Outline

• Introduction

• Direct RF feedback
 • Globally reduce a cavity impedance

• Long delay feedback
 • Reduce impedance at revolution frequency harmonics

• Global feedbacks
 • Detect and fight the effect of an instability
 • Time and frequency domain

• Summary
Introduction
Why feedback?

- Open loop system subject to
 - Imperfections
 - Perturbations

→ Feed output back to input → correction

→ New system with new dynamics
 - Control parameters of system
 - Make naturally unstable system stable again
Why RF feedback?

- Smaller longitudinal emittance
- Higher beam current
- Better longitudinal quality
- All bunches identical
- More luminosity
- More peak intensity

Image current of beam induces voltage surrounding structure

→ RF cavities particularly affected due to intentionally large impedance

→ Longitudinal instabilities

→ Degradation of longitudinal beam quality

How to improve?

→ RF feedbacks
Tree of RF feedbacks

- Control longitudinal parameters
 - Longitudinally unstable beam
 - Beam induced voltage

RF system identified as source

Feedback close to cavity
- Local, direct feedback

Far away (delay)
- Long delay feedback

Source unknown
- Global feedback
Onion model of RF feedbacks
Direct RF feedback
Objective of local impedance reduction

- Induced voltage in cavity may cause
 1. Dephasing of total cavity voltage
 2. Longitudinal instability

→ Reduce beam induced voltage
→ Reduce cavity impedance experienced by the beam

✓ Beam induced voltage reduced: \(\frac{R}{(R+R_{\text{shunt}})} \)
- Power for given voltage increased: \(\frac{(R+R_{\text{shunt}})}{R} \)
Direct feedback

- Use amplifier to counteract beam induced voltage
 → Decrease only apparent impedance experienced by beam
Direct feedback

- Use amplifier to counteract beam induced voltage
 → Decrease only apparent impedance experienced by beam

- Gap signal, V: **Beam and generator contributions**
- Drive signal, V_{drive}: **Pure generator**

→ Compare drive signal (no beam) with gap (beam and generator)
→ Amplify inverted difference
Direct feedback

- Use amplifier to counteract beam induced voltage
 → Decrease only apparent impedance experienced by beam

→ Feedback parameterized by
 - Open loop gain, G
 - Total loop delay, τ → frequency dependent phase shift
Issue with delay

- Dephasing due to physical delay

- Delay is natural enemy of every feedback system
 - Propagation delay in cables and electronics
 - Latency of conversion and signal processing

→ Phase rotation of complex signal: $e^{-i(\omega - \omega_0)\tau} = e^{-i\Delta\omega\tau}$
Direct feedback

• Use amplifier to counteract beam induced voltage
 → Decrease only apparent impedance experienced by beam

→ Total current in cavity ($V_{\text{drive}} = 0$):

\[I_t(\omega) = I_b(\omega) + I_g(\omega) \]

\[I_g(\omega) = -V_t(\omega)G e^{-i\Delta \omega \tau} \]
Impedance with direct feedback

- **Total cavity voltage:**
 \[V_t(\omega) = \frac{I_b(\omega)Z(\omega)}{1 + Z(\omega)Ge^{-i\Delta\omega\tau}} \]

- **Impedance with feedback:**
 \[Z_{fb}(\omega) = \frac{dV_t(\omega)}{dI_b(\omega)} = \frac{Z(\omega)}{1 + Z(\omega)Ge^{-i\Delta\omega\tau}} \]

\[Z(\omega) \approx \frac{R}{1 + 2iQ\frac{\Delta\omega}{\omega_0}} \approx \frac{R}{2iQ\frac{\Delta\omega}{\omega_0}} \]
Stability with feedback

• Dephasing due to loop delay at $\Delta \omega_\tau$

$$\Delta \phi_\tau = \Delta \omega_\tau \cdot \tau$$

• Which dephasing results in unity absolute loop gain?

