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Main Characteristics of an Accelerator

ACCELERATION is the main job of an accelerator.
*The accelerator provides kinetic energy to charged particles, hence increasing their

momentum.
*In order to do so, it is necessary to have an electric field E preferably along the

direction of the mmal momentum.

dp
dt °F

BENDING is generated by a magnetic field perpendicular to the plane of the
particle trajectory. The bending radius p obeys to the relation :

P_p,
€
FOCUSING is a second way of using a magnetic field, in which the bending
effect is used to bring the particles trajectory closer to the axis, hence

to increase the beam density.

ZAc . Loz oo
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Radio-Frequency Acceleration

',
A ~ Vsinot
0

Cylindrical electrodes separated by gaps and
fed by a RF generator, as shown on the Figure,
lead to an alternating electric field polarity

Synchronism condition —— L=v T/2

(v = particle velocity)
AL . N
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Radio-Frequency Acceleration (2)

L = VT/Z (T[ mOde) L =vT (21'[ mode)
i ¥ h I Sl A
Singjvfe Gap
MM/M\‘
\l —
==
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Energy Gain

Newton-Lorentz Force d—p ) E

dt

Relativistics Dynamics
E’=E3+pc® — dE=vdp

dE _,dp _dp _
dz ~Vdz " dt CE

dE=dW =eE,dz — W =e[E,dz

RF Acceleration
EZ: éZSin a)RFt: éZSin¢(t)
JE,dz —\/

W:e\73in¢

(neglecting transit time factor)
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Principle of Phase Stability

Let's consider a succession of accelerating gaps, operating in the 2mr mode,
for which the synchronism condition is fulfilled for a phase s .

eV

For a 2w mode,
the electric field =¥
is the same in all
gaps at any given
time.

e\ = eV sind is 1'he. energy gain in one gap for the particle Yo r'eac.h the next
gap with the same RF phase: P, ,P,, ... are fixed points.

If an increase in energy is transferred into an increase in velocity, M; & N,
will move towards P,(stable), while M, & N, will go away from P, (unstable).

AL . r 0= o
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A Consequence of Phase Stability

Transverse Instability oV OF
Longitudinal phase stability means: —— >0=—"-<0

N\ /¢
O\

/N /) sfecuag
U/ \/ 1

The divergence of the field is VE - oE, 0 ok,
zero according to Maxwell : E=U = 8X t oz = Ox

Vv

External focusing (solenoid, quadrupole) is then necessary

alt ) ’y NN > P 3
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The Synchrotron

The synchrotron is a synchronous accelerator since there is a synchronous RF
phase for which the energy gain fits the increase of the magnetic field at each
turn. That implies the following operating conditions:

e\; sin® ——— Energy gain per turn

— & —
."//I:’) — =
b=, =cte— Synchronous particle
C=2nR o =ho,—,  RF synchronism

p=Ccte R=cte — Constant orbit

\ / Bp = % B Variable magnetic field

If v=c, O, hence Wppremain constant (ultra-relativistic e-)
AL . WEIE
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The Synchrotron (2)

Energy ramping is simply obtained by varying the B field:

dp ’ ' 2 ep RB'
p=eBp = E =ep B = (Aphyrn = ep BTy = v
L 2 2 2 2
Since: E - =Eyg+pc = AE =VAp

(AE),,.=(AW).=27epRB'=eVsing,

‘The number of stable synchronous particles is equal o the harmonic
number h. They are equally spaced along the circumference.

‘Each synchronous particle satifies the relation p=eBp. They have the
nominal energy and follow the nominal trajectory.

AL | trv 2o
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Dispersion Effects in a Synchrotron

cavity

If a particle is slightly shifted in
momentum it will have a different

orbit: 4R
P
E o= R dp

Circumference

2nR

E+3E  This is the "momentum compaction”
generated by the bending field.

