Developed at LBNL, example: TQS a LARP model quadrupole

300K: Bladders pressurized with water (<600 bar), then insert keys → load between 10 MPa and 80 MPa

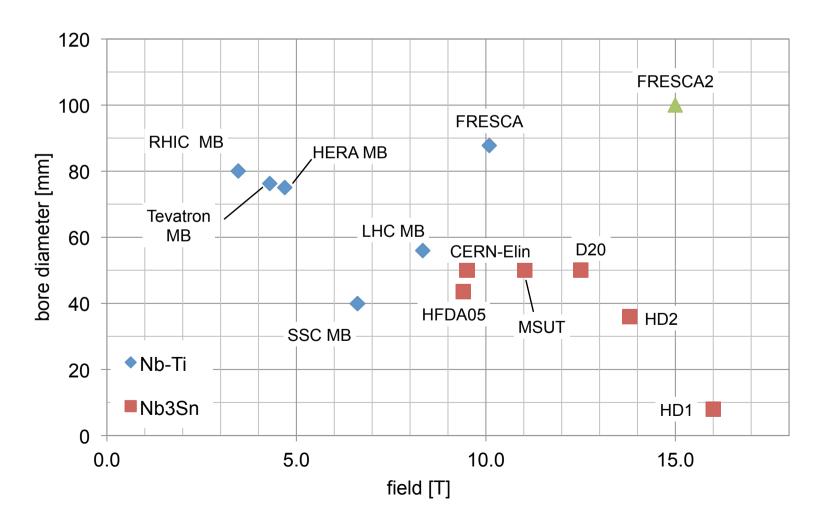
Cooldown: differntial shrinkage between AL shell and Fe yoke load another ~100 MPa

Needs careful mechanical FE modeling before and strain measurements during bladder operations and cooldown

GdR

Manufacturing of Nb₃Sn Magnets

- Nb₃Sn has to be reacted after winding for ~120 hr at 650°C (react and wind)
- Cables have to be insulated with a non-organic woven insulation: glass fibre or ceramic
- After reaction the coils has to be impregnated to prevent any movements and to take care that stresses are distributed, instrumentation connections are moulded in
- Reacted Nb₃Sn is brittle and stress sensitive



Comparison of magnets

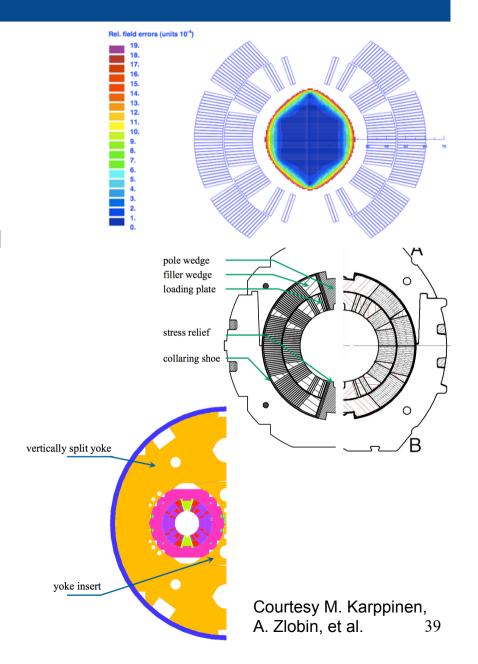
Nb-Ti: blue diamonds, nominal field

Nb₃Sn: red squares, maximum field

As a rule magnets are used with \sim 20% margin (nominal = 0.8 x maximum)

High Field dipole designs: 11T Dispersion Suppressor

Developed at FNAL and CERN for the LHC luminosity upgrade.