Open loop: $G|Z(\Delta \omega_\tau)| = G \frac{R}{2Q} \frac{\Delta \phi_\tau}{\omega_0 \tau} = 1$

$$\Delta \phi_\tau = G \frac{R \omega_0 \tau}{2Q}$$

• Phase margin defined as

$$\Delta \phi_m = \frac{\pi}{2} - \Delta \phi_\tau = \frac{\pi}{2} - G \frac{R \omega_0 \tau}{2Q}$$
Stability with feedback

→ Phase margin:

\[\Delta \phi_m = \frac{\pi}{2} - \Delta \phi_T = \frac{\pi}{2} - G \frac{R \omega_0 \tau}{Q} \frac{1}{2} \]

\[\Delta \phi_{\text{max}} = \frac{\pi}{4} \]

• Conventional stability limit defined for

→ Maximum stable gain:

\[G_{\text{max}} = \frac{\pi}{2} \frac{1}{R/Q} \frac{1}{\omega_0 \tau} \]
Impedance with feedback

- **Normalized impedance:**

\[
Z_{\text{fb}}(\omega) = \frac{1}{G} \left(\frac{1}{GR} e^{-i\Delta\omega \tau} + \frac{4}{\pi} i \frac{G_{\text{max}}}{G} \Delta\omega \tau \right)
\]

Amplifier \(Z(\omega) \) \[\xrightarrow{\text{Cavity with direct feedback}}\] Beam \(Z_{\text{fb}}(\omega) \)

\[
Z_{\text{fb}}(\omega_0) = \frac{R}{1 + GR}
\]

Phase margin: 90.00°
Example: direct feedback lab experiment

- Coaxial cavity, $f_0 \approx 57$ MHz
- ‘Power’ amplifier: $\sim 10 \text{ mW}$

\Rightarrow No risk of damage

\Rightarrow Usually more: Tens to hundreds of kilowatts

[Graphs showing measured transfer function and phase with open loop and with feedback]
Example: 10 MHz RF system in CERN PS

Transfer function with and without feedback

More feedback gain

• Feedback gain of 24 dB
→ Equivalent impedance, \(Z_{fb}(\omega) \) reduced by more than order of magnitude
→ Impedance for amplifier remains unchanged, \(Z(\omega) \)
Example: CERN PS 10 MHz cavity feedback

- 10 + 1 ferrite loaded cavities, tunable from 2.8...10 MHz
- Two amplifiers excited in parallel by one amplifier

→ Realistic amplifier behaviour with higher order modes
Modelling a real cavity – time domain

- Time domain response of cavity and amplifier

Exciting bunch

Cavity response: closed loop

→ Comparing with measured response to beam excitation

→ No instantaneous damping due to inherent delay

→ Filling time significantly reduced with feedback
Limitations of direct feedback

• Contributions to maximum feedback gain

\[G_{\text{max}} = \frac{\pi}{2} \frac{1}{R/Q} \frac{1}{\omega_0 \tau} \]

using \[Q = \frac{\omega_0}{\Delta \omega_{-3dB}} \]

\[= \frac{\pi}{2} \cdot \frac{1}{R} \cdot \frac{1}{\Delta \omega_{-3dB}} \cdot \frac{1}{\tau} \]

1. Increasing shunt impedance **not a good idea**
2. Decreasing delay has physical limits
 → How close can amplifier be to cavity?
 → Minimum delay of feedback chain?
3. Reduce **bandwidth**
 → Reduce bandwidth of feedback chain instead of cavity?
Feedbacks with delay
Why?

→ Loop delay cannot be made short: amplifier not close enough to cavity
→ Need impedance reduction beyond stability limit of direct feedback
→ Cavity to be damped has large bandwidth

How?

→ Cleverly use the properties of the beam spectrum
→ Profit from of slow synchrotron motion
Longitudinal beam spectrum
Longitudinal beam spectrum

- Circular accelerator
 \[\rightarrow \text{Beam signal periodic with revolution frequency: } \omega_{\text{rev}} \]

\[\rightarrow \text{Spectral components at: } \omega = n\omega_{\text{rev}} \]

\[\omega_{\text{RF}} \]

Multi-bunch beam

Spectrum of single bunch
• Longitudinally unstable bunches may perform oscillations
 → Synchrotron frequency is basic periodicity: \(\omega_s \)

 \[\omega = n \omega_{\text{rev}} \pm m \omega_s \]

 \(\omega_s \ll \omega_{\text{rev}} \)

 → Adds sidebands at \(\omega_{\text{rev}} \) harmonics:
 → Sidebands usually close to \(\omega_{\text{rev}} \) harmonic since
Beam spectrum