If the particle is shifted in momentum it will
have also a different velocity. As a result of
both effects the revolution frequency changes:

p=particle momentum _ P df

R=synchrotron physical radius f dp

f.=revolution frequency

AAAAAAAAAAA
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Dispersion Effects in a Synchrotron (2)

a:ﬁd_R ds, = pd& s —B+dp
R dp ds=(p+x)@ %
The elementary path difference @ p\ [ Y. v X
from the two orbits is:
ds—ds, _ dl _ x
ds, ds, p

leading to the total change in the circumference:
< > means that

X 1 the average is

[l =27dR=[=ds;,==[xds, = dR= <X>m considered over
P P m the bending

<DX >m magnet only

Since: X = DX % we get: o =

mz,? CAS Trieste 3-14 October 2005 _—— L4
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Dispersion Effects in a Synchrotron (3)

p 2R T T, R

p=mv =y o= I, Oél ﬂﬁ;))% (1 pe)t 98

df, (1 \d g
To(-2)% - 1

1
n=0 at the transition energy %, = T
a
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Phase Stability in a Synchrotron

From the definition of n it is clear that below transition an increase in
energy is followed by a higher revolution frequency (increase in velocity
dominates) while the reverse occurs above transition (v ~ ¢ and longer path)
where the momentum compaction (generally > 0) dominates.

eV A
M, M, Stable synchr. Particle
P P2A/ for n<0
eV,bF- - #-—-—-"—-"—-"=-"-"-"-"-"x""""“"—“"—“—- - -« -« -« -« - -« - - -~ - —————
N,/ | \ : N,
o0
| |
| |
D, T -,
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Longitudinal Dynamics

It is also often called * synchrotron motion”.

The RF acceleration process clearly emphasizes two coupled
variables, the energy gained by the particle and the RF
phase experienced by the same particle. Since there is a
well defined synchronous particle which has always the same
phase ¢, and the nominal energy E., it is sufficient to follow
other particles with respect to that particle. So let’s
introduce the following reduced variables:

revolution frequency : Af.=f.-f.
particle RF phase Ad = ¢ - o
particle momentum : Ap = p - P,
particle energy : AE = E - E,
azimuth angle : AO = 0 - 0

AL . r 0= o
CAS Trieste 3-14 October 2005 e —

LABORATOIRE
E L'ACCELERATEUR
EEEEEEEEE



First Energy-Phase Equation

fe =hf, = Ag=-hAO with O=[amdt

A For a given particle with respect to the reference one:

d 1d
A® = (AH) —ﬁﬁ(Am ﬁd_?
B 0 (d(f)rj E=E,+ pZC2
since: 17 (()rs\ dp and AE=VsAp=awrsRsAp
AE d(A¢)__ psRs

s  hnos dt hpors

. F N = P 3
CAS Trieste 3-14 October 2005 F————— 8




Second Energy-Phase Equation

The rate of energy gained by a particle is: (?j_ltzze\ism¢ g)_;;'

The rate of relative energy gain with respect to the reference
particle is then:

L‘\_ i £ o
27 a)r)—eV(sm¢ Sings)

Expanding the left hand side to first order:

A(ETr)E E ATr+Trs AE =AE Tr-I—Trs AE = %(Trs AE)

leads to the second energy-phase equation:

272'(?1: ?)—E):eV(sin¢—sin¢s)
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Equations of Longitudinal Motion

AE__ PR d(Ag) pR ; A(AE ) it o
Wrs hT]COrs dt hﬂa)rs¢ Zﬂ-dt - —9V(S|n¢ S|n¢s)

\, /

deriving and combining

!

gt{hlr\;s]ap;rs ?zlﬂ (S'”¢_S'”¢S)

This second order equation is non linear. Moreover the parameters
within the bracket are in general slowly varying with time...............
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Hamiltonian of Longitudinal Motion

Introducing a new convenient variable, W, leads to the 1™ order
equations:

d_¢__ 1 hﬁa)rsW

szn(i):ansAp _ A27z psRs
o %—Vé/:eV(sin¢—sin¢s)

