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1) Instability mechanisms

The mechanism of transverse instabilities is in many respect similar to
the longitudinal case. The transverse motion of a single particle in a
storage ring is determined by the external guide fields consisting here
mainly of quadrupole magnets, however also the RF-system, initial
conditions and synchrotron radiation have an influence. Many parti-
cles in a beam may represent a sizable charge and current which act
as a source of electromagnetic fields (self fields). They are modified
by boundary conditions imposed by the beam surroundings (vacuum
chambers, cavities, etc.) and act back on the beam. However in this
case it is the transverse deviation of the beam which represents a di-
pole moment and excites certain field configuration in cavities which
will apply later a transverse force. In case this force increases the orig-
inal dipole moment we have an instability. Here it is the transverse
impedance which describes the relevant properties of the beam sur-
roundings. It is excited by the transverse dipole moment of the beam
but is not sensitive to the transverse dimension of the beam or higher
order moments. The transverse particle distribution has therefore no
or very little influence on the instability. However, this impedance
has a fast time response and senses a difference in the dipole moment
along the bunch, in particular, between the head and tail of the bunch.
This can lead to some new effects, called head-tail instabilities.
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2) Transverse impedance
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A transverse impedance is excited by the longitudinal bunch motion
and gives a deflection field. Example: dipole cavity mode with a
longitudinal field E. vanishing on axis, having a transverse gradient
OFE./Ox. It couples only to a beam with transverse dipole moment
Ix. After 1/4 oscillation OE,/Ox converts into a B, which deflects
the beam in the z-direction. Maxwell's equation and F = Eelwt gives
a relation between E and B-fields

S = : E. . B
B = —curlE — B, = %_ , B,(t) = Byeﬂ"t ] 0

jwt
—e
T w Ox

In general the ratio between deflecting field and dipole moment is the
transverse impedance Zp

[ (E@) + [ x B))) ds /( [0 x Bw)])_ ds

Ix(w) ]x( )

If deflecting field and dipole moment are in phase no energy trans-

Zr(w) =1J

fer, therefore factor 'j', more physical to give ratio with respect to
transverse velocity. A transverse wake function G,(T') gives deflecting
potential felt by second charge traversing impedance at time ¢ behind

first one.

?\ Gt Transverse and longitudinal wake

. function for a resonator with () = 3
\ Gty |
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In our cavity mode [z induces E. giving a longitudinal impedance Z;.
Excitation at distance x gives a gradient of the JF./0x related to

Ix( by a factor k

E. E.
%x =klxyand E,(z) = dda: r=klxgx , E.(xy) = klajg
E.(x0)dz d>Z3

¢ = cavity length. Maxwell's eq. /édc‘i = — fﬁdé’transform OF./0x
into B,. With I(t) = Ie/*' we get

— wt — ——Z th — = o —
B, = Bjwe’ L B, o -

[0 x Bw)lrds Bl ckl  —cdZ;

A = — —
rw) =7 Ix(w) J I xg w 2w dx?

This connection between transverse and longitudinal impedances of

the same mode gives symmetry relation
Zn(—w) = Zy(w) , Zi(-w) = —Zi(w)

longitudinal
~Zrr(w) , Zri(~w) = Zri(w)

transverse  Zp,(—w) =
In a ring of radius R and vacuum chamber radius b the impedances,
averaged over different modes, have a ratio
2R Z()
b2 w/w)

ZT (w)
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3) Transverse instabilities with Q' = 0
Transverse dynamics
Due to the transverse focusing a particle executes a betatron motion
around the orbit. This is an oscillation which is locally harmonic but
has a complicated phase advance around the ring. We approximate
this by a smooth focusing given by

i+ wiQir =0

with revolution frequency wy and betatron tune ()..

A stationary observer, or the impedance, sees the particle position
only at one location each turn k& and has no information what the
particle does in the rest of the ring

ixk\\ 8 / \ ‘ T = ZACCOS(QWQk)
\'\ / \,\34//\. g T = =z sin(2mwqk).

