
Linear Imperfections

equations of motion with imperfections: 
smooth approximation

orbit correction for the un-coupled case

transfer matrices with coupling: element and one-turn

what we have left out (coupling)

multipole expansion of magnetic fields

perturbation treatment: driven oscillators and resonances
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sources for linear field errors: feed down



Multipole Expansion of Magnetic Fields

skew multipoles an:

Taylor expansion of the magnetic field:
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Skew Multipoles: Example Skew Quadrupole
normal quadrupole: clockwise rotation by 45o skew quadrupole
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Equation of Motion I
Smooth approximation for Hills equation:

perturbation of Hills equation:

in the following the force term will be the Lorenz force of a 
charged particle in a magnetic field: 
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Equation of Motion II

normalized multipole gradients:
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sources for linear imperfections:
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Sources for Linear Field Errors

-magnetic field errors: b0, b1, a0, a1

-powering errors for dipole and quadrupole magnets

-energy errors in the particles change in normalized strength

-feed-down errors from quadrupole and sextupole magnets

example: feed down from a quadrupole field

dipole + quadrupole field component

-roll errors for dipole and quadrupole magnets



Sources for Linear Field Errors 

-magnet positioning in the tunnel
transverse position +/- 0.1 m
roll error +/- 0.5 mrad

-tunnel movements:
slow drifts
civilization
moon
seasons
civil engineering

-closed orbit errors beam offset inside magnetic elements

-energy error: dispersion orbit

sources for feed down and roll errors:
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solution by decomposition into ‘Eigenmodes’:

distributed coupling: )()()( 1
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Coupling I
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Coupling II: Identical Coupled Oscillators

π mode:ω mode:

kk 20 +=πω0k=ωω

fundamental modes for identical coupled oscillators:
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weak coupling (k << k0):

description of motion in unperturbed ‘x’ and ‘y’ coordinates

degenerate mode frequencies
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solution by decomposition into ‘Eigenmodes’:

different oscillation frequencies:
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Coupling IV: Orthogonal Coupled Oscillators
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very different unperturbed frequencies:
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Coupled Oscillators Case Study: Case 1

expansion of the square root:
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almost equal  frequencies:
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Coupled Oscillators Case Study: Case 2
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measurement of coupling strength:
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Coupled Oscillators Case Study: Case 2

measure the differnce in the Eigenmode frequencies while 
bringing the unperturbed tunes together:
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Coupled Oscillators Case Study: Case 2

with

initial oscillation only in horizontal plane:
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Beating of the Transverse Motion: Case I

modulation of the oscillation amplitude:

frequencies can not be distinguished and energy can be 
exchanged between the two oscillators

two almost identical  harmonic oscillators with weak coupling:

π-mode and ω=mode frequencies are approximately identical!
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Driven Oscillators

large number of driving frequencies!

equation of motion driven un-damped oscillators:
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Perturbation treatment:
substitute the solutions of the homogeneous equation of motion:

into the right-hand side of the perturbed Hills equation and
express the ‘s’ dependence of the multipole terms by their Fourier
series (the perturbations must be periodic with one revolution!)
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Driven Oscillators

general solution: )()()( swswsw sttr +=
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single resonance approximation:

consider only one perturbation frequency (choose                ):

without damping the transient solution is just the HO solution
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Driven Oscillators

resonance condition:

0ωω =n
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where ‘ω’ is the driving angular frequency!
and W(ω) can become large for certain frequencies!
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justification for single resonance approximation:

all perturbation terms with: 0ωω ≠n

no net energy transfer from perturbation to oscillation (averaging)!

de-phase with the transient



Resonances and Perturbation Treatment
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Resonances and Perturbation Treatment 
integer resonance for dipole perturbations:

20

Kick

Kick

dipole perturbations add up on consecutive turns! Instability

assume:

Q = integer



Resonances and Perturbation Treatment 
integer resonance for dipole perturbations:

21

dipole perturbations compensate on  consecutive turns! 
stability

assume:

Q = integer/2 Kick

Kick



Resonances and Perturbation Treatment

2
/22 0

/2
0

00
nQLn LQ =⎯⎯⎯⎯ →⎯⋅=⋅ ⋅= πωπω

example single quadrupole perturbation:

resonance condition:

avoid half integer tunes!
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Resonances and Perturbation Treatment
half integer resonance for quadrupole perturbations:
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quadrupole perturbations add up on consecutive turns! 
Instability

assume:
Q = integer + 0.5

feed down error:
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Resonances and Perturbation Treatment
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example single skew quadrupole perturbation:

resonance condition:

avoid sum and difference resonances!
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coupling with:

25

drive and response oscillation de-phase quickly
no energy transfer between motion in ‘x’ and ‘y’ plane

small amplitude of ‘stationary’ solution:

no damping of oscillation in ‘x’ plane due to coupling

coupling is weak tune measurement in one plane will 
show both tunes in both planes but 

with unequal amplitudes 

tune measurement is possible for both planes
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coupling with:
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drive and response oscillation remain in phase and energy
can be exchanged between motion in ‘x’ and ‘y’ plane:

large amplitude of ‘stationary’ solution:

damping of oscillation in ‘x’ plane and growth of
oscillation amplitude in ‘y’ plane

‘x’ and ‘y’ motion exchange role of driving force!

each plane oscillates on average with:

Impossible to separate tune in ‘x’ and ‘y’ plane!
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Exact Solution for Transport in Skew Quadrupole
coupled equation of motion: 01 =⋅+′′ yx κ 01 =⋅+′′ xy κand

27

can be solved by linear combinations of ‘x’ and ‘y’:
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solution as for focusing and defocusing quadrupole

transport matrix for ‘x-y’ and ‘x+y’ coordinates for κ1 > 0:
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Transport Map with Coupling
transport map for skew quadrupole:

transport map for linear elements without coupling:
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One-Turn Map with Coupling
one-turn map around the whole ring:
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One-Turn Map with Coupling
rotated coordinate system:

using a linear combination of the horizontal and vertical position 
vectors the matrix can be put in ‘symplectic rotation’ form

or:
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One-Turn Map with Coupling
rotated coordinate system:
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new Twiss functions and phase advances for the rotated coordinates
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Summary One-Turn Map with Coupling

coupling changes the orientation of the beam ellipse along the ring

32

a global coupling correction is required for a restoration of  the
uncoupled tune values (can not be done by QF and QD adjustments)

coupling changes the Twiss functions and tune values in the
horizontal and vertical planes

a local coupling correction is required for a restoration of  the 
uncoupled oscillation planes 

(mixing of horizontal and vertical kicker elements and correction dipoles)
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