These equations of motion derive from a hamiltonian H(¢,W,1):

dg¢ 5H dw __oH
dt —ow dt  o¢

H (g, W, t)=eV[cos ¢—cos gs-+(g—ds sin ¢S]_417z h I;yscgsrs e

ZN” , N 2> P33
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Small Amplitude Oscillations

Let's assume constant parameters R, p,, o, and n:

e h Vv
i » NnarseV Ccosgs
Ptoos ¢ 23 _(sing—sings)=0 with 2= R,

Consider now small phase deviations from the reference particle:

SiN@—sings=Sin(@s+AP)-Sings=CoSPsAg  (for small A¢)

and the corresponding linearized motion reduces to a harmonic oscillation:

¢ N Q§A¢ =0 stable for ()5>0 and Q, real




Large Amplitude Oscillations

For larger phase (or energy) deviations from the reference the
second order differential equation is non-linear:

¢ —|— ¢ (sm ¢ Sin ¢S) (Q as previously defined)
S

Multiplying by &and integrating gives an invariant of the motion:

A cc%qﬁs (cosg + sing,) =1

which for small amplitudes reduces to:

% NeY: (A2¢) — (the variable is Ap and ¢, is constant)
S

Similar equations exist for the second variable : AEcxcdd/dt

zAc . X
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Large Amplitude Oscillations (2)

When ¢ reaches n-¢, the force goes | ¢ 1507 ,/\
to zero and beyond it becomes non s / T e NN
g / \

restoring. Hence n-¢, is an extreme

p oy N
amplitude for a stable motion which / / 1/ f\ |
; o + - — ' e =\. 4
in the phase space( %,Agb ) is shown P\ 50"\ 3Q° \A%' 150" 47° )2
: S O\ N '
as closed trajectories. V1 NN
N “\\\‘ \_/

Equation of the separatrix:
gz - cc%@ (cosg +psing,) = cos¢s (cos(z — )+ (7 — ¢ )sin g

Second value ¢, where the separatrix crosses the horizontal axis:

COS @y, + ¢, SN, = COS(7 — 4, )+ (7 — ¢, )sin

cac . rrv =~
nnnnnnnnnnn CAS Trieste 3-14 October 2005 =4
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Energy Acceptance

From the equation of motion it is seen that ¢ reaches an extremum
when =0, hence corresponding to o= Q.

Introducing this value into the equation of the separatrix gives:

B2 = 20202 + (2 — 7 )tan ¢}

That translates into an acceptance in energy:
1

(), e o)
Glg,)=[2cosg +(2¢ 7 )sing |

This "RF acceptance” depends strongly on ¢, and plays an important role
for the electron capture at injection, and the stored beam lifetime.
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RF Acceptance versus Synchronous Phase

W

EAr

-
q’s -.I 20

LAOL

LABORATOIRE
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As the synchronous phase
gets closer to 90° the
area of stable motion
(closed trajectories) gets

smaller. These areas are
often called "BUCKET".

The number of circulating
buckets is equal to “h".

The phase extension of
the bucket is maximum
for ¢, =180° (or 0°) which
correspond to no
acceleration . The RF
acceptance increases with
the RF voltage.

CAS Trieste 3-14 October 2005
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Potential Energy Function

The longitudinal motion is produced by a force that can be derived from

a scalar potential: ﬁ_ AU
@ FlE-g
U=y Fg)dg=—cos (cosp+4sing)- .
52 v S
7+U(¢) = F,

V beon
a : :
—/ \\ cp \\ L5 ¢ The sum of the potential
5 --\_/ energy and kinetic energy is
\ constant and by analogy

! TN represents the total energy
1 AN of a non-dissipative system.