→ Beam can only induce voltage at frequencies

\[\omega = n\omega_{\text{rev}} \pm m\omega_s \]

→ Relevant frequencies from RF point of view

\[\omega = \omega_{\text{RF}} \pm n\omega_{\text{rev}} \pm m\omega_s \]

→ Feedback only needs to damp these frequency components

→ Can one profit from this property for RF feedbacks beyond conventional stability limit?
Periodic filters
Periodic notch and comb filters

- Transfer function periodic in frequency
 \[H(\omega) = H(\omega \mod \omega_0) \]

- Niche application in communication technology
 → Who wants to listen to multiple radio stations at the same time?

- Very useful for circular accelerators thanks to properties of beam spectrum

→ How to build such filters?
Periodic notch and comb filters

- Add signal with itself, but delay by a fixed delay, τ

\[
\begin{align*}
V_{\text{in}} & \quad \rightarrow \quad \text{Delay, } \tau \\
\rightarrow \quad + & \quad \rightarrow \quad V_{\text{out}}
\end{align*}
\]

- Addition (maxima) or subtraction (minima)

\[
y(t) = x(t) + x(t - \tau)
\]
Periodic notch and comb filters

• Add signal with itself, but delay by a fixed delay, τ

$$x(t) = e^{i\omega t}$$

$$y(t) = x(t) + x(t - \tau)$$

$$= e^{i\omega t} + e^{i\omega(t-\tau)}$$

$$= e^{i\omega t} \left(1 + e^{-i\omega \tau}\right)$$

• Addition (maxima) or subtraction (minima)

\rightarrow Filter to remove (notch) revolution frequency harmonics
Periodic notch and comb filters

- Delay output signal by τ and add to input signal

- Addition (maxima) or subtraction (minima)

$$y(t) = x(t) + y(t - \tau)$$
Periodic notch and comb filters

- Delay output signal by τ and add to input signal

$$y(t) = x(t) + y(t - \tau)$$

- Ansatz:

$$y(t) = ae^{i\omega t}$$

$$y(t) = e^{i\omega t} \cdot \frac{1}{1 - e^{i\omega \tau}}$$

- Addition (maxima) or subtraction (minima)

Amplitude and phase of filter transfer function

\rightarrow Remove everything but revolution frequency harmonics
Digital implementation

- Replace analogue delay line by digital storage

\[y[n] = x[n] + \alpha y[n - k] \rightarrow (1 + \alpha z^{-k})Y(z) = X(z) \]

\[
H(z) = \frac{Y(z)}{X(z)} = \frac{1}{1 - \alpha z^{-k}} = \frac{z^k}{z^k - \alpha}
\]

\[z = e^{2\pi i \cdot \omega/\omega_{\text{clk}}} \]

\[\alpha = 0.00 \]
Feedback with periodic filters
1-tuple delay feedback

1. **Comb filter** to extract revolution frequency harmonics
2. **Delay** to complete physical delay of cables and signal processing to 1 revolution period

![Diagram of 1-tuple delay feedback system]
1-turn delay feedback

1. **Comb filter** to extract revolution frequency harmonics
2. **Delay** to complete physical delay of cables and signal processing to 1 revolution period
1-turn delay feedback

1. **Comb filter** to extract revolution frequency harmonics
2. **Delay** to complete physical delay of cables and signal processing to 1 revolution period

\[G \rightarrow GH(\omega) \]

\[Z_{fb}(\omega) = \frac{Z(\omega)}{1 + Z(\omega)Ge^{-i\Delta\omega\tau}} \]

\[\rightarrow Z_{1tfb}(\omega) = \frac{Z(\omega)GH(\omega)e^{-i\Delta\omega\tau}}{1 + Z(\omega)GH(\omega)e^{-i\Delta\omega\tau}} \]
Cavity transfer function with 1-turn delay FB

→ Transfer function with comb filter

\[Z_{1\text{tfb}}(\omega) = \frac{Z(\omega)}{1 + Z(\omega)GH(\omega)e^{-i\Delta\omega\tau}} \]

Variation of feedback gain

Variation of feedback delay

→ Impedance between revolution frequency harmonics
→ Not excited by beam, but potential issue for stability
→ Total delay very critical
Example: long delay feedback lab experiment