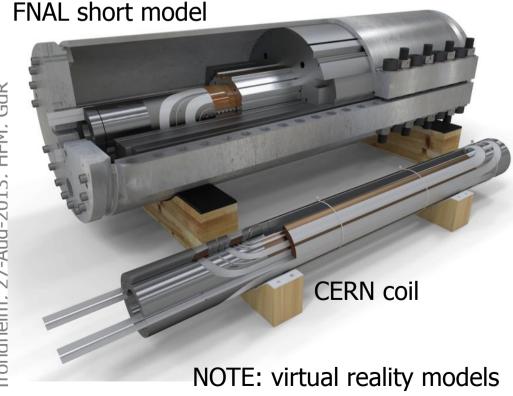

two 5.5 m 11 T dipoles should replace one 15 m 8.3 T main dipole

Has to operate in series with the main bend dipole chain: 11 T @ 11850 A

Potentially the first Nb₃Sn magnet to be used in an accelerator (2017)

TABLE 1 MAGNET DESIGN PARAMETERS AT 1.9 K

Parameter	Removable Pole Design	Integrated Pole Design
Nominal current I _{nom} , kA	11.85	11.85
Nominal bore field, T	11.23	11.25
Maximum coil field, T	11.59	11.60
Magnetic length, mm	1.537	1.540
Working point on the load-line at I _{nom}	81%	81%
Ultimate design field, T	12	12
Inductance at I _{nom} , mH/m	11.97	11.98
Stored energy at I _{nom} , kJ/m	966.3	968.6
F _x per quadrant at I _{nom} , kN/m	3.15	3.16
F _y per quadrant at I _{nom} , kN/m	-1.58	-1.59
Fz per aperture, kN	430	430
Overall length, mm	1960	1960
Coil overall length, mm	1760	1760
Yoke outer diameter, mm	550	550
Outer shell thickness, mm	10	10
Mass, kg	~2600	~2600



11 T model program

- Demonstrate the required performance (11.25 T at 11850 A)
- Achieve accelerator field quality
- Study in depth mechanics and manufacturing
- Address specific issues such as quench protection

Next 2 years!

High Field dipole designs: HD2

• HD2: LBNL, working model

 Maximum field 13.8 T (87% x Jc)

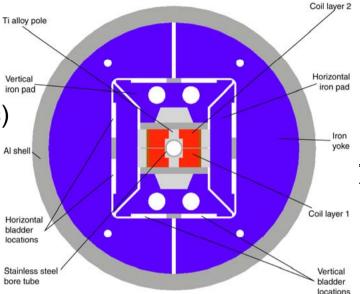
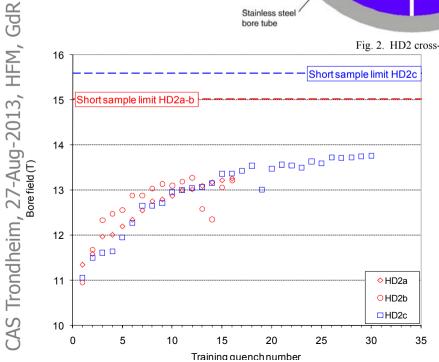



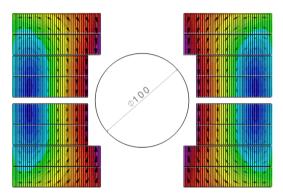
Fig. 2. HD2 cross-section.

Courtesy P. Ferracin

TABLE I CABLE PARAMETERS

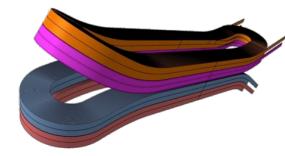
Parameter	Unit	Coil 1	Coil 2-3
Strand diameter (before reaction)	mm	0.802	0.801
Process		Restacked Rod Process	
Stack		54/61	
Non Cu %		51	54
RRR		16	287
Twist pitch	mm	13	14
No. strands		51	
Cable width (bare)	mm	22.008	21.999
Cable thickness (bare)	mm	1.401	1.406
Insulation thickness	mm	0.095	

