Linear Imperfections

multipole expansion of magnetic fields

equations of motion with imperfections:
smooth approximation

sources for linear field errors: feed down

perturbation treatment: driven oscillators and resonances

transfer matrices with coupling: element and one-turn

what we have left out (coupling)

orbit correction for the un-coupled case



Multipole Expansion of Magnetic Fields

B Taylor expansion of the magnetic field:

_ o _ . \n _ o"B
By +iB, = Z%.(bn —1a,) - (X+1y)"  with: b, = 6x”y
n=0
multipole | order| B, B,
dipole 0 0 BO
quadrupole | 1 b, -y b, - X
sextupole | 2 b, Xy >-b, (X*+Y?)
octupole 3 L.b, .(3yx% —y?) 1.h, (X% =3xy?)

B skew multipoles a,:

rotation of the magnetic field

by half of the coil symmetry:

90° for dipole magnets
450° for quadrupole magnets
300 for sextupole magnets




Skew Multipoles: Example Skew Quadrupole

B normal quadArupoIe =» clockwise rotation by 45° =» skew quadrupole
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Equation of Motion |

Bl Smooth approximation for Hills equation: W=XY

d 2 K(s) = const d 2

157 w(s)+ K(s)-w(s) =0

(constant B-function and phase advance along the storage ring)

—— W(s) = A-sin(e, S+ ¢,) o, =27-Q, /L
(Q is the number of oscillations during one revolution)

B perturbation of Hills equation:
Ao w(s)+ o, - w(s) = F(X(s), Y(5),5) /(v p)

In the following the force term will be the Lorenz force of a L o=
charged particle in a magnetic field: F = g-VX B



Equation of Motion ||

B perturbed equations of motion:

S
5 > 1
%X+a) X——n Oﬁ B Re[b (S) 1a (S)) (X+|y) ]
BX
g2 v L .

& m[(o, (5) i, ))-(x-+iy)']

OISZy+a) Y =+ On' ;

B normalized multipole gradients:

K =03 2oLl /M ]
p[GeV /c

with: [k ]=1/m"™

0.3. afT/m" [ ]=1/m™
p[GeV /c]




Sources for Linear Field Errors

B sources for linear imperfections:
-magnetic field errors: by, by, a,, 8,

-powering errors for dipole and quadrupole magnets
-energy errors in the particles =» change in normalized strength
-roll errors for dipole and quadrupole magnets

-feed-down errors from guadrupole and sextupole magnets

=>» example: feed down from a quadrupole field

Ay
N B, =b, - (X +Ax) J 3 \
X=X+AX N
.-y %

X@S\
} e KX

=>» dipole + quadrupole field component y




Sources for Linear Field Errors
B sources for feed down and roll errors:

-magnet positioning in the tunnel
transverse position=> +/- 0.1 m
roll error = +/- 0.5 mrad

-tunnel movements:
slow drifts
civilization
moon
seasons
civil engineering

-closed orbit errors =» beam offset inside magnetic elements

-energy error: =» dispersion orbit



Coupling |

Bl distributed coupling:
T LX)+, X(s) =K, Y(s)

d? 2

4z Y(8) + o, - Y(8) = =k - X(8)

B solution by decomposition into ‘Eigenmodes’:

g, (s)=a-x+b-y q,(s)=c-x+d-y

with: a-c+b-d=0

2> i—qu(8)+a)12-q1(8)20 i_zzqz(s)+w22'qZ(S):O



Coupling 11: Identical Coupled Oscillators

B fundamental modes for identical coupled oscillators:

® mode: Ko © mode: 1 Ko
I = )

) =x+y |5 k LO=Xx-y | £ |
i_zqu(t)+a)az)'q1(t)zo i—zqz(t)-l-a)ﬁ-qz(t):O

\_,ww:m o, =k, + 2

B weak coupling (k << k,): => degenerate mode frequencies

=>» description of motion in unperturbed ‘x’ and ‘y’ coordinates
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Coupling 1V: Orthogonal Coupled Oscillators

B different oscillation frequencies:

d? _ 2
@X—I—w X——Kl'y —y‘l'a)

B solution by decomposition into ‘Eigenmodes’:

q(s)=a-x(s)+b-y(s)  Q,(s)=c-x(s)+d-y(s)

yields: 3722%(5) +; -0, (s) =0 %qz (s)+ws-0,(s) =0

with:

2 2 \2
W —
0)12 % ((() + @ )_I_Q Q\/K12+[ 9 yj
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Coupled Oscillators Case Study: Case 1

2 2)?
B very different unperturbed frequencies: [a)x _wyj >>1
2K,

2
0y =1 (0 + 07 23 (07 - of) 1{( 2% )J

2 2
Wy, — o,
expansion of the square root: Vit e =l+2¢
K K,
? |lo=ot+t——Fr0, |0,=0,~——F=0,
W, — o, W, — o,

= ‘nearly’ uncoupled oscillators a=1;b=0;c~0;d =1
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Coupled Oscillators Case Study: Case 2

