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EQUATION OF MOTIONEQUATION OF MOTION

The motion of charged particles is governed by the Lorentz force :
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Where m is the rest mass, γ the relativistic factor and v the particle velocity

Charged particles are accelerated, guided and confined by external 
electromagnetic fields. 

Acceleration is  provided by the electric field of the RF cavity

Magnetic fields are produced in the bending magnets for guiding the 
charges on the reference trajectory (orbit), in the quadrupoles for the 
transverse confinement, in the sextupoles for the chromaticity correction.



There is another important source of e.m. fields : the beam itself

Direct self fields

Image self fields

Wake  fields  

SELF FIELDS AND WAKE FIELDSSELF FIELDS AND WAKE FIELDS

Space Charge



• energy loss

• energy spread and emittance degradation

• shift of the synchronous phase and frequency (tune)

• shift of the betatron frequencies (tunes)

• instabilities. 

These fields depend on the current and on the charges These fields depend on the current and on the charges 
velocity.velocity.

They are responsible of many phenomena of beam dynamics:They are responsible of many phenomena of beam dynamics:

(wake-fields)



Fields of a point charge with uniform motion 
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• In the moving frame O’ the charge is at rest
• The electric field is radial with spherical symmetry
• The magnetic field is zero
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vt is the position of the point charge in the lab. frame O.
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Relativistic transforms of the fields from O’ to O

γ =
1

1− β 2
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The fields have lost the spherical symmetry
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rrThe field pattern is moving 
with the charge and it can 
be observed at t=0.
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Direct Space Charge Forces



Space Charge: What does it mean?Space Charge: What does it mean?
The net effect of the CoulombCoulomb interactions in a multi-particle system can be 

classified  into two regimes:

1)1) CollisionalCollisional RegimeRegime ==> dominated by binary collisionsbinary collisions caused by close 
particle encounters ==> Single Particle EffectsSingle Particle Effects

2) 2) Space Charge RegimeSpace Charge Regime ==> dominated by the self fieldself field produced by the 
particle distribution, which varies appreciably only over large distances 
compare to the average separation of the particles ==> Collective EffectsCollective Effects



Debye Length λD
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The particle distribution around a test particle will deviate from the 
uniform distribution. 

uniformreal
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εokBT
e2n

kB= Boltzman constant
T = Temperature
kB T = average kinetic energy of the particles
n = particle density (N/V)

The effective potential of a test charge can be defined as the sum of 
the potential of the uniform distribution and a “perturbed” term.
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The effective interaction range of the test charge is limited to the 
Debye length

Smooth functions for the charge and field distributions can be used 
as long as the Debye length remains small compared to the particle 
bunch size

λλDD



In a charged particle beam moving at a longitudinal relativistic
velocity, assuming that the random transverse motion in the beam is 

non-relativistic, the Debye length has the following form:

λD =
εoγ

2kBT
e2n

vx =
kBT
γm

<< c

vz ≈ c

z

x

R=1mm, L=3mm

Q=1nC, T=103 K

γγ

λλDD
[mm][mm]

Electron bunch



Continuous Uniform Cylindrical Beam ModelContinuous Uniform Cylindrical Beam Model

εoE ⋅ dS = ρdV∫∫

Er =
ρr
2εo

=
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2εoπa2v
   for   r ≤ a

Gauss’s law

Ampere’s law B ⋅ dl = μo J ⋅ dS∫∫
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Linear with r



LorentzLorentz ForceForce

Fr = e Er − βcBϑ( )= e 1− β 2( )Er =
eEr

γ 2

The attractive magnetic force , which becomes significant at high 
velocities, tends to compensate for the repulsive electric force. 