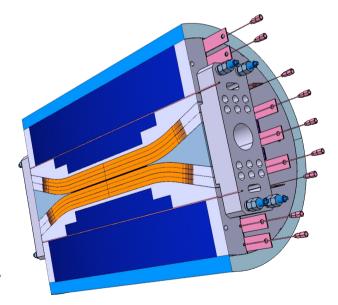
TABLE II MAGNET PARAMETERS


Parameter	Unit	HD2a-b	HD2c
Clear aperture	mm	3	6
Magnet outer diameter	mm	70)5
No. turns in layer 1 (quadrant)		2	4
No. turns in layer 2 (quadrant)		3	0
Short sample current I_{ss} at 4.3/1.9 K	kA	17.3/19.2	18.1/20.0
Bore field at 4.3/1.9 K I _{ss}	T	15.0/16.5	15.6/17.1
Coil peak field at 4.3/1.9 K I _{ss}	T	15.9/17.4	16.5/18.1
Fx/Fy layer 1 (quadrant) at 17.3 kA	MN/m	+2.3	/-0.4
Fz layer 1 (quadrant)at 17.3 kA	kN	9	0
Fx /Fy layer 2 (quadrant) at 17.3 kA	MN/m	+3.3	/-2.2
Fz layer 2 (quadrant) at 17.3 kA	kN	12	26
Stored energy at 17.3 kA	MJ/m	0.3	84
Inductance	mH/m	5.	.6 41

CAS Trondheim, 27-Aug-2013, HFM, GdR

EuCARD high field dipole (Fresca2)


- Fresca2 : CERN, CEA construction phase
- First tests 2014

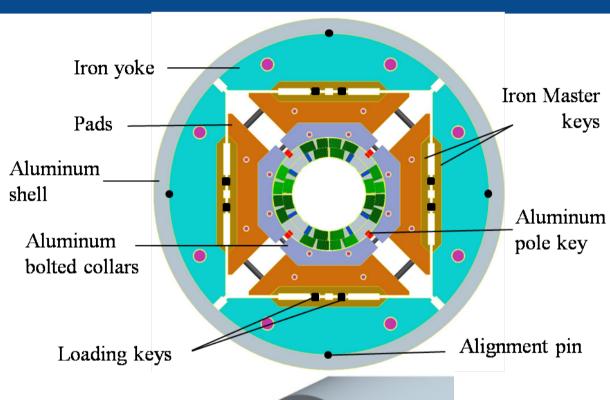


- 156 turns per pole
- Iron post
- $B_{center} = 13.0 T$
- $I_{13T} = 10.7 \text{ kA}$
- $B_{peak} = 13.2 T$
- $E_{mag} = 3.6 \text{ MJ/m}$
- L = 47mH/m

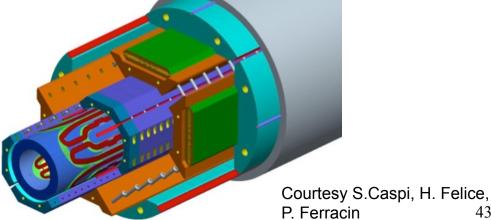
- Diameter Aperture = 100 mm
- L coils = 1.5 m
- L straight section = 700 mm
- L yoke = 1.6 m
- Diameter magnet = 1.03 m