X
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We observe this motion as a function of turn k. We can make a

harmonic fit, i.e. a Fourier analysis. For a single bunch circulating
in the machine we find at the revolution harmonic pwy an upper and
lower sideband. The distance of the sideband is given by the tune
(). = integer +¢q. The fractional part ¢ is the only part which matters
since the integer cannot be observed. For a very short bunch these
sidebands will extend to very high frequencies, for longer bunches they
level off. A transverse impedance (or a position monitor) is sensitive to
the dipole moment Ix of the current and does not see the revolution

harmonics.
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Multi-traversal instability of a single bunch

t=0
S
\\>= p-k
S

A bunch p traverses a cavity with off-set x, excites a field E which
converts after 7, /4 into a field —B, then into —E and after into B.
The bunch oscillates with tune () having a fractional part ¢ = 1/4
seen as sidebands at wy(integer £ ¢) by a stationary observer.

A) A cavity is tuned to upper sideband. Next turn the bunch tra-
verses it in the situation 'A’, t = T.(k + 1/4) with a velocity in
—x-direction and gets by 3, a force in +z-direction which damps the

oscillation.
V\—F.
N\ a\ /

T AN /N /
\
A= \ 2 / \1? o 7[ -e
| \ . /
0 \\ AR \ / 3\ / 4 turn
B) A cavity is tuned to lower 5|>i/band The bunch traverses it next

turn in situation 'B', t = T,.(k'+3/4) = T,.(k'+1—1/4) with negative
velocity and a force in same direction. This increases its velocity and

leads to instability.
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The resistive impedance at the upper sideband damps, the one at
the lower sideband excites the oscillation. If we have a more general
impedance extending over several sidebands wy(p + ¢) and wy(p — q)
we expect that the growth or damping rate of the oscillation is given
by an expression of the form

1
— X %: (I§+(ZTT(WP+) - Ig—ZTT(Wp—))

Ts

with w,+ = wy (p £ q) where [, is the Fourier component of the
beam current at the upper or lower sidebands. It appears here as the
square 15 since the instability is driven by the energy transfer from the
longitudinal to the transverse motion.
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Single bunch spectrum

For a qualitative treatment we take a bunch oscillating transversely
with tune () = n + ¢ of fractional part ¢ = 1/6. lts displacement
versus turns k is x = zcos(2mrQ.k) = x cos(2mqk) can be fitted
with a spectrum

x, = 2 cos(2mqk) , xp =z cos(2m(l —q)k)- -

having side-bands (p £ ¢)wy around pwy without carriers.
'?‘iL’k

2 / . N
0 AN =
| \ foy \ /
L4 + ri . L / ; .
y \ ! \ v v \ / Vot
\ ! ' 3 ) 1 \ ! \ ! i )
/ A/ '.‘ v / N/

0 1 2 3 4 5 6 7 8 9 10 tumk

Tspectrum
L L L
0 1 2 CU/(.UO
Multi turn bunch current in time and frequency domain
T | | |
I, (t) i T+ Ty) i 1) time domain /Ji\[(t—To)
i L_t i
e ya ya \
-7 = 7 ?
I(w) ’ frequency don?ain
| ] g
RN | | L
alii‘lliil .

Ii(t) = § I(t — kTp) = %% L0 = [+ 2 %% I, cos(pwot)
—00 p=—00 p=1

Dipole moment I(t)x) of a circulating, oscillating bunch

time domain

Di(t) = LDy = S I(t — KTy)& cos(2mgqk).
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Di(t) = 2pli(t) = & 3 cos(2mqh) I (t — ETp)
To express it in a series we Fourier transform

Ih(w) = \/27/ z I(t — kTy)e *'dt
T
= [(w) Z e_Jk"JTO

k=—00

o0

D,(w) = &l(w) Y cos(2mqk)e7FT0

_ 121501) S% [e—jkﬁu7b+2wq)_+_e—jk0y7b—2wqq
Sums are oo if exponent is n27 and vanish otherwise
k_§ e /M = on p_%io(S(:U — 27tp) and d(ax) = 55(3:) gives
Dy(w) = :?:wol;(w> _%:30 0(w = (p = g)wo)) + 0w = (p+ ¢Jwn)]

Inverse Fourier transform gives dipole moment in time

WQCE OO

NG >[I
woy =

with w (p + q) p_ = (p - Q)w()) ]p:l: = \/—Q—W[(wpi)

Dy(t) =

I, ]

D) =2 3 s P 4 1, el o).
2 p=—o0
Combining terms p > 0 from first, p < 0 from second part and vice

versa, using I(w) = I(—w)
Dy(t) = i::[ p+ cos(w t) + I, cos(w, t)].