- 1-turn delay feedback around 57 MHz resonator
 - Analogue comb filter with ~2.5 km optical fiber delay
 - Accelerator with $f_{rev} \approx 76$ kHz ($2\pi R \approx 4$ km circumference)

![Graph showing open/closed loop transfer function with 2/+2 ns delay error (+/-1.4 \cdot 10^{-4})]
Example: 1-turn delay in CERN PS

- Combination of direct and 1-turn delay feedbacks

- Fast wide-band feedback around amplifier (internal) → Gain limited by delay

- 1-turn delay feedback → High gain at $n \times f_{rev}$
Example: 1-turn delay in CERN PS

→ Reduce cavity impedance beyond stability limit of wide-band FB

Open/closed loop transfer functions

- Calculated
- Measured

Spectrum at cavity gap return

Feedback off

Feedback on

→ Important additional impedance reduction

→ Clever usage of beam periodicity in circular accelerator
Multi-harmonic feedback
Treat each harmonic independently

- Separate feedback loop by harmonic
 - Full flexibility of individual loop parameters
 - Empowered by processing power of modern digital hardware

![Diagram showing single harmonic processing: band-pass and dephasing]

Open loop transfer function for 4 adjacent harmonics
Example: Damping of wide-band cavity

- Multi-harmonic feedback reduces beam induced voltage
- First 12 revolution frequency harmonics damped

Spectrum of beam induced voltage

1 bunch

C1510.

6 bunches

Feedback off
Feedback on

→ Damping beyond stability limit of direct feedback
Global feedbacks

Global feedback systems: longitudinal bunch-by-bunch, mode-by-mode feedbacks
Global RF feedback

1. Detect derivation of beam
 → Transverse: position offset
 → Longitudinal: phase offset

2. Signal processing to filter relevant information

3. Amplify and apply correction
 → Drive dedicated kicker
 → Drive accelerating cavities as longitudinal kickers
Longitudinal oscillation of bunches

- Longitudinally unstable beam, but **driving source unknown**
- Each bunch oscillation, but not with the same phase

Bunches oscillating (dipole, $2\pi \cdot 10/21$ phase advance)

<table>
<thead>
<tr>
<th>Time domain</th>
<th>Frequency domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Measure phase of each bunch</td>
<td>• Measure spectral component corresponding to mode</td>
</tr>
<tr>
<td>→ Apply kick to bring phase</td>
<td>→ Apply kick to remove that spectral component</td>
</tr>
<tr>
<td>back to reference position</td>
<td></td>
</tr>
<tr>
<td>→ “Bunch-by-bunch”</td>
<td>→ “Mode-by-mode”</td>
</tr>
</tbody>
</table>
Time domain: Bunch-by-bunch feedback

- Intuitive: **Measure oscillation of each bunch and correct**

→ Multiple feedbacks in parallel
→ Flexible control (gain/phase) for each bunch
Example: Bunch-by-bunch RF feedback

- Multi-bunch feedback developed for electron storage rings:
 - Used at Advanced Light Source (ALS) at LBNL (ALS), PEP at SLAC, DAφNE at INFN-LNF, etc.

- Bunch phase detection
 - De-multiplexer
 - Signal processor
 - Multiplexer

- Longitudinal kicker
 - Power amp
 - Modes in frequency domain
 - FFT

- Bunches in time domain

- Master Oscillator
 - Phase-locked at 6° RF of Cavity

- Timing & Control
 - A/D Down-sampler
 - DSP
 - Farm of Digital Signal Processors

- Hold Buffer
 - D/A
 - QPSK Modulator
 - Kicker Oscillator 1.125 GHz
 - Phase-locked to Ring
Frequency domain: Mode-by-Mode

- Less intuitive: Suppress components in beam spectrum
- Fixed phase advance from bunch-to-bunch creates sideband at $n\omega_{\text{rev}}$

$$\omega = n\omega_{\text{rev}} \pm m\omega_S$$

$2\pi \cdot 10/21$ phase advance: $n = 10, m = 1$
Frequency domain: Mode-by-Mode

- Less intuitive: Suppress components in beam spectrum
- Fixed phase advance from bunch-to-bunch creates sideband at $n\omega_{\text{rev}}$
 \[\omega = n\omega_{\text{rev}} \pm m\omega_S \]
- $2\pi\cdot10/21$ phase advance: $n = 10$, $m = 1$
- No sidebands at $\pm\omega_S$ → Dipole oscillations removed
- No sidebands at $\pm2\omega_S$ → Quadrupole oscillations removed
1. Filter synchrotron frequency side-bands
2. Inject correction to remove them