Courtesy Attilio Milanese, Pierre Manil

High Field quadrupole designs: HQ


HQ: model quadrupole for LHC insertion upgrade,

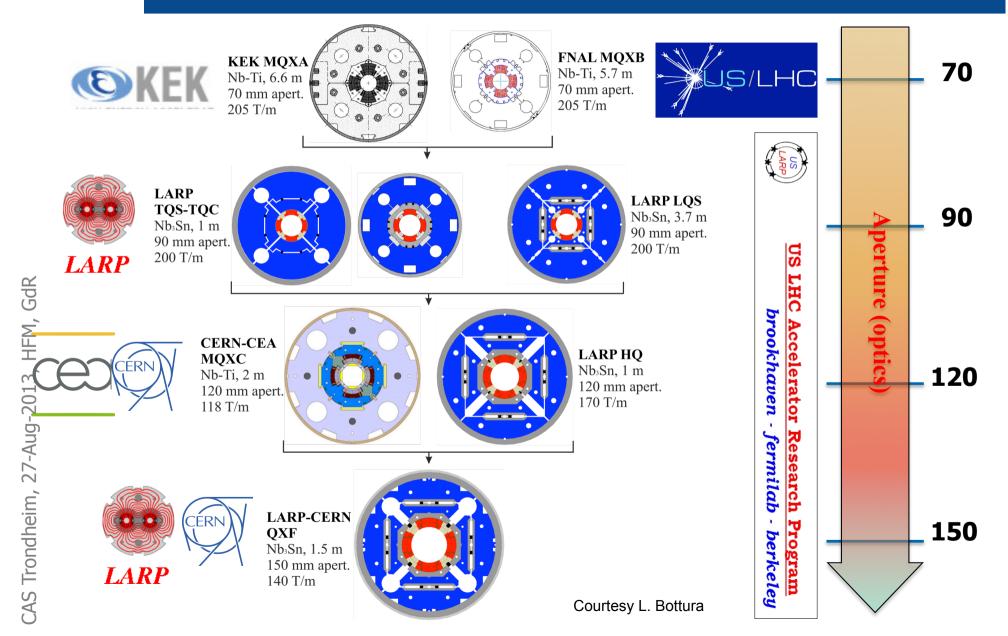
Developed by LARP: LBNL, FNAL and BNL



- 15 mm wide cable
- 120 mm bore
- 4.4 K/1.9 K -195/214 T/m
- 4.4 K/1.9 K 13.7/14.9 T

43

CAS Trondheim, 27-Aug-2013, HFM, GdR


High field magnets for future accelerators: HL-LHC

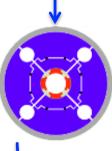
For the Luminosity upgrade of the LHC (High Luminosity LHC) several scenarios are under study which mainly involve the following high field magnets:

- Make space for a collimator in the Dispersion Suppressor regions: replace a 15 m long 8.34 T dipole (MB) with two 5.5 m long 11 T dipoles with a collimator in between (11 T DS magnets, FNAL-CERN project)
- 2. Replace the low-β insertion quadrupoles (MQXA/B, 6.4/5.5 m, 70 mm, 215 T/m), with new wide aperture quadrupoles: MQXD, 8 m, 120-140 mm, 195 T/m (HQ, LARP project)
- 3. Replace the warm single aperture D1 separation dipoles (6 x 3.4 m, 1.28 T) with a single 8 T 150 mm dipole (D1, KEK project)
- 4. Replace the SC D2 double aperture separation dipoles with new larger aperture magnets (7 m, 100 mm, 5 T)
- 5. Replace the Q4 double aperture quadrupole with large aperture ones (4.2 m, 90 mm, 120 T/m)
- 6. + various corrector magnets

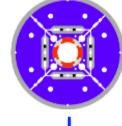
LHC IP Quadrupole design and technology evolution

Ten years of intense R&D

Subscale Quadrupole SQ 0.3 m long 110 mm bore 2004-2006


Science

Technology Quadrupole TQS - TQC 1 m long 790 mm bore 2006-2010 CAS Trondheim, 27-Aug-2013, HFM,