$Ip( )

T
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Effect of fields induced by dipole moment
A charge e going through the impedance element at turn £ feels a
transverse force changing its momentum Apy. = FrAt ~ FrAs/c

—jeDk(t)ZT
C

Apre = — /[ + [0 x Bw)]]..ds =

Momentum change of whole bunch is a convolution of its charge
distribution given by single traversal current (¢) with momentum
change Ap,(t + kTO) in turn k

Apj = —j— / (t) Dp(t + KTy) Zydt

x

= —j— Z/ I(t [p+ZT( )ejw F(t+-kTy)t

2c pP=—00
+1, Zp(w, el HFT0)] g

00 9 .
/_OO ]<t)e—j(t+kTo / Te jTok ( ) w:e_jZWQk]er
Iy x N\ —j2mqk 2 —\ j2mqk
Apy = —]— Z { Zr(w, )e ™+ 10 Zr(w, e ]

Combining terms p > 0, p < 0 from the two parts, using Zp,(w) =
Zrr(—w), Zri(w) = Z7i(—w) gives
1
Api = —?O Zo [(]2 Zrp(wl) = I3 Zpy(w ))a:sm(quk)
w>

— (12 Zri(wl) + I’ Zpi(w )):%cos(Qﬁqk)].

A

with 2, = :?:cos(27qu), T = - —isin(Qﬂqk)
C T
Apk = 02 z>:0 [([5+ZT7~(W;> I ZT?“( )) 53;33%
)

+ (L7 Zri(w,

)+ 1 Zri(w,)) x|
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Growth rate and tune change
Transverse velocity and angle change with the momentum

A ;o A:U/{; B Apk; B BApk
Ty = = =
c Nomoye — moyclyTy
) € _ :
Az = ——5— 3. [(]§+ZTT((’U;_> — I Zre(w, )) By

moc?y1y >0
- <I§+ZT¢(w;) + ]g_ZTi(wp_)) cxk} .

The velocity change has a part proportional to = and Zp, giving
growth /damping and one to z and Zp; changing (). Smoothing the
first part gives acceleration & = Aiw, /27 which we ad to the one of
the beam optics focusing
i+ 2ai + Q%wi =0, = zge” " cos(Quuwot + @) if a < Q,uwp
1 ewo By 5 B
a=—= 2 Zr(wh) — I2 Zpe(w))) .

T drmyc?yl wz;o( peZrrly) = 1,2 p))
w- = (p—qw = —(=p+qwo = —(lp| + ¢Jwo for p < 0 and

Zpr(w) = —Zp(—w) gives sum over tfrequencies
1 ewo 3 00
a= - - I3\ Zro(w)).

T Armectyly p=—x
The reactive impedance changes angle Az} = Az /c proportional to

x which is a focusing element of strength

1 A[B;{: e 2 + 2 -
o _mwgo <Ip+ZTi(wp )+ 1y Zrilwy )) Tk

which results in a tune change AQ, = 5, /(4r f)

ewOﬁx

— 2 + 2 —
Aws = . wgo (L2, Zriw)) + I} Zri(w,))
ewoBe X

drmoc?yly p=—o0 7T rilwy)

Inductive imped.Z7; > 0 defocuses, negative tune shift.
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Instability due to the resistive impedance

v = xoe” " cos((Quwo + Awg)t + @) if a < Quwp

T drmoc?yly o0 ( (w ) (w >)

For a distributed impedance we replace local beta function by average
B = (By) =~ R/Q with R = average ring radius. Single strong
impedances, RF-cavities, are best located at a small beta function.

zlp(w)
o
. I [ i I l | : l i g
Iii!ii|“|!!|5||5|"|‘| !
0 N w
qwo
ZT?“(W) ZT?“ ;
//\\
0 T W o w
ewo By 2 +
= I ZT w
drmoc?y 1 p—zoo peZr(wy)
zly(w)
il 'l 'I ] ll ll ll '| 'l 'I L
”qwo w
ZTr(w) ZTT/
. J

To drive this instability we need a narrow band impedance with a
memory lasting at least for one turn.
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Transverse instability of many bunches