→ Stable beam

→ Multiple feedbacks in parallel
→ Optimum parameters (phase, gain) for each harmonic of ω_{rev}
Example: CERN PS coupled-bunch feedback

- Mode-by-mode dipole feedback
- 10 parallel processing chains → stabilize beam for LHC
Summary

1. Direct RF feedback
 → Globally reduce cavity impedance

2. Long delay feedback
 → Reduce impedance at revolution frequency harmonics

3. Global feedback
 → Just fix problems of (sometimes) not understood origin

• Chose feedback most appropriate to your problem
 → Prefer inner layers of feedback onion
 → Combination of different RF feedbacks

• Delay is principal enemy of almost every RF feedback
 → Keep it short, you cannot beat causality!
A big Thank You

to all colleagues providing support, material and feedback

Maria-Elena Angoletta, Philippe Baudreghien, Thomas Bohl, Giorgia Favia, Javier Galindo, Wolfgang Höfle, Erk Jensen, Piotr Kowina, John Molendijk, Damien Perrelet, Fumihiko Tamura, Frank Tecker, Dmitry Teytelman, Daniel Valuch, Christine Völlinger, Manfred Wendt and many more...
Thank you very much for your attention!
References

Direct RF feedback on cavity

- You **know** the driving impedance → RF cavity
- You can be **close** to the cavity

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Shunt impedance reduction of cavity resonance</td>
<td>• Local feedback</td>
</tr>
<tr>
<td>• Robust, performance does not depend on beam parameters</td>
<td>• Amplifier must be close to cavity</td>
</tr>
<tr>
<td>• Excellent transient response</td>
<td>• Feedback system per cavity</td>
</tr>
</tbody>
</table>
1-turn delay/multi-harmonic feedback

- **You** *know* the driving impedance \rightarrow RF cavity
- **You cannot** be *close* to the cavity

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Shunt impedance reduction of cavity resonance at revolution frequency harmonics</td>
<td>- Low bandwidth, slow response to transient effects</td>
</tr>
<tr>
<td>- Used in combination with direct feedback</td>
<td>- Feedback system per cavity</td>
</tr>
</tbody>
</table>

You know the driving impedance to RF cavity. You cannot be close to the cavity.

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Shunt impedance reduction of cavity resonance at revolution frequency harmonics</td>
<td>- Low bandwidth, slow response to transient effects</td>
</tr>
<tr>
<td>- Used in combination with direct feedback</td>
<td>- Feedback system per cavity</td>
</tr>
</tbody>
</table>
Global feedback

- **You do not know** the source of the problem
- **You observe and analyse** the effect of an instability

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Globally reduced consequence of instability</td>
<td>• Treats consequence, not cause of a problem</td>
</tr>
<tr>
<td>• One feedback sufficient to control instability</td>
<td>• Narrow range of application</td>
</tr>
<tr>
<td></td>
<td>• Dedicated longitudinal kicker</td>
</tr>
</tbody>
</table>
RF system overview

Beam

Cavity

Power amplifier

Low-level RF system

Beam
Application of global corrections

- **Local feedbacks** → Act on individual RF stations
- **Global feedbacks** → Act on all RF stations simultaneously

→ RF distribution to compensate time of flight between stations
→ All RF stations applying *correction in unison*
Frequency and wavelength ranges

- **SPS 200 MHz**
 - CLIC 12 GHz
 - PS longitudinal damper
 - PS main RF system

- **100 kHz**
 - 3 km
- **1 MHz**
 - 300 m
- **10 MHz**
 - 30 m
- **100 MHz**
 - 3 m
- **1 GHz**
 - 30 cm
- **10 GHz**
 - 3 cm
- **100 GHz**
 - 3 mm

- **Long wave**
 - SPS main RF system

- **Medium/short wave**
 - PS longitudinal damper

- **VHF**
 - CLIC 12 GHz

- **Microwave links**
 - SPS 200 MHz