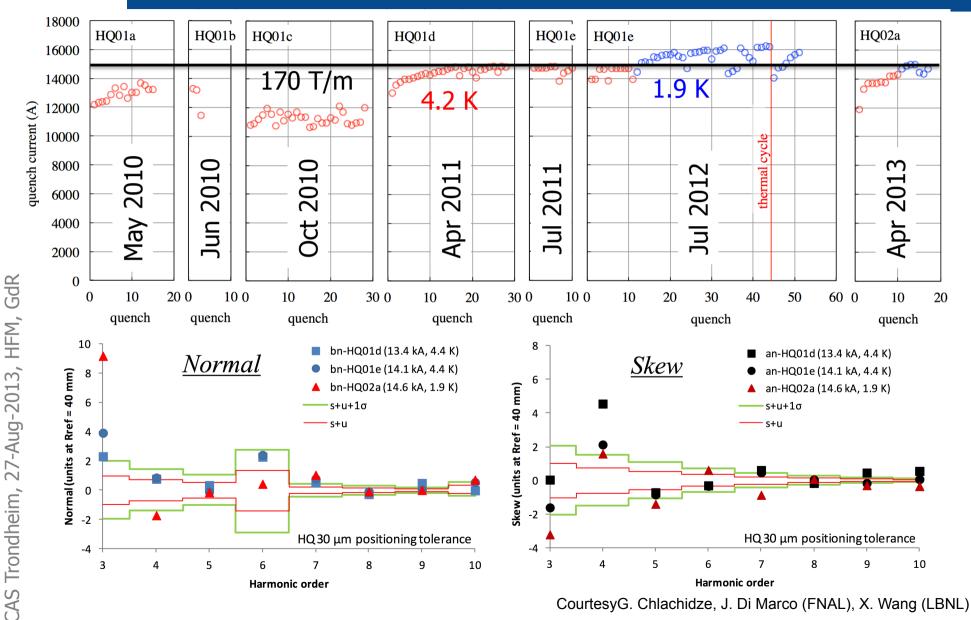


Long Racetrack **LRS** 3.6 m long No bore 2006-2008

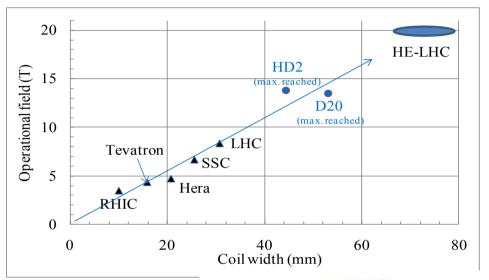
Long Quadrupole LQS 3.7 m long 90 mm bore 2007-2012

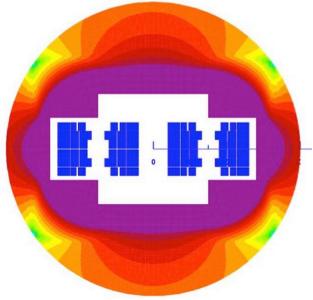
High Field Quadrupole HQ 1 m long 120 mm bore 2008-2014

Courtesy G. Sabbi & H. Felice



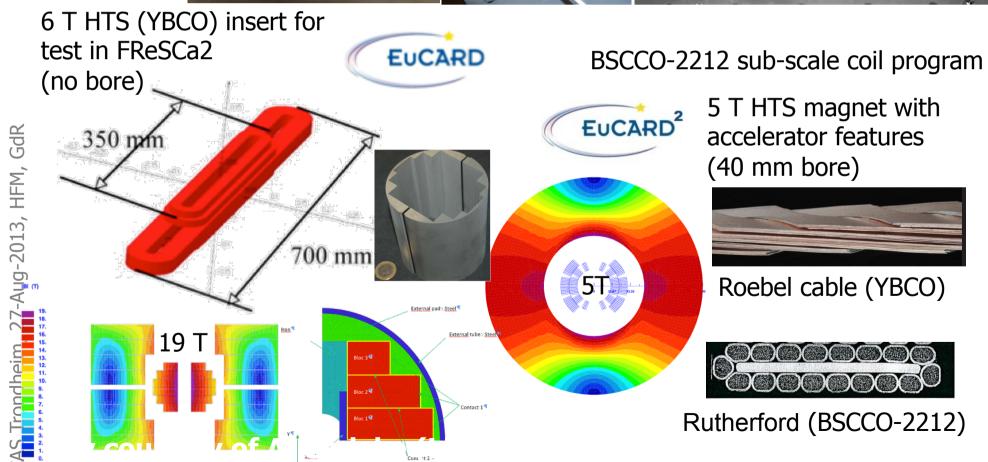
HQ performance (120 mm, 170 T/m)