:""\
> @

N #
\ | ./ \

.‘\ ’.
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From Synchrotron to Linac

In the linac there is no bending magnets, hence there is no
dispersion effects on the orbit and a=0 and n=1/+2.

cavity

ZA

A

C=27Rs >

AL . 1 0o = o
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From Synchrotron to Linac (2)

In the linac there is no bending magnets, hence there is no
dispersion effects on the orbit and a=0 and n=1/+2.

cavity

CZh,BiRF

“ ﬂ/lRli

A

C=27Rs

4‘4 CAS Trieste 3-14 October 2005
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From Synchrotron to Linac (3)

Since in the linac =0 and n=1/y2, the longitudinal frequency becomes:

o hy 0.€V COSg,
> 27TRs P,

Moreover one has:
hos=wre  V=27R:Eo P=YMoVs

leading to:

Q§ZEEOCORF§OS¢S }/—)OO QS%O
Mo} Vs

Since in a linac the independant variable is z rather than t one gets:

2
(27[) _ CEowrrCOS ¢s
&/ | = 33
As Mo} Vs

Mé CAS Trieste 3-14 October 2005 ' "’:' 2.,,, ’iazgo
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Adiabatic Damping

Though there are many physical processes that can damp the
longitudinal oscillation amplitudes, one is directly generated by the
acceleration process itself. It will happen in the synchrotron, even
ultra-relativistic, when ramping the energy but not in the ultra-
relativistic electron linac which does not show any oscillation.

As a matter of fact, when E, varies with time, one needs to be more
careful in combining the two first order energy-phase equations in
one second order equation:

The damping coefficient is %(Esﬁ): —O2E A¢
proportional to the rate of
energy variation and from the L A _
definition of Q_ one has: Eg + Eg+{XEAp=0
: : . E,
E__,Q p+gp+R(E)Ap=0
ES QS S

LNAL i F N = P =3
CAS Trieste 3-14 October 2005 s ——3

LABORATOIRE
EEEEEEEEE



Adiabatic Damping (2)

So far it was assumed that parameters related to the acceleration
process were constant. Let's consider now that they vary slowly with
respect to the period of longitudinal oscillation (adiabaticity).

For small amplitude oscillations the hamiltonian reduces to:
W =W cosQ.t

eV _ 1 Mos2
H(pW.t)=—E3-cosg (Ad) -7 Rep, VM Ap=laghint

Under adiabatic conditions the Boltzman-Ehrenfest theorem states
that the action integral remains constant:

| :M d¢ =const. (W, ¢ are canonical variables)
S d¢_ oH_ 1 hna)rs

Since: dt oW~ 27 R,p, W

the action integral becomes: I—§\N d¢dt— 21 hRZwSrS§W2dt

sTrruT Narionar pe Pavsioue NucLEare
ET pE Prysioure pes ParTicuLes
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Adiabatic Damping (3)

A2
Previous integral over one period: §W2dt 7 W
oW |
leads to: | =— 21O W _const.
2RS ps QS

From the quadratic form of the hamiltonian one gets the relation:

W =27PRLs 5
h IO

Finally under adiabatic conditions the long term evolution of the
oscillation amplitudes is shown to be:
- — U4
N ~1/4 % A
Ag 2\7/"7 «C E; W or AE o« EY*
) ERs COS¢S_

V\A/.A¢? =Invariant

Fy NN =2 &~ =3
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Dynamics in the Vicinity of Transition Energy

Introducing in the previous expressions: 772%—06 27_2—7/;2
one gets: ( o Y4 ’
A&OCK ,\ 1 ‘7/ s !
Vlcosg| ¥
( 2 Y
AEocd 1 A >
Vlcosg| ¥
kf 2 -2 V2
Qo 1V|cosg, ARARN
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Dynamics in the Vicinity of Transition Energy (2)

A

Qs Aé\‘

Y+ ] Y YT

‘ In fact close to transition,

Es adiabatic solution are not
valid since parameters change
too fast. A proper treatment
would show that:

A will not go to zero

»