Therefore, space charge defocusing is primarily a non-relativistic 
effect

has only radialradial component  and 

is a linearlinear function of the transverse coordinate



Bunched Uniform Cylindrical Beam ModelBunched Uniform Cylindrical Beam Model

Longitudinal Space Charge field in the bunch moving frame:
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Radial Space Charge field in the bunch moving frame 

by series representation of axisymmetric field:
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It is still a linear field with r but with a longitudinal correlation ζ
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LorentzLorentz Transformation to the Lab frameTransformation to the Lab frame

Ez = ˜ E z
Er = γ ˜ E r

˜ L = γL  ⇒   ˜ ρ = ρ
γ

˜ z = γz



γ = 1 γ = 5 γ = 10

L(t)
Rs(t) Δt



Beam motion in a linear channel

CAS, 25 May 2005CAS, 25 May 2005



γm d2r
dt2 =

eEr
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Equation of motion in a drift space:
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Generalized perveance

CAS, 25 May 2005CAS, 25 May 2005



Transport in a Long Solenoid

ks =
qB

2mcβγ K ζ( )=
2Ig ζ( )
Io βγ( )3

′ ′ R + ks
2R =

K ζ( )
R

==> Equilibrium solution  ==>′ ′ R = 0 Req ζ( )=
K ζ( )
ks

CAS, 25 May 2005CAS, 25 May 2005

ζ =
z
L

R ζ( )= Req ζ( )+ δr ζ( )



Small perturbations around the equilibrium solution

CAS, 25 May 2005CAS, 25 May 2005

QuickTime™ and a
Animation decompressor

are needed to see this picture.

QuickTime™ and a
Animation decompressor

are needed to see this picture.

R ζ( )= Req ζ( )+ δr ζ( )cos 2ksz( )
′ R ζ( )= −δr ζ( )sin 2ksz( )

ks =
qB

2mcβγ



EmittanceEmittance Oscillations are driven by space charge differential Oscillations are driven by space charge differential 
defocusing in core and tails of the beamdefocusing in core and tails of the beam

x

px

Projected Phase Space Slice Phase Slice Phase 
SpacesSpaces

QuickTime™ and a
Animation decompressor

are needed to see this picture.



Space charge with image currents



Effects of conducting or magnetic screens Effects of conducting or magnetic screens 

Let us consider a point charge close to a conducting screen. 

The electrostatic field can be derived through the "image method". 
Since the metallic screen is an equi-potential plane, it can be removed 
provided that a "virtual" charge is introduced such that the potential 
is constant at the position of the screen

q q - q



A constant current in the free space produces circular magnetic field. 

If μr≈1, the material, even in the case of a good conductor, does not 
affect the field lines.

I



However, if the material is of ferromagneticferromagnetic typetype, with μμrr>>1>>1, due to its 
magnetisation, the magnetic field lines are strongly affected, inside and outside the 
material. In particular a very high magnetic permeability makes the tangential 
magnetic field zero at the boundary so that the magnetic field is perpendicular to 
the surface, just like the electric field lines close to a conductor. 

In analogy with the image method for charges close to conducting screens, we get 
the magnetic field, in the region outside the material, as superposition of the fields 
due to two symmetric equal currents flowing in the same direction. 

I I I





It is necessary to compare the wall thicknesswall thickness and the skin depth (region of 
penetration of the e.m. fields) in the conductor. 

If the fields penetrate and pass through the material, we are practically in the 
static boundary conditions case. Conversely, if the skin depth is very small, 
fields do not penetrate, the electric filed lines are perpendicular to the wall, as 
in the static case, while the magnetic field line are tangent to the surface. 
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Time-varying fields  

δw ≅
2

ωσμ



Circular  Perfectly Conducting  Pipe (Beam at Center)

In the case of charge distribution, and γ→∞, 
the electric field lines are perpendicular to 
the direction of motion. The transverse fields 
intensity can be computed like in the static 
case, applying the Gauss and Ampere laws.
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there is a cancellation of the electric and magnetic forces



In some cases, the beam pipe cross section is such that we can consider only the 
surfaces closer to the beam, which behave like two parallel plates. In this case, we 
use the image method to a charge distribution of radius a between two conducting 

plates 2h apart. By applying the superposition principle we get the total image field 
at a position y inside the beam. 
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Where we have assumed h>>a>y. 