M circulating bunches can oscillate in M independent modes n =
MA@ /21 with phase A¢ between bunches as shown in the global
view where all are seen at once. For a local observer the bunches pass
by with increasing time delay shown by the bullets which are fitted
by an upper (solid line) and lower (dashed line) side-band frequency.
Higher frequencies can be fitted and the spectrum repeats every 4wy.
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The side-band frequencies of M bunches oscillating in a mode n,
obtained by a graphical method, are

Wy = wo (PM £ (n + q))

with bunches number M, mode n, fractional tune ¢ and running in-
teger p. We get the lowest frequencies of n = 3 with p = 0 for the
upper and p = 1 for the lower side band

wWpr =wo(3+¢q), wp— =wp(l —q).

Increasing p gives all higher frequency of the spectrum. A simple
picture, shown for M = 4 can be quickly give the locations of the
side-bands for a mode n

General mode number n for M = 4
n.0 3,1 2,2 1,3 0,0 3.1 2.q

L | | | & | | | L L | | =
0 1 2 3 4 5 6 w/wo
A detailed calculation gives the damping or growth rate coupled bunch
oscillations
P (12 Zro(wy) — T} _Zro(w3)
T drmoc?yly oso NPT P=mimep
ewo s

_ 2 . -
 Armycyl w2>:0 Ly (ZTT(wp ) ZTT(wp ))

With z(t) oc e= stability if a > 0, Zr,.(w,)) > Zrr(w, ). We sum
over all side-bands of a given mode n.

Spectrum n = 3
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Dependance of the transverse instability on 3,
The transverse instability growth rate is oc (3, since a deflection at
high 3 gives larger oscillation amplitude.

1 ewpFy 2 + 2 -
T T Srmece I, wz>:o (]p+ZTT(wp) 1Tl )) '

To observe an exponential instability growth one must inject a large
current or turn a feed-back system off. For a slow accumulation the
instability saturates the current and some unstable betatron lines are
seen as shown at LNLS (Laboratorio Nacional de Luz Sinchrotron,
Brasil). Here 3, can be reduced in the RF section which eliminated
these lines indicating that the offending impedance is the RF-cavity.

25 —
[ 20 —
15 —
10—

5= - ;.

0

normal beta

low beta
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AFE and 7 influences the transverse motion via chromaticity @’

4) Head-tail instability
Head-tail mode oscillation
The synchrotron motion of a particle in energy and time deviation

dQ/(dp/p). For v > ~r it has an excess energy moving from head

to tail and a lack moving from tail to head. For ' > 0, the phase

advances in the first and lags in the second step; vice versa for )/ < 0

or v < r .

displacement y

dipole moment y/

Q' <0

displacement y

dipole moment y/

t=0 Ay t=0 t=0 Ay t=0 I
bunch //_h_\ bunch \ Y
- = - T G 7 - \K_—:__7?
bunch bunch
t:Tg/8 My t:Tg/8.y] t:Tg/8 Ay t:Tg/S ..y]
. el ]
L i >;_> N / AU_»
T T T T
t="Ts/4 py t="Ts/4 pyI t="Ts/4 py t="Ts/4 pyI
> > / ._______X\? / ¥_7,_
t = 3T5/8 py t =3T5/8 Ayl t = 3T5/8 py t =315/8 )yl
| | —~
| I _:>T \ L___7_:7>_ /:___%7: - !___l;,?_
t=Ts/2 py t="T5/2 pyI t="Ts/2 py t="T5/2 pyI
i i i bunch i bunch
L I I . SN
buncﬂ' \ //7' / T \\__ T
7 bunch ”’
Betatron motion observed in steps of its period T = T /q
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Observation of the head-tail mode in the CERN Booster
The head-tail mode oscillation of relatively long bunches can be ob-
served directly with a fast position monitor. The figure shows such
a measurement of the head-tail mode at vanishing and a finite chro-
maticity taken by J. Gareyte and F. Sacherer in the CERN Booster.
| shows several traces each corresponding to a turn of the oscillating
bunch passing through the transverse position monitor which gives a
signal proportional the instantaneous dipole moment x(¢)I(%).