- — 1
B almost equal frequencies: @, =@, +3A @y = @y —32A

1 2 2 2 2 _ 2
-> @, =§(a)x+a)y) o, + o, * 20)0 o, —W, = 20)0A

(azl;b ~l.c~1d z—l)

= keep only linear terms in A: K2 A
p-onty a)f,zza)g-li\/1+

4 2
W, Ay

k. N ) ]
@, =0, 1t [ +— expansion of the square root
Wy, Wy for small coupling and A:

2
- ~ K ,
5>  |o,=m,t0 with: QZE'\/—EJFA




Coupled Oscillators Case Study: Case 2

Bl measurement of coupling strength: 1 &

measure the differnce in the Eigenmode frequencies while
bringing the unperturbed tunes together:

0.025
A
VY,

-0.025

-0.02-0.0

0.02
0.015 t
0.01 t
0.005 t
0 L
-0.005 t
-0.01 t
-0.015 t
002 F

15-0.01-0.005 O 0.005 0.01 0.015 0.02

> A

=» the minimum separation yields the coupling strength!!
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Coupled Oscillators Case Study: Case 2

B initial oscillation only in horizontal plane:

x(0)=A; x'(0)=0; y(0)=0; y'(0)=0

> ¢, = A-cos(e,-S) and d, = A-cos(w, -9S)

. ~ ql(t) =Xty
with @, = 5-(60X + a)y)i (2 and
g, (t) =X—-Y
sum rules for sin and cos functions:
5 X(s) = A-cos(ﬁ-s)-cos(% (0, + @, ] 5) =>modulation
- of the
y(s) = —A.sin(Q-s)-sm(% (0, + ,]5) amplitudes
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Beating of the Transverse Motion: Case |

I two almost identical harmonic oscillators with weak coupling:

n-mode and m=mode frequencies are approximately identical!

—> frequencies can not be distinguished and energy can be
exchanged between the two oscillators

B modulation of the oscillation amplitude:
X ] a)o 1(&) +a))

i D AA/\MAA
J V VV N
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Driven Oscillators

B Perturbation treatment:
substitute the solutions of the homogeneous equation of motion:

W(s) = A-sin(w, -S+ ¢,)

Into the right-hand side of the perturbed Hills equation and
express the ‘s’ dependence of the multipole terms by their Fourier
series (the perturbations must be periodic with one revolution!)

B equation of motion =» driven un-damped oscillators:

(S) + Q)WZW(S) _ ZWklme(k-a)X-S-l-'-a)y+2T”-m-8+¢k|m)
k.I.m

2 —
w7 W(s)+,Q

=>» large number of driving frequencies!
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Driven Oscillators

B single resonance approximation: o=ko, + Ia)y + mZT”

consider only one perturbation frequency (choose @ = @, ).

L W(S) +ay - QL W(S) + @, - W(S) =W (s) - cos(@- S + )
B general solution: wW(s) =w, (S)+w,(S)

Bl without damping the transient solution is just the HO solution

W, (s) =a-sin(w,-S+¢,)
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Driven Oscillators
W(w
B stationary solution: W, (S) = ( ) -cos[w- 5//)]

— where ‘o’ Is the driving angular frequency!
and W(w) can become large for certain frequencies!
W (C()) :Wn ' .

2 2 .
0] 0] resonance condition:

\ “0 0 @, = O,
=>» justification for single resonance approximation:

=> all perturbation terms with: @, # @, de-phase with the transient

=>» no net energy transfer from perturbation to oscillation (averaging)!
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Resonances and Perturbation Treatment

F(S
B cxample single dipole perturbation: va) =Ky 0L (S—Sp)

periodic o-function

.. . 0g=27-Qy/L .
__. resonance condition: = @, =n-27/L—"—"-Q, =n

—| avoid integer tunes!

- — Fo_uri_er series qf
Lo W(s) + @y - W(s) = @os(n-z@ :

_ —\B6)
ACO(S) = 5 gy 2K (0 -V A) -cos(| (1) —(s) | ~7Q)dt

—

(see general CAS school for more details)
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Resonances and Perturbation Treatment

B integer resonance for dipole perturbations:

assume.

Q = Iinteger

=>» dipole perturbations add up on consecutive turns! =» Instability
20



Resonances and Perturbation Treatment

B integer resonance for dipole perturbations:

assume.

Q = Integer/2

=>dipole perturbations compensate on consecutive turns!
=> stability
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Resonances and Perturbation Treatment

Bl cxample single quadrupole perturbation:

with:

—

—

d

ﬂkl

52 W(S) + o,

resonance condition:  2-wy=n-2x/L >Q, =—

W, (S) = A-cos(a, , - S+ ¢,)

. w(s) = A-% icos([Zn-n/ Ltw,, ] -std,)

N=—00

C()0:27Z'Q0/L n

——| avoid half integer tunes!