For d.c. or slowly varying currents, the boundary condition imposed by the 
conducting plates does not affect the magnetic field. As a consequence there is no 

cancellation effect for the fields produced by the "image" charges.
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Parallel Plates (Beam at Center)



From the divergence equation we derive also the other transverse component:
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Including also the direct space charge force, we get:
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Therefore, for γ>>1, and for d.c. or slowly varying currents the cancellation effect 
applies only for the direct space charge forces. There is no cancellation of the 
electric and magnetic forces due to the "image" charges.



Usually, the frequency beam spectrum is quite rich of harmonics,
especially for bunched beams. 

It is convenient to decompose the current into a d.c. component, I, 
for which δw>>Δw, and an a.c. component, Î, for which δw<< Δw.

While the d.c. component of the magnetic field does not perceives 
the presence of the material, its a.c. component is obliged to be 
tangent at the wall. For a charge density λ we have I=λv. 

We can see that this current produces a magnetic field able to cancel 
the effect of the electrostatic force.

Parallel Plates (Beam at Center) a.c. currents

Δw

δw
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There is cancellation of the electric and magnetic forces !!



Parallel Plates Parallel Plates -- General expression of the force General expression of the force 

Taking into account all the boundary conditions for d.c. and a.c. 
currents, we can write the expression of the force as:
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where λ is the total current, and λ its d.c. part. We take the sign (+) if u=y, and the 
sign (–) if u=x.



Space charge effects in storage rings



Consider a perfectly circular accelerator with radius ρx. The beam 
circulates inside the beam pipe. The transverse single particle 
motion in the linear regime, is derived from the equation of 
motion. Including the self field forces in the motion equation, we 
have 
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Self Fields and betatron motion



  

r 
r = ρ x+x( )ˆ e x + yˆ e y
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Following the same steps already seen in the "transverse dynamics" 
lectures, we write:

For the motion along x: Ý Ý x −ωo
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1
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We assume small transverse displacements x with respect to the 
closed orbit, and only dipoles for bending and quadrupole to keep 
the beam around the closed orbit:
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where Eo is the particle energy. This equation expressed as function of 
“s” reads:
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In the analysis of the motion of the particles in presence of the self 
field,  we will adopt a simplified model where particles execute
simple harmonic oscillations around the reference orbit. 
This is the case where the focussing term is constant. Although 
this condition in never fulfilled in a real accelerator, it provides a 
reliable model  for the description of the beam instabilities
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Transverse Incoherent  Effects

We take the linear term of the transverse force in the betatron equation:
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The betatron shift is negative since the space charge forces are 
defocusing on both planes. Notice that the tune shift is in general 
function of “z”, therefore there is a tune spread inside the beam.
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Example: Incoherent betatron tune shift for an uniform 
electron beam of radius a, length lo, inside circular  perfectly 
conducting  Pipe
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For a real  bunched beams the space charge forces, and the tune shift 
depend on the longitudinal and radial position of the charge. 



Consequences of the space charge  tune shifts

In circular accelerators the values of the betatron tunes should not be 
close to rational numbers in order to avoid the crossing of linear and 
non-linear resonances where the beam becomes unstable.

The tune spread induced by the space charge force can make hard to 
satisfy this basic requirement. Typically, in order to avoid major 
resonances the stability requires 

3.0<Δ uQ



PS Booster, accelerate proton bunches
From 50 to 800 MeV in about 0.6 s. 
The tunes occupied by the particle are 
indicated in the diagram by the shaded 
area. As time goes on, the energy 
increase and the space charge tune 
spread gets smaller covering at t=100 
ms the tune area shown by the darker 
area. The point of highest tune 
correspond to the particles which are 
least affected by the space charge. This 
point moves in the Q diagram since the 
external focusing is adjusted such that 
the reduced tune spread lies in a region 
free of harmful resonances.

Finally, the small dark area shows the situation at t=600 ms when the beam has
Reached the energy of 800 MeV. The tune spread reduction is lower than 
expected with the energy increase (1/γ3) dependence since the bunch dimensions 
also decrease during the acceleration.
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