Q' =0

Head-tail mode m =0
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Head-tail instability

A broad band impedance is excited by oscillating particles A at the
bunch head which in turn excite particles B at the tail with a phase
shifted by A¢ compared to the head. Half a synchrotron oscillation
later particles B are at the head and while particles A are at the tail
oscillating with phase —A¢ compared to B (assuming Q' = 0). The
excitation by the head has the wrong phase to keep oscillation growing
unless ) # 0 producing a phase shift during a motion from head to
tail or vice versa.

The wake field excited by the head affects the tail later which will
oscillate with a phase lag. To keep the oscillation growing the head
particle must undergo a relative phase delay while moving to the tail
and the tail particle a relative phase advance moving to the head. We
expect an instability if Q' < 0 for v > v or if Q' > 0 for v < ~7.
The 'wiggle' of the head-tail motion is seen by the impedance as an
oscillation with the chromatic frequency w.

Ap/p=Ap/psin(wit) , T=—Fcos(wit), 7="—

The relative betatron phase shift of a particle while executing part of
a synchrotron oscillation is

As
Aog = wy /t? AQdt = wOQ’?p /;2 sin(wgt)dt

wo@

= —wOQ’% (cos(wsta) — cos(wsts)) = (12 —71)

Tle

This gives for the chromatic frequency
~ A¢s wQ’
We = = .
AT Ne
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Model of head- tall mstablllty

QL0
%Qsc. hea ?[\\\ /12\3/‘5\53%

j T“ )
tall 45 5 See \&/\‘/tall

tail

oL l _____L_>
AN,

———

Tail has phase lag, amplitude is increased
head tail

y/w

7 \ff

Tail has phase advance, amplitude is decreased

M wake force
I
l}

Above transition energy:

)" = 0: Going from head to tail or from tail to head has same phase
change. Phase lag and advance between head an tail interchange,
neither damping nor growth.

Q" > 0: Going from head to tail there is a gain in phase, going from
tail to head a loss, giving a systematic phase lag between head and
tail and in average damping.

()" < 0: Going from head to tail there is a loss in phase, going from tail
to head a gain (picture), giving a systematic phase advance between
head and tail and in average growth.

The situation is reversed below transition energy.
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The 'wiggle' of the head-tail mode shifts the envelope of the side-
bands by the chromatic frequency we = Q'wy /7. and we have current
components

w ~
s = o=l (wpe @), wyee = wio (pM & (0 + )

which can be very different adjacent sidebands. A broad band im-
pedance can give an instability with growth (¢ < 0) or damping
(a > 0) rate

. ewOﬁx 2 + 2 —
 ArmocyTy w0 <Ip5+ZTT(wp ) = D= Zrrlw, )> '
?J]p(w) R Q/:O
| T
SRR zl(g);lilglélnna.ﬁ%,‘.‘.
Kq’w“dw
@Ip(w) - _WL> )
e ) T AR
/Ip(fﬂ)
HnnnRR RN
O w
7z, -
///: \\‘
— o @
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Head-tail instability seen in the CERN ISR

We inject proton bunches with (' < 0 and observe with intensity
(u.r.) and position (I.r.) monitors. The first shows decaying bunches,
the second growing head-tail oscillations. The filtered betatron signal
(.I) increases linearly on a logarithmic scale indicating exponential
growth up to beam loss. A transverse spectrum ’'snap shot' (u.l)
during growth shows the envelope of betatron lines shifted by we. The
current components and frequencies are

Wwo = We Q/
Iy = ——I(wyr +we), wyy =wy (pM £ (n+q)), — =—
pE+ \/% ( D+ £ ) Pt 0 (p ( Q)) Wy N,
w
yI,(w) I Q <0
=71 Ir iT "E_l'_";]'_ ] i‘r~| E : : E : fl w
e e P
A 0 w
ylp(w) P
o | Wo Q' <0
T N e s
T S T T N T s o St s ot AU U U RN O ANt ettt e e
0 w '

— - — Head-tal inswabiity ooserved on the
“mountain ronge” display -

0 I
intensity }

monitor

Head-tai mode spectrum m=0

0db]
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Summary

Nearly all longitudinal and transverse instabilities for bunched beams
can be treated in frequency domain using the formalism of the Robin-
son instability. This contains a condition that the resistive impedance
at the upper, Z7, and lower, Z~, side-band has to fulfill a stability

condition:

above transition | below transition
longitudinal Zt < Z- Zt > 7"
transverse Zt. > Zr, Zt. > Zr,
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