Y T AE will not go to infinity

AL . r 0= o
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Stationnary Bucket

This is the case sing,=0 (no acceleration) which means ¢,=0 or n . The
equation of the separatrix for ¢.= n (above transition) becomes:
e o2

¢ 2 RPN O o 2. 20
7+QS COS¢_QS 7_2953”1 7
Replacing the phase derivative by the canonical variable W:
A W

W, , WZZﬂ'i:—Zﬂ'—hpsRs ¢
/ \ (rs s

0 - o0 ¢ and infroducing the expression
K/ for Q. leads to the following
equation for the separatrix:

_ C _ev\Es : Q
| W_izc\/znhn sm2
with C=2nR,

AL . r 0= o
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Stationnary Bucket (2)

Setting ¢=m in the previous equation gives the height of the bucket:

_oC _e\iEs
W= 27 \/27zh77

The area of the bucket is:

AbkzzjoMWd¢

Since: J'Ohsin%d¢:4
—eVE,
one gets: Ax=16 % \/ 27zh|§7

4!4 CAS Trieste 3-14 October 2005
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Bunch Matching into a Stationnary Bucket

A particle trajectory inside the separatrix is described by the equation:
) 2

¢ ¢\cos¢+¢sm¢)—l L ¢7+Qicos¢=l

2 COS

+ W The points where the trajectory
crosses the axis are symmetric with
W, respect to ¢.= =
2

W, % +(): COSP=0:COS P _

///"n 2n ¢ .
\/ p=10)+/2(cosg,, —Ccosg)

_/
W =+M\/cos2¢2 —COS g
Oy 21-0,,

‘A:Zﬂlﬂr ) ’y NN > P 3
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Bunch Matching into a Stationnary Bucket (2)

Setting ¢ = m in the previous formula allows to calculate the bunch height:

_Au e Pn
W ="g" 0S5
or: ¢ ¢
— m N i — i COS—m
Wb_ka c05 2 ( ES )b ( ES jRF 2

This formula shows that for a given bunch energy spread the proper
matching of a shorter bunch will require a bigger RF acceptance, hence a
higher voltage ( short bunch means ¢,, close to n ).

AL . s ez o
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Effect of a Mismatch

Starting with an injected bunch with short lenght and large energy spread,
after a quarter of synchrotron period the bunch rotation shows a longer
bunch with a smaller energy spread.

W W

v

<
v

<

For small oscillation amplitudes the equation of the ellipse reduces to:

i — ({24

Ellipse area is called longitudinal emittance As :% Aok (A¢)r2n

m ) ’y NN > P 3
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Capture of a Debunched Beam with Adiabatic Turn-On

ALY

-
:
5 —
o o
.
.
o w
-
L

b CAPTURE OF DEBUNCHED BDEAM VITH ADIABATIC TURN-ON TURN 400 1= CAPTURE OF DEBUNCHED BEAM WITH ADIABATIC TURN-ON TURN 1000
>
o b 1 - b v’
[ P T REEPUR T RN UUE CHPU S U R [, v NP WU NS U EUPI S U NP R S
- X 3 A 17 .o T . 3 KT CI r 17 T T X e e - s T3 Ty I oo K o
e (rad)

o (rad)

' CAS Trieste 3-14 October 2005 e |

LABORATOIRE
DFE L'ACCELERATELR ET pDE PHysioue peEs ParTicurLes
L I N E # I R E




Capture of a Debunched Beam with Fast Turn-On

E - E, (MeV]

E - £, (HeV)

NS T ron 4 \w‘g’o& ﬂ”é

~

‘i'

\‘:(
'\ﬁ’z
3@. -

o
CAPTURE OF DEBUNCHED BEAM WITH FAST TURN-ON TURN 25
) —
—
e e e L L e )
‘ o (rad)
LABORATOIRE CAS

DFE L'ACCELERATELR
L I N E # I R E

L - E, [MeV)

L - E, tMeV)
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