AB(S)

-1

P (8)

2sIn(27Q)

Ak, (1) (1) -cos(2| ¢(t) - 4(s) | -22Q)el

—> (see general CAS school for more details)
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Resonances and Perturbation Treatment

B half integer resonance for quadrupole perturbations:

assume:
Q = integer + 0.5

feed down error:

B,=b-y=F =+q-v-b-y

=>» quadrupole perturbations add up on consecutive turns!

=> Instability s



Resonances and Perturbation Treatment

B cxample single skew quadrupole perturbation:

F. ()
V-p

with: =K,y Yo(S) = A-cos(w, , -S+ )

2 lk, ~
- %x(sha)x,o2 - X(S) = A-Z—KE Zcos([Zn-n/ L+aw,,]-s+¢,)

N=—o0

resonance condition:

— | avoid sum and difference resonances!

difference resonance =» stable with energy exchange
sum resonance =¥ instability as for externally driven dipole

—

24



Resonances and Perturbation Treatment: Case 1
B coupling with: Q,>>Q, or Q, <<Q,

=» drive and response oscillation de-phase quickly
no energy transfer between motion in ‘x’ and ‘y’ plane

=> small amplitude of ‘stationary’ solution: W (o) =W, - L
J[l—(ﬂ>2]2+(}59/)2
0 [0

=>» no damping of oscillation in *x’ plane due to coupling

=>» coupling is weak =» tune measurement in one plane will
show both tunes in both planes but
with unequal amplitudes

=>» tune measurement is possible for both planes
25



Resonances and Perturbation Treatment: Case 2
B coupling with: Q, =Q,

=» drive and response oscillation remain in phase and energy
can be exchanged between motion in ‘X’ and ‘y’ plane:

[1-(2)2124(_2-)?
0)0 a)O

=>» large amplitude of ‘stationary’ solution: W (e)=W,- \/ 1

=» damping of oscillation in X’ plane and growth of ‘
oscillation amplitude in ‘y’ plane

=> ‘X’ and ‘y’ motion exchange role of driving force!

=>» each plane oscillates on average with: l(Qx +Qy)

2

=>» Impossible to separate tune in ‘x’ and ‘y’ plane!
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Exact Solution for Transport in Skew Quadrupole

B coupled equation of motion:  x"+x,-y=0 and y"+x,-Xx=0

B can be solved by linear combinations of ‘X’ and ‘y’:
(x+y)”+K1.(x+y):O and (X_Y)”_K1’(X_y)zo
- solution as for focusing and defocusing quadrupole

B transport matrix for ‘x-y’ and ‘x+y’ coordinates for i, > O:

(x—y] _ cos( 14/x,) sm(\}iZ) ( y]
Y Jicy -sin(1yfxe,)  cos( 14/x,) R

(x+yj _ cosh( 14/x,) smhi/%) (X+YJ
X+Y ) o -sinh( 1y/x,)  cosh( 14/x,) "
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Transport Map with Coupling

Bl transport map for skew quadrupole: =M, -7,
(X C e b e g
with: = X and M, = -xd a —-xb c
y c d a b
Y \—xb ¢ —-xd a

B transport map for linear elements without coupling:

'm, m, O 0)
. m m 0 0
Zog =M, -Z;, with M, = 021 022 m m
33 34
\ 0 0 m43 m44/




One-Turn Map with Coupling

B one-turn map around the whole ring:

z>(So + L) — 1(30) : z>(So)

with: T=]]M, andstartingats, =>Tisa4x4
| symplectic matrix

|—
I
7~ N\
3 £

j with: M,N,m,n being 2x2 matrices

1Z 1>
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One-Turn Map with Coupling

B rotated coordinate system:

=» using a linear combination of the horizontal and vertical position
vectors the matrix can be put in ‘symplectic rotation’ form

T — Icos(¢) D sin(¢) .(Al Qj. 1 cos(¢) —D7sin(g)
~ (—Dsin(g) lcos(g) )\ 0 A,) (Dsin(g) Lcos(g)

o T=R-U-R™ with: 1,D,A,,A,,0 being 2x2 matrices

i) el
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One-Turn Map with Coupling

A

B rotated coordinate system: y y

X1

an(2g) = om0 )

a b) . (d —b
with: c d —C a

=>» new Twiss functions and phase advances for the rotated coordinates

B rotated coordinate system:

A =1-cos(s) +J; -sin(z4) Ji :( o ]

—7Vi —Q,

COS( 44,) —cos( u,) = [%Tr (M -N )]2 +det(m+n) 31



Summary One-Turn Map with Coupling

B coupling changes the Twiss functions and tune values in the
horizontal and vertical planes

=>» a global coupling correction is required for a restoration of the
uncoupled tune values (can not be done by QF and QD adjustments)

Bl coupling changes the orientation of the beam ellipse along the ring

=» a local coupling correction is required for a restoration of the
uncoupled oscillation planes
(mixing of horizontal and vertical kicker elements and correction dipoles)
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