Magnets for HE-LHC

- For a 17 + 17 TeV collider
 - Need 20 T dipoles
- study to start soon
 - HTS-Nb₃Sn-Nb-Ti nested coil
- EuCARD2 HFM proposal being discussed
 - 20 T conductor development
 - Construct demonstrator
- CERN + others 20 T design study

Material	N. turns	Coil fraction	Peak field	J _{overall} (A/mm ²)
Nb-Ti	41	27%	8	380
Nb3Sn (high Jc)	55	37%	13	380
Nb3Sn (Low Jc)	30	20%	15	190
HTS	24	16%	20.5	380



Courtesy: E. Todesco

Inserts for a 20 T dipole – present...

Literature on High Field Magnets

- Books
- 1) M. Wilson, Superconducting magnets / Oxford : Clarendon Press, 1983 (Repr. 2002). 335 p
- 2) K-H. Mess, P. Schmüser, S. Wolff, Superconducting Accelerator Magnets, Singapore, World Scientific, 1996. 218 p.
- 3) Y. Iwasa, Case studies in superconducting magnets: design and operational issues. 2nd ed. Berlin: Springer, 2009. 682 p.
- 4) S. Russenschuck, Field computation for accelerator magnets: analytical and numerical methods for electromagnetic design and optimization / Weinheim: Wiley, 2010. 757 p.
- 5) CERN Accelerator school, Magnets, Bruges, Belgium 16 25 June 2009, Editor: D. Brandt, CERN–2010–004

- Conference proceedings and reports
- 6) 21st International Conference on Magnet Technology, Hefei, China, 18 23 Oct 2009, IEEE Trans. Appl. Supercond. 20 (2010)
- 7) The 2010 Applied Superconductivity Conference, Washington DC, US, 1-6 Aug 2010, , IEEE Trans. Appl. Supercond. 21 (2011)

Literature on High Field Magnets (2)

- Papers and reports
- 8) S. Caspi, P. Ferracin, "Limits of Nb3Sn accelerator magnets", *Particle Accelerator Conference* (2005) 107-11.
- 9) S. Caspi, P. Ferracin, S. Gourlay, "Graded high field Nb3Sn dipole magnets", 19th Magnet Technology Conference, IEEE Trans. Appl. Supercond., (2006) in press.
- 10) E. Todesco, L. Rossi, "Electromagnetic Design of Superconducting Dipoles Based on Sector Coils", Phys. Rev. Spec. Top. Accel. Beams 10 (2007) 112401
- 11) E. Todesco, L. Rossi, AN ESTIMATE OF THE MAXIMUM GRADIENTS IN SUPERCONDUCTING QUADRUPOLES, CERN/AT 2007-11(MCS),
- 12) P. Fessia, et al., Parametric analysis of forces and stresses in superconducting dipoles, IEEE, trans. Appl, Supercond. Vol 19, no3, June 2009.
- 13) P. Fessia, et al., Parametric analysis of forces and stresses in superconducting quadrupole sector windings, sLHC Project Report 0003

Websites

15) http://www.magnet.fsu.edu/magnettechnology/research/asc/plots.html

Acknowledgements

For this lecture I used material from lectures, seminars, reports, etc. from the many colleagues. Special thanks goes to:

Giorgio Ambrosio (FNAL), Naoyuki Amemiya (Kyoto Univ.), Amalia Ballarino (CERN), Luca Bottura (CERN), Shlomo Caspi (LBNL), Paolo Ferracin (LBNL), Wilfried Goldacker (KIT), Ramesh Gupta (BNL), Pierre Manil (CEA), Attilio Milanese (CERN, Jean-Michel Rifflet (CEA), Lucio Rossi (CERN), Stephan Russenschuck (CERN), Gianluca Sabbi (LBNL), Ezio Todesco (CERN), Davide Tommasini (CERN), Martin Wilson, Akira Yamamoto (KEK), Sasha Zlobin (FNAL)

